Download Additional Example 10.1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
New Progress in Junior Mathematics 2B
Rational and Irrational Numbers
10
Solution:
Rational and Irrational Numbers
(a) 12 
Additional Example 10.1
Find the square roots of each of the
following numbers.
(b) 7
(a) 100
(b) 2.56
(c)
(c) 

378 189

100 50
Additional Example 10.3
x
Express 0.9 5 in the form
, where x and
y
Solution:
(a)  10 10  100 and
(10)  (10)  100
 Square roots of 100   10

6 7  7  6 55


7
7
7
(c) 3.78 
144
25
(b) 
12
1
y are integers and y  0.
Solution:
Let x  0.9 5  0.959595... .......................(1)
1.6 1.6  2.56 and
(1.6)  (1.6)  2.56
Square roots of 2.56   1.6
then 100 x  95.9595... ............................(2)
(2) – (1):
100 x  x  95.9595...  0.959595...
99 x  95
12 12 144
 
and
5 5
25
 12   12  144
   
 5   5  25
144
12

Square roots of
25
5
x

95
0.9 5 
99
Additional Example 10.4
Determine whether the following numbers
are rational or irrational numbers. Explain
your answers briefly.
Additional Example 10.2
Express the following numbers in the form
x
, where x and y are integers and y  0.
y
(a)
(a) 12
158
(b) 441
(c) π  π
6
(b) 7
7
(c) 3.78
© Hong Kong Educational Publishing Co.
95
99
1
10
New Progress in Junior Mathematics 2B
Rational and Irrational Numbers
Solution:
(a) 

(b) 

(c) 

Solution:
158  12.5698... which is neither
a terminating decimal nor a
recurring decimal.
158 is an irrational number.
80
80

36
36

441  21 21  21
441 is a rational number.
4 5
6
2 5

3
Additional Example 10.7
Simplify the following expressions.
Additional Example 10.5
(a) Express 243 and 675 as a product of
their prime factors in index notation.
243 and
62

π  π  2π  6.2831... which is
neither a terminating decimal nor a
recurring decimal.
π  π is an irrational number.
(b) If a  3 , express
in terms of a.
42  5
(a) 3 6  10 6
(b) 2 5  9 5
675
Solution:
(a) 3 6  10 6  13 6
Solution:
(a) 243  3  3  3  3  3
 35
675  3  3  3  5  5
(b) 2 5  9 5  7 5
Additional Example 10.8
Simplify the following expressions.
 33  52
(b)
(a)
(b)
243  35
 (32 ) 2  3
 32 a
Solution:
 9a
675  3  5
3
63  28
150  54
(a)
2
 32  3  52
63  28  32  7  22  7
3 7 2 7
5 7
 3 3 5
 15a
(b)
Additional Example 10.6
Express
2 6
80
in its simplest form.
36
© Hong Kong Educational Publishing Co.
150  54  52  6  32  6
5 6 3 6
2
10
New Progress in Junior Mathematics 2B
Rational and Irrational Numbers
Solution:
Additional Example 10.9
Simplify the following expressions.
(a)
25  75  ( 120 )
(b)
64  40  32
(a)
 3 6 (3 7  6 )  7 (3 7  6 )
 (3 6 )(3 7 )  (3 6 )( 6 )
 ( 7 )(3 7 )  ( 7 )( 6 )
 9 42  18  21  42
Solution:
 3  8 42
25  75  ( 120 )
(a)
(3 6  7 )(3 7  6 )
 52  3  52  ( 23  3  5 )
(b)
 5  5 3  (2 2  3  5 )
( 7  3 )2
 ( 7 ) 2  2( 7 )( 3 )  ( 3 ) 2
 5  5  (2)  3  2  3  5
 7  2 21  3
 50  2  3  5
2
 10  2 21
 50  3 10
  150 10
Additional Example 10.11
Express the following in their simplest form.
64  40  32
(b)
(a)
64  40

32

64  40
32
5
11
(b)
Solution:
(a)
 80
 42  5
4 5
5
5
11


11
11
11
5  11

11  11

Additional Example 10.10
Simplify the following expressions.
(b)
(a) (3 6  7 )(3 7  6 )
(b) ( 7  3 ) 2
5 11
11
3
3
 2
40
2 10
3

2 10

3
10

2 10
10
30
2 10
30

20

© Hong Kong Educational Publishing Co.
3
3
40
10
New Progress in Junior Mathematics 2B
Rational and Irrational Numbers
Additional Example 10.12
Simplify
52 4 2
.

6
18
Solution:
52 4 2
52
4 2



2
6
6
18
23

52 4 2

6
3 2

52
2 4 2


6
3 2
2
52 2 4 2

6
6
56 2

6
28 2

3

© Hong Kong Educational Publishing Co.
4
10
Related documents