Download Review for Midterm

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Review Material (I)
1. The Laws of Exponents:
i. If a, b are reals and r , s are intgers then
  a r   a rs
s
 ar a s  ar s
  ab   a b
r
2
.23.310 
23
 3.2 
1
r
5
ar
 s  a r s
a
r
2

Ans
.

27 
5
Method: Simplify numerator and denominator
separately. [Patience is required for simplification]

2x 1
6x
3
x5 
 2

Ans. 

x  4x  4 x  4 x  2
( x  2) 2 

Method: Factorize the denominators and find the
LCM.
a.
2
2  4 x 2  9   (2 x  3)  12   4 x 2  9  (8 x)
1
b.
1
2
 4x  9 
1
2
2
2
2


 Ans. 6(3  2 x)3 

 4 x2  9  2 

Method: Take out common factors in the numerator.
Remember:
iv. Rationalize the Denominators
 When is n a defined?
81x 2  16 y 2

3 x 2 y
If a  0 then n must be ODD.
 When x is a variable,
Method: Use of formula:
x2  x .
2.


a b


a  b  a b
Simplifications
i. Simplify complex expression, e.g.,
5

x 1
x

x 1

 Ans.  9 x  4 y  3 x  2 y 


2x
x3
7
x3
3 2

u  3 uv  3 v 2 
 Ans.

uv


Method: Use of formula:
1
 3
u3v

2 x 2  7 x  15 
Ans
.


x 2  10 x  7 


Method: Simplify numerator and denominator
separately. [Patience is required for simplification]
3
a3b

3

a 2  3 ab  3 b 2  a  b
ii. Simplify the following:
9 x 2  4 9 x 4  6 x3  4 x 2 
x 
.
Ans.
2
4

3x  5 x  2
27 x  8 x
x  1 

5 x 2  12 x  4 25 x 2  20 x  4
b.

x 4  16
x2  2x


x
 Ans. 2


 x  4   5 x  2  
3. Review Trigonometric Identities
a.
Method: Factorize numerators and denominators and
use the formulas:
 a3  b3  (a  b)(a 2  ab  b2 )
 a3  b3  (a  b)(a 2  ab  b2 )
iii. Simplify the following:
a.
1  tan 2   sec2 
b.
cos 2  cos 2   sin 2 
c.
sin
d.


csc  x     sec x
2

e.
cos(   )   cos 

2

1  cos 
2
tan(a  b) 
f.
tan a  tan b
1  tan a tan b
7.
[See similar other Identities in your Textbook]
Vertical & Horizontal
Translation of Simple Graphs
e.g. Sketch the graphs of
y  ( x  1)3  2; y  x  2  1; y  sin( x  1)  2
y  e x 1  2; y  ln( x  1)  2;
4. Use of Right Angled Triangle to
find Trigonometric Ratios
e.g. (i) If sin x  h in the diagram, then
h
x
a.
sec x 
b.
sin(2 x)  2h 1  h2
c.
cos
x

2
1
8. Writing Quadratic Function in
Standard Form
Find a, b and c when y = 5  4 x  2 x 2 is written in
the form y = a  b( x  c)2 ? Then sketch the graph
of the function
(Check: Vertex, x & y intercepts, parabola opens
upwards or downwards) See page:
1 h2
9.
Long Division
Divide 5 x  3 x 2  4 x  5 by x 2  2 x  4 and
find Divisor; Quotient; Remainder.
4
1 1 h 2
2
(ii) Use Right Angled Triangle to check:
10. Area of Geometrical Figures
Triangle, Trapezoid, Circle; Sector.
If x  3sec , then
x2  9  3tan x .
11.
Read Page 44-48 & 64-74 of the Text for
the following Topics
5.
Sketch the Graph of Basic
Functions
e.g. i. y  x ; y  x 2 ; x  y 2 ; y  x3 ; y  x
ii. y  e x ; y  ln x;
x
1
iii. y  2 ; y    ;
2
iv. y  log 2 x; y  log 1 x
x
2
v. All trigonometric Functions
6. Symmetry about Axes and the
Origin
Recall the Tests for Symmetries.
Factorize
x3  64 ; x 6  5 x3  6 ; 3x3  x 2  3x  1
12. Chain Rule for differentiation
Rule: Differentiate Extreme outer function, the
next outer function, and then next….
e.g. find the derivative of

 y  sin 3 ( x 2  3)  ecos x


3

4
6
 y  ln sin 5 x3  5 .
[Identify the outer functions in order.]
Related documents