Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Review Material (I) 1. The Laws of Exponents: i. If a, b are reals and r , s are intgers then a r a rs s ar a s ar s ab a b r 2 .23.310 23 3.2 1 r 5 ar s a r s a r 2 Ans . 27 5 Method: Simplify numerator and denominator separately. [Patience is required for simplification] 2x 1 6x 3 x5 2 Ans. x 4x 4 x 4 x 2 ( x 2) 2 Method: Factorize the denominators and find the LCM. a. 2 2 4 x 2 9 (2 x 3) 12 4 x 2 9 (8 x) 1 b. 1 2 4x 9 1 2 2 2 2 Ans. 6(3 2 x)3 4 x2 9 2 Method: Take out common factors in the numerator. Remember: iv. Rationalize the Denominators When is n a defined? 81x 2 16 y 2 3 x 2 y If a 0 then n must be ODD. When x is a variable, Method: Use of formula: x2 x . 2. a b a b a b Simplifications i. Simplify complex expression, e.g., 5 x 1 x x 1 Ans. 9 x 4 y 3 x 2 y 2x x3 7 x3 3 2 u 3 uv 3 v 2 Ans. uv Method: Use of formula: 1 3 u3v 2 x 2 7 x 15 Ans . x 2 10 x 7 Method: Simplify numerator and denominator separately. [Patience is required for simplification] 3 a3b 3 a 2 3 ab 3 b 2 a b ii. Simplify the following: 9 x 2 4 9 x 4 6 x3 4 x 2 x . Ans. 2 4 3x 5 x 2 27 x 8 x x 1 5 x 2 12 x 4 25 x 2 20 x 4 b. x 4 16 x2 2x x Ans. 2 x 4 5 x 2 3. Review Trigonometric Identities a. Method: Factorize numerators and denominators and use the formulas: a3 b3 (a b)(a 2 ab b2 ) a3 b3 (a b)(a 2 ab b2 ) iii. Simplify the following: a. 1 tan 2 sec2 b. cos 2 cos 2 sin 2 c. sin d. csc x sec x 2 e. cos( ) cos 2 1 cos 2 tan(a b) f. tan a tan b 1 tan a tan b 7. [See similar other Identities in your Textbook] Vertical & Horizontal Translation of Simple Graphs e.g. Sketch the graphs of y ( x 1)3 2; y x 2 1; y sin( x 1) 2 y e x 1 2; y ln( x 1) 2; 4. Use of Right Angled Triangle to find Trigonometric Ratios e.g. (i) If sin x h in the diagram, then h x a. sec x b. sin(2 x) 2h 1 h2 c. cos x 2 1 8. Writing Quadratic Function in Standard Form Find a, b and c when y = 5 4 x 2 x 2 is written in the form y = a b( x c)2 ? Then sketch the graph of the function (Check: Vertex, x & y intercepts, parabola opens upwards or downwards) See page: 1 h2 9. Long Division Divide 5 x 3 x 2 4 x 5 by x 2 2 x 4 and find Divisor; Quotient; Remainder. 4 1 1 h 2 2 (ii) Use Right Angled Triangle to check: 10. Area of Geometrical Figures Triangle, Trapezoid, Circle; Sector. If x 3sec , then x2 9 3tan x . 11. Read Page 44-48 & 64-74 of the Text for the following Topics 5. Sketch the Graph of Basic Functions e.g. i. y x ; y x 2 ; x y 2 ; y x3 ; y x ii. y e x ; y ln x; x 1 iii. y 2 ; y ; 2 iv. y log 2 x; y log 1 x x 2 v. All trigonometric Functions 6. Symmetry about Axes and the Origin Recall the Tests for Symmetries. Factorize x3 64 ; x 6 5 x3 6 ; 3x3 x 2 3x 1 12. Chain Rule for differentiation Rule: Differentiate Extreme outer function, the next outer function, and then next…. e.g. find the derivative of y sin 3 ( x 2 3) ecos x 3 4 6 y ln sin 5 x3 5 . [Identify the outer functions in order.]