Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
The exponent of a number says how many times to use the number in a multiplication. In 82 the “2” says to use 8 twice in a multiplication, So 82 = 8 8 = 64 Exponents are also called Powers or Indices. In words: 82 could be called "8 to the power 2" or "8 to the second power", or simply "8 squared" Definition In general ,and n are positive integers. n = n factors Example: a7 a7 = a × a × a × a × a × a × a = aaaaaaa Notice how I just wrote the letters together to mean multiply? We will do that a lot here. Example: x6 = xxxxxx The Key to the Laws Writing all the letters down is the key to understanding the Laws Example: x2x3 = (xx)(xxx) = xxxxx = x5 Which shows that x2x3 = x5, but more on that later! So, when in doubt, just remember to write down all the letters (as many as the exponent tells you to) and see if you can make sense of it. Table is a summary of the Laws of Indices : Laws Example In general, where m and n are integers. 1. a m a n a mn am a mn n a 2. (a 3. m ) n a mn (ab) m a m b m m 4. am a bm b 1 a n n a 5. a 0 1 00 undefined And the law about Fractional Exponents: 6. ( 0) ( b 0) 0) ( 0) EXERCISE 1.1 Simplify the following , giving you answers in positive indices only. 1. 52 5 54 = ___________________________________________________ 2. (-2)3 (-2)5 = ___________________________________________________ 3. 32n+5 3n-1 3-3n-2 = ___________________________________________________ 4. (x3y5)(xy2) = ___________________________________________________ 5. (8a2b3c)(22ab5c6)(32a4bc5) = ___________________________________________________ = ___________________________________________________ 6. 52 5 54 = ___________________________________________________ 7. a3n-4 ÷ a3n-7 = ___________________________________________________ = ___________________________________________________ 8. = ___________________________________________________ 9. 10. 513 513 = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ 11. = ___________________________________________________ = ___________________________________________________ 12. = ___________________________________________________ 13. = ___________________________________________________ 14. = ___________________________________________________ = ___________________________________________________ 15. = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ 16. = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ 17. 18. = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ 19. = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ 20. [(4− 1 )− 2 ÷ (2− 2 )5 ]2 ÷ [(2− 2 ) ÷ (2− 2 )− 1 ]4 = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ HOMEWORK 1.1 Simplify the following , giving you answers in positive indices only. 1. = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ 2. = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ 3. = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ 4. = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ 5. = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ 6. = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ 7. = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ = ___________________________________________________ 8. Three of the following 365, 2104 and 752 Any amount is minimal. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 9. If > 0 and then find the value of ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 10. If > 0 and then find the value of ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ nth Roots Definitions For any real numbers a and b, and any positive integer n, if an = b, then a is the nth root of b. NOTE: Every positive real number has two real number square roots. The number 0 has just one square root, 0 itself. Negative numbers do not have real number square roots. Example Not to be confused Example 1. Find the value of the square root of 9 and 9 square root of 9 9 Example 2. Find the value of the square root of 16 and 16 square root of 16 16 Example 3. Find the value of the cube root -8 and 3 - 8 cube root -8 3 -8 Sarub ________________________________________________________________________ _________________________________________________________________________ Properties of the nth Roots Properties of the nth Roots 1. a a when n a is a real number. n 2. n n 3. 4. n an a an a when a <0 and n is odd number. when a<0 and n is even number. n a n b n ab n a n a , b ≠0 b b n Example Example 4 Simplify each of the following. (a) = ____________________________________________________ (b) = ____________________________________________________ (c) = ____________________________________________________ = ____________________________________________________ (d) = ____________________________________________________ EXERCISE Evaluate each of the following. 1.2 1. 5. = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ 2. (2 6. = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ 3. 7. = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ 4. 8. = ________________________________ = ________________________________ = ________________________________ = ________________________________ ;a > 0, b>0 = ________________________________ = ________________________________ = ________________________________ = ________________________________ HOMEWORK Level 1. Evaluate each of the following. 1.2 1. 2. = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ 3. 4. = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ 5. = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ 6. = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ Level 2. 7. Let 32x = 4y = 6-2z find the value of ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Level 3. 8. Let 2x = 3y = 4z = 24k and find the value of m ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 9. Let find the value of xyz ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ The rank of the square root, multiplication and division Concept 1. The rank of the square root must be the same. 2. If the rank of the square root not the same we need to make the same by bring to the rank of the square root find the least common multiple. 3. Properties of the nth Roots n a n b n ab n a n a , b ≠0 b b n Example 1 Simplify each of the following. (a) 12 (b) 2 12 75 = ____________________________________________________ = ____________________________________________________ (c) (2 3 3 )(3 3 5 )( 3 2 ) = ____________________________________________________ (d) (3 3 )(5 3 2 ) ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Formula Difference of squares. a2 – b2 = ___________________________________________________________ The sum and difference of cubes. a3 + b3 = ___________________________________________________________ a3 - b3 = ___________________________________________________________ Complete the square. (a + b)2 = __________________________________________________________ (a – b)2 = __________________________________________________________ Example 2 Find the value of the product for : a) ( 3 2 )( 3 - 2 ) = ____________________________________________________ b) ( 5 2 )( 5 - 2 )= ____________________________________________________ c) (2+ 3 )(2- 3 ) = ____________________________________________________ d) (5+ 21 )(5- 21 ) = ____________________________________________________ e) 1 3 2 = ____________________________________________________ f) 1 5- 2 = ____________________________________________________ g) 52 5 -2 5 -2 52 = ____________________________________________________ = ____________________________________________________ = ____________________________________________________ = ____________________________________________________ EXERCISE Evaluate each of the following. 1. 4. 5- 2 5 2 = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ 2 22 3 12 8 - 32 2. 3 3 16 4 1 3 = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ 5 9 3 6 3 4 = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ 5. = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ 3. 3 1.3 1 1 1 1 ... 1 2 2 3 3 4 8 9 = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ 6. 1 1 1 1 ... 5 7 7 3 3 11 47 7 = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ HOMEWORK Evaluate each of the following. Level 1. 1. 1.3 12 2 3 5 ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Level 2. 1. If 2a = Find the value of ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 2. What is a positive integer n. 1 1 1 1 ... 8 1 2 2 3 3 4 n n 1 ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Level 3. 3. If x = ,y= Find the value of ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ To find the square root of the number in the form (a + b) (a + b) + 2 the square root of (a + b) + 2 = +2 + =( is ( )2 + + ) but and the square root of (a + b) - 2 = but Example 1 Find the square root of a) 5 + 2 Concept Trick Concept Trick b) 4 - 2 Example 2 Find the value of square root. 1. 7 2 10 = ______________________ 2. 4 2 3 =______________________ 3. 22 - 2 105 =______________________ 5. 6. 7. 4. 8. (6 9. 8 - 2 15 =______________________ = _______________ = _______________ 5 = ______________ 9 - 80 4 15 30 10 1 35 ) 2 = ______________ 8 - 45 52 - 6 35 17 - 12 2 ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 10. If 4 17 288 a b Find the value of 2a + 3b ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ __________________________________________________________________________ Formula 2 n a n a n a................. 1. Find the value of 8 = n-1 a 28 28 2...... Trick Concept Formula 3 a a a ...... 2. Find the value of = 1 4a 1 2 6 6 6 ...... ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Formula 4 a a - a ...... 3. Find the value of = 1 4a - 3 2 7 7 - 7 7 ...... ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ EXERCISE 1.4 Find the square root of 1. 4 + 2 2. 16 - 2 3. 38 - 12 4. 12a + 2b - 4 5. 2x + 3 + 2 6. Find the value of square root. 7. 8. : a > 0 and b > 0 HOMEWORK Level 1. 1.4 Find the value of ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Level 2. Find the value of the fourth root 28 + 16 ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Level 3. Find the value of the cube root 26 + 15 ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Solving equations involving square roots. Concept 1. Isolate a square root. 2. Square both sides. 3. Repeat till all roots are gone. 4. Solve resulting equation. 5. Check solutions. Example Find the value of x 1. =x ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 2. = +1 ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 3. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 4. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ EXERCISE Find the value of x 1. 1.5 ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 2. 