Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Geometry Chapter 8: Quadrilaterals 8.4-β Properties of Rhombuses, Rectangles, and Squares SWBAT: use properties of rhombuses, rectangles, and squares. Common Core: G.CO.11, G.CO.13, G.SRT.5 βDo Nowβ If πππ π is a parallelogram, find the values of x and y. Rhombus Corollary: Theorem 8.11: A parallelogram is a rhombus if and only if A quadrilateral is a its diagonals are rhombus if and only if it ______________________________________. has four ___________________________ sides. Rectangle Corollary: A quadrilateral is a rectangle if and only if it has four ___________________________ angles. Theorem 8.12: A parallelogram is a rhombus if and only if each diagonal ______________________ a pair of opposite angles. Square Corollary: A quadrilateral is a square if Theorem 8.13: A parallelogram is a and only if it is a ___________________________ and a rectangle if and only ___________________________________________. if its diagonals are ______________________________. Geometry Chapter 8: Quadrilaterals Parallelograms (opposite sides are parallel) Example 1: Decide whether the statement is always, sometimes, or never true. 1. A square is a rectangle. 2. The diagonals of a rectangle bisect the opposite angles. 3. A rectangle is a rhombus. 4. The diagonals of a square are perpendicular. 5. A parallelogram is a rhombus. 6. A rectangle is a square. Example 2: Given: π΄π΅πΆπ· is a parallelogram. π΄πΆ β₯ π΅π· Prove: π΄π΅πΆπ· is a rhombus Statements Reasons Geometry Chapter 8: Quadrilaterals Example 3: Given the quadrilateral, find the missing measurements. 1. Given rectangle π΄π΅πΆπ·. Find the following. 2. Given rectangle π½πΎπΏπ. Find the following. 3. Given rectangle ππππ, find πβ πππ. 4. Given rectangle πΊπ»πΌπ½, find πβ π½π»πΌ. 5. If ππππ is a rhombus, find ππ. Geometry Chapter 8: Quadrilaterals 6. π½πΎπΏπ is a rhombus. Find the following. 7. The quadrilateral below is a rhombus. Find the following. 8. π πππ is a rhombus. Find the following. 9. If πΆπ·πΈπΉ is a rhombus, find πβ πΉπΈπ·. Geometry Chapter 8: Quadrilaterals 10. 11. If ππππ is a square with ππ = 2π₯ + 13 and ππ = 8π₯ β 41, find ππ. 12. If πΉπΊπ»πΌ is a square, solve for x. 13. ππππ is a rectangle. If ππ = 9π₯ β 11 and ππ = 16π₯ β 12, find ππ. 14. πΆπ·πΈπΉ is a rectangle. Find πΈπΉ. Geometry Chapter 8: Quadrilaterals Coordinate Geometry: Name that Quadrilateral 1. Calculate the slope of each side. a. If both pairs of opposite sides have the same _____________________ then the quadrilateral is a ______________________________________. b. If the slopes of the consecutive sides are negative ____________________________ then the consecutive sides are ____________________________________ making the parallelogram a _________________________________________. 2. Calculate the slopes of the diagonals. a. If the slopes of the diagonals are __________________________ reciprocals then the _________________________ are perpendicular making the parallelogram a ________________________________________. b. If the parallelogram is both a _________________________________ and a ______________________________ then the parallelogram is a __________________________________. Examples: Determine if the quadrilateral with given vertices is a parallelogram, rectangle, rhombus, or square. Show all work to support your answer and explain your conclusion. 1. π β5, β1 , π΄ β1, 7 , π 7, 5 , π»(5, β3) Parallelogram: __________ Rectangle: __________ Rhombus: __________ Square: __________ Explanation: Geometry Chapter 8: Quadrilaterals 2. π β4,0 , π΄ 1, 5 , π 5, 1 , π»(0, β4) Parallelogram: __________ Rectangle: __________ Rhombus: __________ Square: __________ Explanation: 3. π β3, 1 , π΄ 1, 3 , π 5, 1 , π»(1, β1) Parallelogram: __________ Rectangle: __________ Rhombus: __________ Square: __________ Explanation: Geometry Chapter 8: Quadrilaterals 4. π β4, 1 , π΄ 1, 4 , π 6, 1 , π»(1, β2) Parallelogram: __________ Rectangle: __________ Rhombus: __________ Square: __________ Explanation: 5. π β2, 4 , π΄ 2, 5 , π 4, β3 , π»(0, β4) Parallelogram: __________ Rectangle: __________ Rhombus: __________ Square: __________ Explanation: