Download Learning Area

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Educator and Tagging Information:
Learning Area:
Maths
Resource Name:
Maths
Assessment Exemplar Number:
M8.88
Item:
88
Phase:
Senior
Grade:
8
Learning Outcome(s) and Assessment Standard(s):
Learning Outcome 2: Patterns, Functions and Algebra
Assessment Standard: We know this when the learner
8.2.5 Solves equations by inspection, trial-and improvement or algebraic processes (additive and
multiplicative inverses), checking the solution by substitution.
8.2.8 Uses conventions of algebraic notation and the commutative, associative and distributive laws
to: classify terms as like or unlike, and to justify the classification; collect like terms; multiply or
divide an algebraic expression with one, two or three terms by a monomial; simplify algebraic
expressions given in bracket notation, involving one or two sets of brackets and two kinds of
operations; compare different representations of algebraic expressions involving one or more
operations, selecting those which are equivalent, and justifying own choice; write algebraic
expressions, formulae or equations in simpler or more useful equivalent forms in context.
8.2.9 Interprets and uses the following basic algebraic vocabulary in context: term, expression,
coefficient, exponent (or index), base, constant, variable, equation, formula (or rule).
Learning Space:
Assessment
Hyperlinks:
To be completed later.
Number of questions for exemplar:
2
Rating:
Easy questions:
Question 1 and 2
Medium questions:
Difficult questions:
Assessment Task
Questions:
1.
2.
In each of the following, solve for x:
a)
120  3x  69
b)
5x2 15x  0
c)
3x   2x  5  4x  3  2  2x 1
d)
x2  2x  3
5
x3
e)
 x  1 x  3  x2  2  34
f)
2  3x  4x 12
g)
2  x  3  4
For each of the following, simplify each expression:
a)
b)
c)
    x  
 x3

6
3
2 2

1
x2
2  3  2    3  2 
5   2  4
2 x(3 pq  4qr  6 pr )
3xp
Solution
1.
a)
120  3 x  69
3 x  69  120
3 x  51
51
3
 x  17
x 
b)
5 x 2  15 x  0
 5 x ( x  3)  0
 x  3  0 or 5 x  0
 x  3 or x  0
c)
3 x   2 x  5   4 x  3  2  2 x  1
 3x  2 x  5  4 x  3  4 x  2
 x  5  1
 x  1  5
 x  6
d)
x2  2 x  3
5 ;
x  3
x3
x2  2 x  3
 ( x  3) 
 5  ( x  3)
x3
 x 2  2 x  3  5( x  3)
 x 2  2 x  3  5 x  15
 x 2  2 x  3  5 x  15  0
 x 2  3x  18  0
 ( x  6)( x  3)  0
 x  6 or
x  3
n.a. since x 3
e)
 x  1 x  3  x 2  2  34
 x 2  x  3x  3  x 2  2  34
 x 2  4 x  3  x 2  2  34
 4 x  1  34
 4 x  33
x 
33 
3

 or 8 or 8.75 
4
4

f)
)
2  3 x  4 x  12
 2  12  4 x  3 x
14  7 x
 7 x  14
x  2
g)
2 x3 4
2  x  3  4
2  3  x  4  3
5  x  1
2.
a)
    x  
 x3

6
3
2 2

1
x2
1
  x 54  x12   2
x
1
  x 66   2
x
64
x
3
  x18  x 4  
1
x2
b)
2  3  2    3  2 
5   2  4
((2  3)  ( 2  2))  (3  2)
5  (2  4)
(6  ( 4))  (5)

5  (2)
(6  4)  5

5 2
2  5

5 2
7

7
 1

or
2  3  2    3  2 
5   2  4
2(1)  (5)
5  (2)
2  5

5 2
7

7
 1

c)
2 x(3 pq  4qr  6 pr ) 2(3 pq  4qr  6 pr )

3xp
3p
Textbooks are full of these types of problems and in this item bank collection questions like these
are deliberately kept at a minimum.
Appendix of Assignment Tools
Solving equations
Solving the inequality
Fractions
Variable
Simplifying algebraic expressions
Related documents