Download Inference Guidelines

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Inference Guidelines
Confidence Interval = estimate ± (critical value)(standard deviation of estimate)
 
2
 obs  exp 
estimate  parameter
standard dev. of estimate
2
exp
Name of Test
When to Use
1 sample ztest
for a mean
Does a single mean =
A hypothesized value?
Hypotheses
H 0 :   0
H a :   0
H a :   0
H a :   0
1 sample t-test
for a mean
Test Statistic =
Does a single mean =
A hypothesized value?
H0 :   0
Ha :   0
 0
 0
Estimate
deg. freed.
x , the
sample
mean
NA
x , the
sample
mean
Parameter
 0 , the
hypothesiz
ed
mean
 0 , the
hypothesiz
ed
mean
Standard
Deviation
of estimate

n
P-Value
Assumptions
For each Alt.
Hyp.
P(Z < z)
P(Z > z)
SRS from pop of interest.
Sigma known
Pop approx Normal
(draw plot to check)
2  P(Z < - z )
For each Alt.
Hyp.
P(T < t)
P(T > t)
s
n
2  P(T < - t )
n-1
1 proportion
z test
Does a single
proportion
=A hypothesized value?
H 0 : p  p0
For C.I.,
H a : p  p0
p̂
p  p0
pˆ 1  pˆ 
p0
n
For test,
p  p0
NA
po 1  p0 
n
For each Alt:
P( Z  z )
SRS from pop of interest.
Pop approx Normal
(draw plot to check)
If symm, no outliers: n <15
If no major skew, no outliers,
n<40
If lots of skew, or outlier,
n>40
SRS from pop of int.
Normal Approx:
ˆ , n(1  pˆ )  10
CI: np
P( Z  z )
2  P( Z   z )
Test:
np0 , n(1  p0 )  10
Name of
test
2 sample t
for diff. in
means
2 prop z
test
When to use
Hypotheses
To compare 2 pop’s,
groups, treatments
that
are independent
H 0 : 1   2  0
Compare 2
proportions
Estimate
H a : 1   2  0 x1  x2
1   2  0
1   2  0
Parameter
2
p1  p2  0
P-Value
P(T < t)
P(T > t)
2
s1 s2

n1 n2
0
smaller n
minus 1
H 0 : p1  p2  0
H a : p1  p2  0
St. Dev. Of est.
2  P(T < - t )
CI:
pˆ1  pˆ 2
0
pˆ1 (1  pˆ )1 pˆ 2 (1  pˆ )2

n1
n2
P( Z  z )
2  P( Z   z )
Test:
p1  p2  0
P( Z  z )
1 1
pˆ 1  pˆ    
 n1 n2 
Linear
Regression
t-test
2 samples paired by
some characteristic.
Compare 2 groups
Not independent
Test for slope of
Reg. Line.
Test for assoc of 2
Quant. Var.
H 0 : d  0
H a : d  0
d  0
d  0
H0 :   0
Ha :   0
 0
 0
xd
0
n
  y  yˆ 
slope of
LSRL
n-2
i
0
n1 pˆ1 , n1 (1  pˆ1 ),
n2 pˆ 2 , n2 (1  pˆ 2 ),  5
n1 pˆ , n1 1  pˆ  ,
Same as 1-sample
T-test, but n refers
To number of pairs
2  P(T < - t )
pairs - 1
b
Ind SRS’s
Normal:
CI:
n2 pˆ , n2 (1  pˆ 2 )  5
P(T < t)
P(T > t)
sd
Ind. SRS’s
Both pop’s Normal:
Check
n1  n2 instead of n.
(draw both boxplots)
Test:
NA
Matched
Pairs t
Assumptions
i
n2
  xi  x 
2
2
P(T < t)
P(T > t)
2  P(T < - t )
Lin shape in scatter
variation of y-values
the same (resid plot)
resids normal
(boxplot)
Name of test
Chi-Square
Good-Fit
Chi-Square
for ind. or
homogeneity
When to use
pop dist of props
= hypothesized
distribution
test assoc of
categorical variables
Hypotheses
H 0 : p1  p10 ,..., pn  pn0
H a :Null incorrect
Null: No association
Alt: Association
P-Value
P(  2   2 )
P(    )
2
2
Assumptions
SRS
All exp counts at least 1
no more than 20% are less than 5
SRS or entire population
All exp counts at least 1
no more than 20% are less than 5,
unless 2x2-> all at least 5.
degrees of freedom
# of categories minus 1
(rows-1)(columns-1)