Download N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
BF961
Vishay Semiconductors
N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode
3
Features
•
•
•
•
•
•
•
•
4
Integrated gate protection diodes
High cross modulation performance
e3
Low noise figure
High AGC-range
Low feedback capacitance
Low input capacitance
Lead (Pb)-free component
Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
2
1
G2
D
G1
S
Electrostatic sensitive device.
Observe precautions for handling.
Applications
Mechanical Data
Input- and mixer stages especially for FM- and VHF
TV-tuners up to 300 MHz.
Case: TO-50 Plastic case
Weight: approx. 124 mg
Marking: BF961
Pinning:
1 = Drain, 2 = Source,
3 = Gate 1, 4 = Gate 2
13625
Parts Table
Part
Ordering Ccode
Marking
Package
BF961
BF961A or BF961B
BF961
TO50
BF961A
BF961A
BF961
TO50
BF961B
BF961B
BF961
TO50
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Parameter
Test condition
Drain - source voltage
Drain current
Gate 1/Gate 2 - source peak
current
Tamb ≤ 60 °C
Symbol
Value
Unit
VDS
20
V
ID
30
mA
± IG1/G2SM
10
mA
mW
Ptot
200
Channel temperature
TCh
150
°C
Storage temperature range
Tstg
- 55 to + 150
°C
Symbol
Value
Unit
RthChA
450
K/W
Total power dissipation
Maximum Thermal Resistance
Parameter
Channel ambient
1)
Test condition
1)
on glass fibre printed board (40 x 25 x 1.5) mm3 plated with 35 µm Cu
Document Number 85002
Rev. 1.5, 15-Apr-05
www.vishay.com
1
BF961
Vishay Semiconductors
Electrical DC Characteristics
Tamb = 25 °C, unless otherwise specified
Symbol
Min
Drain - source breakdown
voltage
Parameter
ID = 10 µA, - VG1S = - VG2S = 4 V
Test condition
Part
V(BR)DS
20
Typ.
Max
Unit
Gate 1 - source breakdown
voltage
± IG1S = 10 mA, VG2S = VDS = 0
± V(BR)G1SS
8
14
V
Gate 2 - source breakdown
voltage
± IG2S = 10 mA, VG1S = VDS = 0
± V(BR)G2SS
8
14
V
V
Gate 1 - source leakage current ± VG1S = 5 V, VG2S = VDS = 0
± IG1SS
100
nA
Gate 2 - source leakage current ± VG2S = 5 V, VG1S = VDS = 0
± IG2SS
100
nA
Drain current
VDS = 15 V, VG1S = 0, VG2S = 4 V BF961
BF961A
BF961B
IDSS
4
20
mA
IDSS
4
10.5
mA
IDSS
9.5
20
mA
Gate 1 - source cut-off voltage
VDS = 15 V, VG2S = 4 V,
ID = 20 µA
- VG1S(OFF)
3.5
V
Gate 2 - source cut-off voltage
VDS = 15 V, VG1S = 0, ID = 20 µA
- VG2S(OFF)
3.5
V
Electrical AC Characteristics
Tamb = 25 °C, unless otherwise specified
VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz
Parameter
Test condition
Forward transadmittance
Gate 1 input capacitance
Gate 2 input capacitance
VG1S = 0, VG2S = 4 V
Symbol
Min
Typ.
| y21s |
12
15
Max
Unit
mS
Cissg1
3.7
pF
Cissg2
1.6
pF
Feedback capacitance
Crss
25
fF
Output capacitance
Coss
1.6
pF
Gps
20
dB
∆Gps
50
dB
F
1.8
Power gain
GS = 2 mS, GL = 0.5 mS,
f = 200 MHz
AGC range
VG2S = 4 to - 2 V, f = 200 MHz
Noise figure
GS = 2 mS, GL = 0.5 mS,
f = 200 MHz
2.5
dB
300
22
200
150
100
50
96 12159
18
0.4 V
16
14
0.2 V
12
10
0
8
–0.2 V
–0.4 V
–0.6 V
–0.8 V
6
4
2
0
0
0
20
40
60
80
100 120 140 160
Tamb - Ambient Temperature ( °C )
Figure 1. Total Power Dissipation vs. Ambient Temperature
www.vishay.com
2
V G1S = 0.6 V
20
250
ID – Drain Current ( mA)
Ptot -Total Power Dissipation ( mW )
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
0
96 12160
2
4 6 8 10 12 14 16 18 20 22 24
V DS – Drain Source Voltage ( V )
Figure 2. Drain Current vs. Drain Source Voltage
