Download S0735109716368231_mmc1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ONLINE APPENDIX
The genes detailed in these supplemental tables represent those associated with a given cardiomyopathy phenotype in the literature. Genes with high-quality evidence that meet all criteria for
defining disease pathogenicity listed in Table 1 of the manuscript are defined as “definitive”
disease-causing genes. All others are listed as “putative” disease genes. With advances in nextgeneration sequencing and molecular genetics technologies, great efforts are being made at
confirming the pathogenicity of specific genes. Thus, we expect these data to change rapidly in
the next several years, causing some putative disease genes to be reclassified as definitive
disease-causing genes and others to be recognized as genes that do no cause cardiomyopathy. It
is also important to recognize that not all novel variants found in a gene, even those that
definitively cause disease, will be causative. Hence, new mutations identified in known diseasecausing genes still require careful validation.
Supplemental Table 1. Genes associated with hypertrophic cardiomyopathy
Gene Symbol
Encoded protein
Definitive disease causing genes
MYBPC3 (1,2)
Cardiac myosin binding protein C
MYH7 (3,4)
-myosin heavy chain
MYL2 (5)
Regulatory myosin light chain
MYL3 (5)
Essential myosin light chain
TNNI3 (6)
Cardiac troponin I
TNNT2 (7,8)
Cardiac troponin T
TPM1 (7,8)
-tropomyosin
ACTC1 (9,10)
Cardiac -actin
Putative disease genes
ACTN2 (11,12)
-actinin 2
MYOZ2 (13)
Myozenin 2
CSRP3 (11,14Cardiac LIM protein
17)
MYPN (18)
Myopalladin
TNNC1 (19-21)
Cardiac troponin C
MYH6 (17,22)
-myosin heavy chain
NEXN (23)
Nexilin
TCAP (15,24)
Telethonin
ANKRD1 (25)
Cardiac ankyrin repeat protein
LDB3 (11)
LIM binding domain 3 protein*
VCL (26,27)
Vinculin
Cellular Location
Sarcomere, thick filament
Sarcomere, thick filament
Sarcomere, thick filament
Sarcomere, thick filament
Sarcomere, thin filament
Sarcomere, thin filament
Sarcomere, thin filament
Sarcomere, thin filament
Sarcomere, Z-disc
Sarcomere, Z-disc
Sarcomere, Z-disc
Sarcomere, Z-disc
Sarcomere, thin filament
Sarcomere, thick filament
Sarcomere, Z-disc
Sarcomere, Z-disc
Sarcomere, Z-disc
Sarcomere, Z-disc
Sarcomere, Z-disc, intercalated
disc and sarcolemma
JPH2 (28)
Junctophilin 2
Sarcolemma
CAV3 (24)
Caveolin-3
Sarcolemma
PLN (29,30)
Phospholamban
Sarcoplasmic reticulum
CALR3 (29)
Calreticulin 3
Sarcoplasmic reticulum
*LIM binding domain 3 protein is also commonly known as Cypher/ZASP
Supplemental Table 2. Genes associated with metabolic cardiomyopathies
Gene
GLA
(31,32)
LAMP2
(33,34)
PRKAG2
(34-36)
GAA(37)
Encoded Protein
-galactosidase A
Disease
Fabry disease
Inheritance
X-linked
Lysosome-associated membrane
protein 2
AMP-activated protein kinase, 2
subunit (noncatalytic)
-glucosidase
Danon disease
X-linked
PRKAG2
cardiomyopathy
Pompe disease
Autosomal
dominant
Autosomal
recessive
Supplemental Table 3. Genes associated with dilated cardiomyopathy
Gene
Encoded Protein
Definitive disease causing genes
TTN(38,39)
Titin
MYH7(40,41)
-myosin heavy chain
ACTC1(42)
Cardiac -actin
TNNT2(40)
Cardiac troponin T
TPM1(43)
-tropomyosin
TNNI3(44,45)
Cardiac troponin I
BAG3 (46-48)
Bcl2-associated athanogene 3
DES (49-51)
Desmin
DMD (52-55)
Dystrophin
DNAJC19
(56,57)
EMD (1,58)
DNAJ (Hsp40) homolog
LMNA (59)
Lamin A/C
Emerin
PLN (60-62)
RBM20 (63-66)
SCN5A (67-69)
Phospholamban
RNA-binding protein, 20
Voltage gated sodium channel type
V, -subunit
TAZ (70)
Tafazzin
Putative disease genes
MYBPC3(71,72) Cardiac myosin binding protein C
TNNC1(73,74)
Cardiac troponin C
ANKRD1
Cardiac ankyrin repeat protein
(75,76)
LDB3 (77)
LIM binding domain 3 protein
NEXN (78)
Nexilin
SGCD (79,80)
-sarcoglycan
EYA4 (81)
PSEN1 (82)
MYPN
(18,83,84)
FBXO32 (85)
GATAD1 (86)
GATA4 (87)
CHRM2 (88)
Eyes absent homolog 4
Presenilin-1
Myopalladin
F-box protein 32/atrogin-1
GATA zinc finger domain
containing 1 protein
GATA binding protein 4
Muscarinic cholinergic receptor
