Download Complex Number Review

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
REVIEW OF COMPLEX NUMBERS
1  i and
The Imaginary Number i :
i 2  1
Complex numbers are always written in the form a + bi
part)
(a is the real part and b is the imaginary
Examples: Write as complex numbers.
a)
25 =
25 
1 25 
1  25  5i
b)
17 =
17 
117 
1  17  i 17
c)  9 =  9  


1 9  


1  9    3 i    3 i
d) (2  3i)  ( 4  6i) = 2  3i   4  6i  2  4  3i  6i   2  9i
e) (6  10i )  (9  3i) = 6  10i  9  3i  6  9  10i  3i  15  13i
f) (6  4i )  (2  6i) = (6  4i)  (2  6i)  6  4i  2  6i  8  2i
g) (2  i)  (3  10i) = (2  i)  (3  10i)  2  i  3  10i   1  9i
h) (8  3i )(1  2i) = 8  16i  3i  6i 2  8  19i  6(1)  8  19i  6  2  19i
i) 3i(5  6i) = 15i  18i 2  15i  18(1)  15i  18  18  15i
The conjugate of a + bi
is a – bi .
Examples: Find the conjugate of the following complex numbers.
a) 2 + 6i
 2 – 6i
b) –3 – 4i
 –3 + 4i
c) 15i
 –15i
To divide two complex numbers, multiply the numerator and denominator by the conjugate of
the denominator.
Examples: Divide. Be sure to write each answer in standard form.
a)
5
5  2i 
5(2  i )


 
2i 2i  2i 
(2  i )(2  i )
10  5i

4 2i 2i  i 2
10  5i

4  (1)
10  5i

5
10
5i


5
5
 2i
b)
1  4i 1  4i  5  3i 
(1  4i )(5  3i )


 
5  3i 5  3i  5  3i 
(5  3i )(5  3i )
5  3i  20i  12i 2
25 15i 15i  9i 2
5  23i  12( 1)

25  9(1)
7  23 i

34
7
23 i


34
34

Powers of i :
i=
i
i5 =
i
i2 =
–1
i6 =
–1
i3 =
–i
i7 =
–i
i4 =
1
i8 =
1
So, the pattern for the powers of i is:
{ i, –1, –i, 1 }
Examples: Simplify
a) i12 = 1
(count through the pattern until you get to 12)
b) i67 = –i
(count through the pattern until you get to 67)
c) 4 + i3 = 4 + (–i) = 4 – i
d) 4i4 – 2i2 + i = 4(1) – 2(–1) + i = 4 + 2 + i = 6 + i
When solving the quadratic equation, ax 2  bx  c  0 , if b2 – 4ac < 0, then there will be 0 real
solutions (because the 2 answers are complex)
Examples: Solve
a)
x2  2 x  5  0
a = 1, b = –2, c = 5
2  (2)2  4 1 5
2  4  20
2  16
2  4i
x



 2  2i
2(1)
2
2
2
b) 6 x 2  4 x  1  0
a = 6, b = 4, c = 1
x
4  (4)2  4  6 1
4  16  24
4  8
4  2 2 i
4 2 2 i
1
2i







2(6)
12
12
12
12
12
3
6
Notice that complex solutions ALWAYS come in complex conjugate pairs!!
Example:
If 5i is a solution to a quadratic equation, then so is – 5i
If –4 – 6i is a solution to a quadratic equation, then so is –4 + 6i
Related documents