Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Name: ________________________ Date: ____________ Spring 2013 Algebra CD Pre-Test Final Write the answer in the answer column at the right. Be sure to show ALL your work, every step, for each problem or you will receive NO credit. ANSWERS: Simplify. Assume that no denominator is equal to zero. (8.1, 8.2) 1. y5 y3 2. (9c3 d5 )(-2cd2 ) 3. (2w5 y4 ) 3 p 6q 2 4. 3 pq 5. 16r3 s-5 4r-1 s2 6. (-8x2 y2 ) 2 (4x3 y) 3 1. ______________ 2. ______________ 3. _______________ 4. _______________ 5. _______________ 6. _______________ Simplify. (8.5, 8.6) 7. (11m2 – 2mp + 8p2) + (8m2 + 4mp – 2p2 ) 7. _______________ 8. (x + 9) – (x + 6) 8. _______________ 9. 3xy(2x2 + 5xy – 7y2 ) 9. _______________ 10. 4c2 (c + 6) – 3c(2c2 – 3c + 1) 10. ______________ Page 1 Take Home Final Algebra CD Solve. (8.6) 11. m(m – 5) + 8m = m(m + 2) – 4 ANSWERS: 11. ______________ Find each product. (8.7, 8.8) 12. (2x – y)(3x + 4y) 13. (2m + 2)(m2 – 2m + 3) 12. ______________ 13. ______________ 14. (5c – 4)2 15. (3a – 4b)(3a + 4b) 14. ______________ 15. ______________ Find the prime factorization of each integer. (9.1) 16. 531 17. 1160 16. ______________ 17. ______________ 18. Factor completely: 168pq2r 18. ______________ Find the GCF of the given monomials. 19. –24, 36 20. 30n6 y2 t, 12n3 t4 19. ______________ 20. ______________ Factor each polynomial. (9.2) 21. 8rs2 + 16rs 21. ______________ 22. 3x2 + 21x + 27 22. _____________ 23. 12a2 – 15ab – 16a + 20b Page 2 of 8 (look closely with this one!) 23. _____________ G. Kelly 2013 Take Home Final Algebra CD Factor each polynomial, if possible. If the polynomial cannot be factored using integers, write prime. (9.3, 9.4) 24. x2 – 25 25. n2 – 7n – 18 ANSWERS: 25. ______________ 26. ______________ 26. 5t2 + 17t – 12 27. 2x2 – 16x + 32 28. 6m2 + 7m – 3 29. x2 + 12x + 5 27. ______________ 28. ______________ 29. _____________ Solve each equation. (9.4) 30. (x – 5) (2x – 1) = 0 30. ______________ 2 31. y + 4y = 45 31. ______________ 32. n3 – 3n2 – 10n = 0 32. ______________ 33. Find two consecutive even integers whose product is 224. 33. ______________ 34. The area of a rectangular room is 90 square feet. The length of the room is 1 foot longer than the width. Find the dimensions of the room. 34. ______________ Find the following information for each parabola. (10.1, 10.2) 35. y = x2 – 4 l.o.s. ________ vertex: _____ 36. same equation x-int: ______ y-int: ______ 35. ___see problem____ 36. ___see problem____ 37. ___see problem____ 37. y = x2 + 6x + 5 38. same equation Page 3 of 8 l.o.s. ________ vertex: _____ x-int: ______ y-int: ______ 38. ___see problem____ G. Kelly 2013 Take Home Final Algebra CD Solve each equation by graphing. 39. c2 + 6c + 8 = 0 40. b2 – 4b + 5 = 0 ANSWERS: 39. ______________ 40. ______________ Solve by completing the square. Leave answer as reduced radicals if necessary. (10.3) 41. m2 – 10m + 6 = -7 42. c2 + 12c = 13 41. ______________ 42. ______________ 43. Find the value of c that will make x2 + 3x + c a perfect square trinomial. Solve … either factor or use the quadratic formula. (10.4) 44. x2 – 4x + 5 = 0 45. x2 + 4x – 6 = 0 43. ______________ 44. ______________ 45. ______________ State the value of the discriminant and then determine the number of real roots. (10.4) 46. a2 + 8a + 16 = 0 47. w2 – 6w + 7 = 0 46. ______________ 47. ______________ Page 4 of 8 G. Kelly 2013 Take Home Final Algebra CD Simplify. (11.1) 48. 