Possible Coexistant Phenotypes
None
None
None
None
None
None
None
Skeletal myopathy, conduction
system disease
Duchenne’s muscular dystrophy,
Becker’s muscular dystrophy
DCMA
Emery-Dreifuss muscular dystrophy
type 1
Conduction system disease, EmeryDreifuss muscular dystrophy type 2
None
None
Supraventricular and ventricular
arrhythmias
Barth syndrome
None
None
None
Myofibrillar myopathy
None
Limb-girdle muscular dystrophy,
type 2F
Sensorineural hearing loss
None*
None
None
None
None
Supraventricular and ventricular
arrhythmias
MYH6 (22)
ACTN2 (89)
CSRP3 (89,90)
TCAP (24,91)
ABCC9 (92)
TBX20 (93)
NKX2-5 (94)
CTF1 (95)
VCL (96)
SGCB (97)
-myosin heavy chain
-actinin 2
Cardiac LIM protein
Telethonin
Sulfonylurea receptor 2
T-box 20
NK2 homeobox 5
Cardiotrophin-1
Vinculin
-sarcoglycan
SGCA (98)
-sarcoglycan
FHL2 (99)
Four and a half limb domains 2
FKTN (100,101) Fukutin
FOXD4 (102)
Forkhead box protein D4
None
None
Limb girdle muscular dystrophy
None
Cantú syndrome
CHD
CHD
None
None
Limb-girdle muscular dystrophy,
type 2E
Limb-girdle muscular dystrophy,
type 2D
None
Fukuyama-type muscular dystrophy
Obsessive compulsive disorder and
suicidality
None
None
None*
LAMA4 (103)
Laminin, 4
ILK (103)
Integrin-linked kinase
PSEN2 (82)
Presenilin-2
SDHA (104)
Succinate dehydrogenase subunit A
CRYAB
Skeletal myopathy
-B crystallin
(105,106)
MURC (107)
Muscle-related coiled-coil protein
None
SYNE1
Nesprin-1
Emery-Dreifuss muscular dystrophy
(108,109)
type 4
PRDM16 (110) PR domain containing 16
LVNC
PGM1 (111)
Phosphoglucomutase 1
Glycogenosis type XIV
TMPO (112)
Thymopoietin
None
DSC2 (113,114) Desmocollin 2
None
DSG2 (113)
Desmoglein 2
None
DSP (115)
Desmoplakin
Plantopalmar keratoderma
PKP2 (113)
Plakophilin 2
None
Genetic loci linked to DCM without a known disease-associated mutation
9q13-q22 (116)
MIM CMD1B
None
2q14-q22 (117)
MIM CMD1H
Conduction system disease
6q12-q16 (118)
MIM CMD1K
None
7q22-q31 (119)
MIM CMD1Q
None
1p36.13 (48)
Unknown
None
* - Allelic variants in Alzheimer’s dementia
DCMA – dilated cardiomyopathy with ataxia; MIM – Mendelian Inheritance in Man; CHD –
congenital heart disease
Supplemental Table 4. Genes associated with left ventricular non-compaction cardiomyopathy
Gene
Encoded Protein
Associated findings or syndromes*
Definitive disease genes
TAZ(120,121)
Tafazzin
DCM, Barth syndrome
MIB1 (122)
Mindbomb homolog 1
None
MYH7(123,124) Myosin heavy chain
None
Putative disease genes
LDB3(77,125)
LIM binding domain 3 protein
DCM, myofibrillar myopathy
DTNA(121)
None
-dystrobrevin
ACTC1(126,127) Cardiac -actin
Apical HCM
TNNT2(127,128) Cardiac troponin T
None
NKX2.5(129)
NK2 homeobox 5
None
TPM1(130,131) -tropomyosin
None
MYBPC3(131)
Cardiac myosin binding protein C
None
PRDM16(110)
PR domain containing 16
1p36 deletion syndrome
Genetic loci linked to LVNC without a known disease-associated mutation
11p15(132)
MIM LVNC2
None
* All LVNC-associated genes are also associated with a variety of other congenital heart defects,
which are not listed here
MIM – Mendelian Inheritance in Man
Supplemental Table 5. Genes associated with arrhythmogenic right ventricular
dysplasia/cardiomyopathy
Gene
Encoded Protein
Associated syndromes
Definitive disease genes
JUP(133-135)
Plakoglobin
Naxos syndrome
DSP(115,136,137) Desmoplakin
Carvajal syndrome
PKP2 (138-140)
Plakophilin 2
None
DSG2 (141,142)
Desmoglein 2
None
DSC2 (143,144)
Desmocollin 2
None
TMEM43 (145Transmembrane protein 43
None
147)
Putative disease genes
TGFB3 (148)
None
Transforming growth factor 3
PLN (149)
Phospholamban
None
TTN (150)
Titin
None
Genetic loci linked to ARVC without a known disease-associated mutation
14q12-q22 (151)
MIM ARVD3
None
2q32.1-q32.3 (152)
MIM ARVD4
None
10p14-p12 (153)
MIM ARVD6
None
MIM – Mendelian Inheritance in Man
Supplemental References
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Bonne G, Carrier L, Bercovici J et al. Cardiac myosin binding protein-C gene splice
acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat
Genet 1995;11:438-40.