3x2 – x + 5 + = 12 ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ HOMEWORK Level 1. Find the value of x 1. 1.5 ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 2. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Level 2. Find the value of x 1. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 2. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Level 3. Find the value of x 1. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 2. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Exponential Function Definition Exponential Function An exponential function is a function in the form y = , where a is a nonzero constant, b is greater than 0 not equal to 1, and x is a real number. f={(x,y)∈R × R+/y=ax;a>0 และ a 1} Example Concept y = 0.5 f(x) = Find the Exponential Function 1. y= (-3)x 2. y= ( 1 ) x 2 3. y= ( ) x 4. y=(0)x 5. y=(1)x Increasing function and Decreasing function Rule Increasing Function Increasing Function can be modeled with the function y= for a > 0 and b > 1 Rule Decreasing Function The function y = models exponential decay for a > 0 and 0 < b < 1 Graph each function 1. y= 1 2 x x -3 -2 -1 0 y 2. y= 1 3 1 2 3 3. y=2x x -3 -2 -1 0 y x x -3 -2 -1 0 y 1 2 3 4. y=3x 1 2 3 x -3 -2 -1 0 y 1 2 3 Identify each function as increasing function or decreasing function. 1. y = 100 is ______________________________ 2. y = is ______________________________ 3. y = is ______________________________ 4. y= is ______________________________ 5. y = is ______________________________ 6. y=( π )x is ______________________________ 7. y = ;a>0 8. y = is ______________________________ Solve each equation 1. 3. 1 2 is ______________________________ x = 64 2. 4. 4-x= 1 64 Solve each Inequality. 1. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 2. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 3. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 4. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 5. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 6. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 7. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 8. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Write an exponential function to each equation. Find domain and range to each equation. 1) y = 7-x 2) y = -(7-x) y y x 0 Dr =___________________ Rr =___________________ 3) y = -(7x) Dr = ___________________ Rr = ___________________ 4) y = 2x – 3 y y x 0 Dr =___________________ Rr =___________________ 1 2 6) y = y y 0 Dr =___________________ Rr =___________________ x 0 Dr =___________________ Rr = ___________________ x 5) y = 4 + 2 x 0 x ( x 1) 1 0 Dr = ___________________ Rr = ___________________ x 7) y = -3x+1 + 2 y 8) y = 2 x x 0 0 Dr =___________________ Rr =___________________ 9. y = 1 2 y x Dr = ___________________ Rr = ___________________ 10. Math function with the graph of the function. y (0,3) (0,2) 0 x Dr = ___________________ Rr =___________________ x 0 y x a. y = 5-x + 3 b. y = -5x + 3 c. y = 5-x + 1 d. y = -5-x + 3 Solving equations involving exponential function Form Concept 1) ax=ay 2) ax=bx 3) ax2+bx+c=0 Example 1 Slove for x. 1. 2. 3. 4. (2x)x = 4(1-x) Example 2 Slove for x. 1. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 2. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 3. If and then find the value of x + y . ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ HOMEWORK 2.1 Level 1. Slove for x. 1. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 2. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Level 2. 3. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Level 3. 4. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 5. ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Logarithmic function Logarithms are the "opposite" of exponentials, just as subtraction is the opposite of addition and division is the opposite of multiplication. Logs "undo" exponentials. Technically speaking, logs are the inverses of exponentials. In practical terms, I have found it useful to think of logs in terms of The Relationship Definition Logarithmic Function The logarithmic function with base b, where b > 0 and b 1, is denoted by defined by y= if and only if f = {(x,y) R+ R/ y= log x ; a>0 และ a 1} a Concept and is Find the logarithmic function. 1. y log 5 x 2. y log 1 x 3. y log 0 x 4. y log x 5. y log 3 (5) 6. y log 5 0 Rewriting in logarithmic form. 1. 24 = 16 __________________ 4. __________________ 2. 102 = 100 __________________ 5. ___________________ 3. __________________ 6. ___________________ Rewriting in exponential form. 1. __________________ 4. __________________ 2. __________________ 5. __________________ 3. __________________ 6. ___________________ Increasing function and Decreasing function Rule Increasing Function Increasing Function can be modeled with the function y= for x > 0 and b > 1 Rule Decreasing Function The function y = models exponential decay for x > 0 and 0 < b < 1 Identify each function as increasing function or decreasing function. 1. y log x 4. y = lnx 1 2 2. 3. y log 3 x y logx 5. 6. y log -2 x Properties of the logarithmic function. When a,M,N is a real number. a ≠1 and k is a real number. 1. log a 1 = 0 2. log a a = 1 3. log a MN = log a M + log a N 4. log a MN = log a M - log a N 5. alog M = M 6. log a M k = k log a M 7. log a M = 1k log a M a k log a x log a b 9. log b a 1 log a b 8. log 10. b x EXERCISE Evaluate each of the following. 