49. 3 84 12 50. 63 + 28 ANSWERS: 48. ______________ 49. ______________ 51. 32 75 52. 50. ______________ 8 3 3 51. ______________ 52. ______________ 53. ______________ Solve. (11.3) 53. 5p = 10 54. 6p 8 = p 54. ______________ Find the length of each missing side. (11.4) 55. a = ______ 15 56. a = 16, b = 12, c = ? 55. ______________ 57. a = 5, c = 74 , b = ? 56. ______________ 39 Simplify each expression. State the excluded values of the variable. (12.2) 2b 14 59. 2 b 9b 14 12a 58. 48a 2b 57. ______________ 58. ______________ 59. ______________ Find each product. (12.3) x 2 16 x 2 61. 2 x 4 x4 18x 2 15y 3 60. 10y 2 24 x Page 5 of 8 60. ______________ 61. ______________ G. Kelly 2013 Take Home Final Algebra CD Find each quotient. (12.4, 12.5) 62. 4 y 20 y 5 y3 2y 6 y 3y 10 2y 4 y 2 9y 8 y 1 2 63. ANSWERS: 62. ______________ 63. ______________ 64. (8r2 + 5r – 20) 4r 65. (a2 – 10a + 16) (a – 2) 64. ______________ 65. ______________ 66. (b2 + 5b – 2) (b + 6) 66. ______________ Solve each inequality (6.1, 6.2 & 6.3) 67) m + 6 < 2 68) d – (- 4) < 8 67. ______________ 69) 2x – 3 > x 68. ______________ 69. ______________ 70) -4 + 6n < 7n 70. ______________ 71) Negative fives times a number is no more than the sum of negative three times the number and twelve. 71. ______________ 72. ______________ 72) -8f < 48 73) - 32 > - 4n 73. ______________ 74) -5m + 9 > 24 75) -2x + 1 < 16 – x 74. ______________ 75. ______________ 2m 5 9 76) 3 76. ______________ 77. ______________ Solve the inequality and then graph on a number line. (6.4) 77) -14 < 3x + 1 < 4 Page 6 of 8 78) 2y – 3 < 7 or - 3y < - 18 78. ______________ G. Kelly 2013 Take Home Final Algebra CD Solve each open sentence, then graph the solution set. (6.5) 79) | c – 2 | > 6 ANSWERS: 79. ____________ 80) | 2m – 9 | < 1 80. ____________ 81) | 3 – 2r | > 7 81. ____________ For each graph, write an open sentence involving absolute value. 82) 1 11 82. ____________ 83. ____________ 83) -6 -2 (Chapter 4 and 5) 84. Graph the equation y = 3x – 4. Graph the inequality. (6.6) 86. x + 2y < 4 Page 7 of 8 85. Graph the equation 3x + 4y = 12. Graph the system of equations (7.1) 87. 2x + y = 3 x–y=3 G. Kelly 2013 Take Home Final Algebra CD Substitution: Use substitution to solve each system of equations. If the system does NOT have exactly one solution, state whether It has no solution or infinitely many. (7.2) 88. y = 6x 89. x = 2y + 7 2x +3y = -20 x=y+4 Use elimination ( + or -) to solve the system of equations. (7.3) 90. –x + y = 1 91. 7x + 4y = 2 x + y = 11 7x + 2y = 8 ANSWERS: 88. ______________ 89. ______________ 90. ______________ 91. ______________ Use elimination (using mult.) to solve the system of equations. (7.4) 92. 5x – 2y = -10 93. 3x + 2y = -9 92. ______________ 3x + 6y = 66 5x – 3y = 4 93. ______________ 94. 2x + 3y = 10 5x + 2y = -8 94. ______________ Graph the system of inequalities (7.5) 95. y > x + 2 y < -2x – 1 Good Luck … and study for the in class final Page 8 of 8 G. Kelly 2013