Download PM 11

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PM 11
Final Exam Review 1
1. Graph and label y  2  x  1  7
2
1
and 4
3
3. Write the equation of the parabola with a vertex of (-2,4) and passing through (1,7)
2. Write the quadratic equation with roots of 
4. Determine the zeroes for y  2 x 2  7 x  3
5. Change y  x 2  6 x  7 to the form y  a  x  p   q
2
6. A rectangular lot is bordered on one side by a stream and on the other sides by a
total of 200m of fencing. The area of the lot is a maximum. Show the area as a function
of side length x. Complete the square. Determine the area.
7. Graph the inverse of y = 2x + 3
8. Determine the inverse of y   x  1  3
2
9. Write an equation of the function
1
1
11. y  2
2x  3
x  16
2
12. Given f  x   x  1 and g  x   2 x  4 , find g(f(2))
10. Graph and label y 
13. Given f(x) = 3x+1 and g(x) = 2x-6, find f(g(x))
14. Determine the domain and range of y  x 4  3x 2  1
15. Determine the equation of the function with zeroes of 0, 4, and -1 and passing
through (2,-6)
16. Solve x3  4 x  2  0 by graphing
17. For what value(s) of k does x 2  kx  2  0 have 2 equal real roots
18. Solve x3  x 2  5 x  2  0 by factoring
19. Solve  x  2 x 1 x  5  0
21. Solve
x  5  x 1
23. x + 3y = 7 by graphing
X–y=3
20. Solve
1
x
5


x x 1 x
22. Solve 2 x  5  x  1
24. 2x + 3y = 8
3x – y = 1
25. Solve y  x 2  1
y=x+3
26. Solve x – y – z = 1
2x + y + z = 14
X + y + 2z = 10
x3
27. Solve y  2
y  3x  2
28. Solve ∆ABC if  C=90°, AC = 10.1,BC = 7.5
29. Solve for x
12
x
36
30. Solve for each variable
30°
60°
w
y x
z
31. Solve for x.
x
10
32. Solve for x and y
y
x
66°
33. Graph and label  x  2   y 2  4
2
34. Find the co-ordinates of the intersection of  x  1  y 2  4 and x – 3y = 3
2
35. Given the circle described by  x  2    y  1  10 . Find the equation of the tangent
2
2
to the circle at the point P(-5,0)
36. A line is drawn through the origin at 50° to positive x-axis. The point O is 10cm
from the origin. With centre O, a circle is drawn with radius of 8cm. This circle
intersects the x-axis at A and B Calculate the length of chord AB
37. Determine the shortest distance between the origin and the line graphed by
4x + 5y = 20
38. Verify that figure ABCD is a rectangle if A(0,0), B(1,3), C(4,2), and D(3,-1)
39. Given, that angle  is in standard position, with its terminal arm in QIII, has
2
. Find exact values for the other 5 trig ratios
sin   
7
40. Determine the exact values for a) cos 135° b) csc 330° c) tan (-60°)
41. Solve sin 2   sin   0 , for 0    360
42. Solve 4 cos 2   3 , for 0    360
Answer Key:
4) zeroes are
1
and 3
2
8) y   x  3  1
10)
3) y 
2) 3x 2  11x  4  0
1)
5) y   x  3  2
2
6) 5000m2
9) y   x  3 x  1 x  2
1
2
 x  2  4
3
7)
11)
12) g(f(2)) = 6
15) y 
13) 6x – 17
1
x  x  4  x  1
2
R   y  3.25
19) x  2 or 1  x  5 20) x = { 2 }
 4
22) x  6, 
 3
21) x = { 4 }
}
16) x 2.21,0.54,1.68 17) k  2 2
 3  5 3  5 
,
18) x  2,

2
2 

26) (5,3,1)
14) D = {
23) (4,1)
24) (1,2)
25) {(2,5),(-1,2) }
27)
Shade the triangle
28)
A  37, B  53, AB  12.58
29) x  12 2
30) x = 120°, y = 240°, z = 30°, and w = 60°
31) x  5 2
32) x = 48° and y = 66°
34) { (3,0), (--0.6,-1.2) }
35) 3x + y + 15 = 0
37) 3.15 units
39) cos   
40) a) 
1
2
36) Chord AB = 4.61 units
38) AB  AD, AB CD
3
2
7
7
3
, csc   
, tan  
,sec   
, cot  
2
2
7
3
3
b) -2 c)  3
41) 0°, 90°, 189°
42) 30°, 150°, 210°, 330°
33)
Related documents