3.1 1. = ________________________________ = ________________________________ 4. = ________________________________ = ________________________________ 2. 5. = ________________________________ = ________________________________ = ________________________________ = ________________________________ 3. 6. = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ = ________________________________ 7. =__________________________________________________________________________ =__________________________________________________________________________ =__________________________________________________________________________ 8. = ________________________________ = ________________________________ = ________________________________ 10. 9. = ________________________________ = ________________________________ = ________________________________ =__________________________________________________________________________ =__________________________________________________________________________ =__________________________________________________________________________ 11. =__________________________________________________________________________ =__________________________________________________________________________ =__________________________________________________________________________ 12. When a, b, c, d and a, b, c, d 0 Find the value of =__________________________________________________________________________ =__________________________________________________________________________ =__________________________________________________________________________ 13. = ________________________________ = ________________________________ 15. = ________________________________ = ________________________________ 14. = ________________________________ = ________________________________ 16. = ________________________________ = ________________________________ 17. =__________________________________________________________________________ =__________________________________________________________________________ =__________________________________________________________________________ =__________________________________________________________________________ =__________________________________________________________________________ =__________________________________________________________________________ HOMEWORK Level 1. 3.1 Evaluate 3A when A = ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Level 2. Find the value of ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Level 3. If a, b, c and d are real numbers greater than one and . Find the value of ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Write an logarithmic function to each equation. Find domain and range to each equation 1) y = log3x y 2) y = log 2 x 3 y x 0 Dr =___________________ Rr =___________________ 3) y = log2(x+2) Dr = ___________________ Rr = ___________________ 4) y = log3(x-2) y y x 0 Dr =___________________ Rr =___________________ 6) y = log3(x-1) - 2 y Dr =___________________ Rr =___________________ x 0 Dr = ___________________ Rr = ___________________ 5) y = log3x + 2 0 x 0 y x 0 Dr =___________________ Rr = ___________________ x Common logarithm The common logarithm is the logarithm to base 10. The notation log x When 10 is used as a base, it is not necessary to indicate it in writing logarithms. For example, log 100 = 2 is understood to mean the same as log 10 100 = 2 If the base is other than 10, it must be specified by the use of a subscript to the right and below the abbreviation "log." As noted in the foregoing discussion of natural logarithms, the use of the distinctive abbreviation "In" eliminates the need for a subscript when the base is e. The value of log N can be written as N0 × 10n when 1 ≤ N0<10,n ∈I . so logN = log(N0 × 10n) = logN0 + log10n = logN0 + n The integral part is called the Characteristic and the fractional or the decimal part is called the Mantissa. Example 1. Find the value of Characteristic and Mantissa of log N. logN log(N0 × 10n) ค่า characteristic 1. log 218 log(2.18 × 102) 2 2. log 21.8 _______________ ___________________ 3. log 2.18 _______________ ___________________ 4. log 0.218 _______________ ___________________ 5. log 0.00218 _______________ ___________________ 6. log 87.96 _______________ ___________________ 7. log 87960 _______________ ___________________ ค่า mantissa log 2.18 _______________ _______________ _______________ _______________ _______________ _______________ Example 2. Given log 4.85=0.6857 Find the value of log N. 1. log 485 = ______________________________________________ 2. log 0.485 = ______________________________________________ 3. log 0.000485 = ______________________________________________ 4. log 4850000 = ______________________________________________ Example 3. Given log 896 has value mantissa = 0.9523. Find the value of log N. 1. log 8.96 = __________________________________________ 2. log 0.00896 = __________________________________________ 3. log 0.0000896 = __________________________________________ Example 4. Find the value of log 3.457 _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ Example 5. Given log 1.15 = 0.0607 and log 1.16=0.0645. Find the value of log 1153. _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ _________________________________________________________________________________________________ HOMEWORK Level 1. 