Document Number 85002
Rev. 1.5, 15-Apr-05
BF961
V DS = 15 V
I DS = 10 mA
V G1S = 0.5 V
0V
–0.5 V
–2
96 12161
–1
0
1
2
3
4
5
6
V G2S – Gate 2 Source Voltage ( V )
Y21S – ForwardTransadmittance ( mS )
Figure 3. Forward Transadmittance vs. Gate 2 Source Voltage
22
20
18
V DS = 15 V
f = 1 MHz
V G2S = 5 V
16
14
12
10
8
4V
6
0V
4
3V
2V
1V
2
Cissg2 – Gate 2 Input Capacitance ( pF )
24
22
20
18
16
14
12
10
8
6
4
2
0
V G1S - Gate 1 Source Voltage ( V )
2.8
2.4
2.0
1.6
1.2
0.8
0.4
0.0
2.0
1.5
1.0
0.5
0
3.0
f =700 MHz
600 MHz
500 MHz
10
400 MHz
8
300 MHz
6
4
0.5
2
Rev. 1.5, 15-Apr-05
8 10 12 14 16 18 20 22
12
1.0
Document Number 85002
6
Figure 7. Output Capacitance vs. Drain Source Voltage
14
Figure 5. Gate 1 Input Capacitance vs. Gate 1 Source Voltage
4
V DS - Drain Source V oltage ( V )
16
0.0
–2.0–1.5–1.0–0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
96 12163
V G1S – Gate 1 Source Voltage ( V )
2
96 12165
3.5
1.5
V G2S = 4 V
f = 1 MHz
2.5
18
2.0
0
1 2
3 4
5 6
7
V G2S – Gate 2 Source Voltage ( V )
3.0
4.0
V DS = 15 V
V G2S = 4 V
f = 1 MHz
–1
0.0
Im ( y11) ( mS )
Cissg1 – Gate 1 Input Capacitance ( pF )
3.2
Figure 6. Gate 2 Input Capacitance vs. Gate 2 Source Voltage
Figure 4. Forward Transadmittance vs. Gate 1 Source Voltage
2.5
V DS = 15 V
V G1S = 0
f = 1 MHz
3.6
–2
0
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
96 12162
4.0
96 12164
Coss – Output Capacitance ( pF )
Y21S – ForwardTransadmittance ( mS )
Vishay Semiconductors
V DS = 15 V
V G2S = 4 V
I D = 5...20 mA
f = 50...700 MHz
200 MHz
100 MHz
0
0
96 12166
1
2
3
4
5
6
7
8
9
10
Re (y 11) ( mS )
Figure 8. Short Circuit Input Admittance
www.vishay.com
3
BF961
Vishay Semiconductors
10
V DS = 15 V
V G2S = 4 V
f = 50...700 MHz
5
Im ( y 21 ) ( mS )
0
f = 50 MHz
I D = 5 mA
10 mA
20 mA
–5
–10
100 MHz
200 MHz
300 MHz
–15
400 MHz
–20
500 MHz
600 MHz
–25
700 MHz
–30
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Re (y 21) ( mS )
96 12167
Im ( y22 ) ( mS )
Figure 9. Short Circuit Forward Transfer Admittance
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
f = 700 MHz
600 MHz
I D = 5 mA
500 MHz
I D = 20 mA
400 MHz
300 MHz
200 MHz
100 MHz
0.0
0.2
0.4
0.6
V DS = 15 V
V G2S = 4 V
I D = 5...20 mA
f = 50...700 MHz
0.8
1.0
1.2
1.4
Re (y 22 ) ( mS )
96 12168
Figure 10. Short Circuit Output Admittance
www.vishay.com
4
Document Number 85002
Rev. 1.5, 15-Apr-05
BF961
Vishay Semiconductors
VDS = 15 V, ID = 5 to 20 mA, VG2S = 4 V, Z0 = 50 Ω
S11
S12
90 °
j
120°
j0.5
60 °
j2
150°
j0.2
30 °
300
j5
0
0.2
0.5
1
2
∞
5
100
–j0.2
700 MHz
12920
0.08
–150 °
–j2
–j0.5
0.04
0°
50
–j5
300
500
600
700 MHz
180°
–30°
–120 °
–60°
–90 °
12921
–j
Figure 13. Reverse Transmission Coefficient
Figure 11. Input Reflection Coefficient
S21
S22
ID= 20 mA
90°
120°
j
60°
ID= 10 mA
j0.5
ID= 5 mA
30°
400
j0.2
200
50
0.8
1.6
0°
0
–120°
Figure 12. Forward Transmission Coefficient
Rev. 1.5, 15-Apr-05
0.5
1
–j0.5
–60°
–90 °
0.2
–j0.2
–30 °
–150°
Document Number 85002
j5
700MHz
180 °
12922
j2
12923
ı∞
100
300
500
–j5
700 MHz
2
5
–j2
–j
Figure 14. Output Reflection Coefficient
www.vishay.com
5
BF961
Vishay Semiconductors
Package Dimensions in mm
96 12242
www.vishay.com
6
Document Number 85002
Rev. 1.5, 15-Apr-05
BF961
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Document Number 85002
Rev. 1.5, 15-Apr-05
www.vishay.com
7
Related documents