1. Find the value of log 144 – 2log3 + log 25 – log 4 3.2 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Level 2. 2. Given log 3 = 0.4771. Find the value of log 0.027 . _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Level 3. 3. Find the value of Characteristic and Mantissa of log 0.0013506. _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ The antilogarithm (also called an antilog) is the inverse of the logarithm transform. Since the logarithm (base 10) of 1000 equals 3, the antilogarithm of 3 is 1000. Properties of the antilogarithm 1. Antilog a = x when log x = a 2. Antilog(log a) = a Example 1. Find the value of Antilog. 1. Antilog(log3) = _____________________ 3. Antilog(log18 –log9) = _______________ 2. Antilog(2log7) = ________________ 4. Antilog(loga+logb) = ________________ Example 2. Let Antilog 0.4082 = 2.56 . Find the value of N. 1. log N = 4.4082 2. log N = 0.4082 – 2 _____________________________ _____________________________ _____________________________ _____________________________ _ 3. log N = -2.5918 _____________________________ _____________________________ _____________________________ _____________________________ _ 5. log N = -3.5918 _____________________________ _____________________________ _____________________________ _____________________________ _ _____________________________ _____________________________ _____________________________ _____________________________ _ 4. log N = -0.5918 _____________________________ _____________________________ _____________________________ _____________________________ _ 6. log N = 8.4082 - 10 _____________________________ _____________________________ _____________________________ _____________________________ _ The estimated values. In some calculations involving multiplication, division, and the exponent in the form of a hassle. We may come to the logarithm of the calculations. However, the calculated value is an estimate only. Example 1. Find the value of (0.653)(92.9)(214) _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Example 2. Find the value of _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Example 3. Find the value of _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ EXERCISE 3.3 1. Let log 2 = 0.3010 and log N = -5 + 0.3010. Find the value of N. _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 2. Calculate the number of how many 87524 numbers are assigned log2=0.3010,log7 = 0.8450 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 3. Find that when the will be zero after the decimal point. How many decimal number. Let log2=0.3010. _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ HOMEWORK Level 1. 1. Find the value of , 3.3 Let log 2.327 = 0.3667. _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Level 2. 2. Find the value of Antilog of 8log 2 – log 129 . _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Level 3. Find the value of by use logarithm . _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Any positive number is suitable as the base of logarithms, but two bases are used more than any others: base of logarithms symbol name 10 log (if no base shown) common logarithm e ln natural logarithm Natural logs are logs, and follow all the same rules as any other logarithm. Just remember lnx = logex = log x log x loge 0.4343 Example Evaluate each of the following. 1. ln 72, Let log 72 = 1.8573. _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 2. ln 0.324 , Let Antilog 0.5105 = 3.24 . _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 3. log[ln3.02+2ln3-ln10]10, Let loge = 0.4343,e=2.718 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ EXERCISE Evaluate each of the following. 1. ln 3 – ln 6 +ln 2 = ________________________________ = ________________________________ = ________________________________ 3. ln 3470 = ________________________________ = ________________________________ = ________________________________ = ________________________________ 3.4 2. eln 7 = ________________________________ = ________________________________ = ________________________________ 4. ln 0.0753 = ________________________________ = ________________________________ = ________________________________ = ________________________________ 5. e-ln2+ln10+ ln302 +ln0.1+ln0.09 ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ Solving Logarithmic Equations The first type of logarithmic equation has two logs, each having the same base, set equal to each other, and you solve by setting the insides (the "arguments") equal to each other. For example: Solve log2(x) = log2(14). Since the logarithms on either side of the equation have the same base ("2", in this case), then the only way these two logs can be equal is for their arguments to be equal. In other words, the log expressions being equal says that the arguments must be equal, so I have: x = 14 And that's the solution: x = 14 The second type of log equation requires the use of The Relationship: Note that the base in both the exponential form of the equation and the logarithmic form of the equation (above) is "b", but that the x and y switch sides when you switch between the two equations. If you can remember this — that whatever had been the argument of the log becomes the "equals" and whateverhad been the "equals" becomes the exponent in the exponential, and vice versa — then you should not have too much trouble with solving log equations. Solve log2(x) = 4. Since this is "log equals a number", rather than "log equals log", I can solve by using The Relationship: log2(x) = 4 24 = x 16 = x Example. Find the value of x. 1. logx = 4 2. log25x = __________________________________ __________________________________ __________________________________ 3. log5(3x+2)=1 __________________________________ __________________________________ __________________________________ 5. log2(log3x)=2 __________________________________ __________________________________ __________________________________ 7. logx3 3 = 3 2 __________________________________ __________________________________ __________________________________ 9. logx2 = log x __________________________________ __________________________________ __________________________________ 3 2 __________________________________ __________________________________ __________________________________ 4. log3(x2+2x)=1 __________________________________ __________________________________ __________________________________ 6. log4log3log2(x2-2x)=0 __________________________________ __________________________________ __________________________________ 8. logx 1 = - 23 8 __________________________________ __________________________________ __________________________________ 10. log3( 2 )=log3(4-x) x -1 __________________________________ __________________________________ __________________________________ EXERCISE 3.5 Find the value of x. 1. log5(x+2) = -log5x 2. log9x = log33x __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ 3. log3x – log3(2x+3)=-2 4. log(1+x)=1+ logx __________________________________ __________________________________ __________________________________ 5. log5(x-1)+ log5(x-2)= log 5 6 __________________________________ __________________________________ __________________________________ 7. log(x-1)+log(x+1)=log(2x-1) __________________________________ __________________________________ __________________________________ 9. log2x log2 x =1 __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ 6.log5x + 2log5x = __________________________________ __________________________________ __________________________________ 8.log16x+ log4x+ log2x=7 __________________________________ __________________________________ __________________________________ 10. log4log3log29 log 9 ( x 2 2 x) =0 __________________________________ __________________________________ __________________________________ 21. x log x 2 4 = x2-18x+34 __________________________________ __________________________________ __________________________________ 23. logxlogx = 4 = 256 __________________________________ __________________________________ __________________________________ 27. x log = x 2x =4 __________________________________ __________________________________ __________________________________ 24. log3x= __________________________________ __________________________________ __________________________________ 25. x log 4 x 22. 9 log 3 x __________________________________ __________________________________ __________________________________ 26. x 3 log x = 3 10,000 __________________________________ __________________________________ __________________________________ 28. logx=log52x __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ 29. 3log4x-2logx4 = 1 30. log5x + logx5 = __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ HOMEWORK 3.5 Level 1. Let log2 = 0.3010 ,log3= 0.4771 and log7 = 0.8451. Find the value of x. 1. 2x = 27 __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ _ 3. 3x(2x) = 7 __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ _ 2. 2x = 52x-1 __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ _ 4. 32x-4(3x) +4 = 0 __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ _ Level 2. 5. Slove for x and y. 1. x + y = log79 2. x+y = log31 …………….(1) …………….(2) _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 6. 8x = 10y and 2x = 5y _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Level 3. Given . Find the value of x. _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Solving Inequalities Logarithms Concept 1. If 0< a < 1 then 1.1 1.2 > < when x1 < x2 when x1 > x2 2. If a > 1 then 2.1 > when x1 > x2 2.2 < when x1 < x2 3. Behind the numbers of log. Must be a positive number. 4. The correct answer should be 1 and 2 and 3 Example. Slove for x. 1. log4(2x+3)< log4(x-1) _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 2. log 1 (2 - x) ≤ log 1 ( 2 2 2 ) x 1 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ EXERCISE 3.6 Slove for x. 1. log5(x2+3x-1) > log5(x-2) _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 2.log4(x2+4x+11)<0 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 3. log0.5(6+4x-x2) ≥ 0 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ HOMEWORK Level 1. Slove for x. 1. 3.6 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ ____________________________________________________________________________________ _____________________________________________________________________________________ ____________________________________________________________________________________ Level 2. _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Level 3. _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________