Watkins H, Conner D, Thierfelder L et al. Mutations in the cardiac myosin binding
protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat
Genet 1995;11:434-7.
Geisterfer-Lowrance AA, Kass S, Tanigawa G et al. A molecular basis for familial
hypertrophic cardiomyopathy: a  cardiac myosin heavy chain gene missense mutation.
Cell 1990;62:999-1006.
Tanigawa G, Jarcho JA, Kass S et al. A molecular basis for familial hypertrophic
cardiomyopathy: an / cardiac myosin heavy chain hybrid gene. Cell 1990;62:991-8.
Poetter K, Jiang H, Hassanzadeh S et al. Mutations in either the essential or regulatory
light chains of myosin are associated with a rare myopathy in human heart and skeletal
muscle. Nat Genet 1996;13:63-9.
Kimura A, Harada H, Park JE et al. Mutations in the cardiac troponin I gene associated
with hypertrophic cardiomyopathy. Nat Genet 1997;16:379-82.
Thierfelder L, Watkins H, MacRae C et al. -tropomyosin and cardiac troponin T
mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell
1994;77:701-12.
Watkins H, McKenna WJ, Thierfelder L et al. Mutations in the genes for cardiac troponin
T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 1995;332:105864.
Mogensen J, Klausen IC, Pedersen AK et al. -cardiac actin is a novel disease gene in
familial hypertrophic cardiomyopathy. J Clin Invest 1999;103:R39-43.
Olson TM, Doan TP, Kishimoto NY, Whitby FG, Ackerman MJ, Fananapazir L.
Inherited and de novo mutations in the cardiac actin gene cause hypertrophic
cardiomyopathy. J Mol Cell Cardiol 2000;32:1687-94.
Theis JL, Bos JM, Bartleson VB et al. Echocardiographic-determined septal morphology
in Z-disc hypertrophic cardiomyopathy. Biochem Biophys Res Commun 2006;351:896902.
Chiu C, Bagnall RD, Ingles J et al. Mutations in -actinin-2 cause hypertrophic
cardiomyopathy: a genome-wide analysis. J Am Coll Cardiol 2010;55:1127-35.
Osio A, Tan L, Chen SN et al. Myozenin 2 is a novel gene for human hypertrophic
cardiomyopathy. Circ Res 2007;100:766-8.
Geier C, Perrot A, Ozcelik C et al. Mutations in the human muscle LIM protein gene in
families with hypertrophic cardiomyopathy. Circulation 2003;107:1390-5.
Bos JM, Poley RN, Ny M et al. Genotype-phenotype relationships involving hypertrophic
cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin. Mol
Genet Metab 2006;88:78-85.
Geier C, Gehmlich K, Ehler E et al. Beyond the sarcomere: CSRP3 mutations cause
hypertrophic cardiomyopathy. Hum Mol Genet 2008;17:2753-65.
Santos S, Marques V, Pires M et al. High resolution melting: improvements in the genetic
diagnosis of hypertrophic cardiomyopathy in a Portuguese cohort. BMC Med Genet
2012;13:17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
Purevjav E, Arimura T, Augustin S et al. Molecular basis for clinical heterogeneity in
inherited cardiomyopathies due to myopalladin mutations. Hum Mol Genet
2012;21:2039-53.
Hoffmann B, Schmidt-Traub H, Perrot A, Osterziel KJ, Gessner R. First mutation in
cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum Mutat
2001;17:524.
Landstrom AP, Parvatiyar MS, Pinto JR et al. Molecular and functional characterization
of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded
troponin C. J Mol Cell Cardiol 2008;45:281-8.
Parvatiyar MS, Landstrom AP, Figueiredo-Freitas C, Potter JD, Ackerman MJ, Pinto JR.
A mutation in TNNC1-encoded cardiac troponin C, TNNC1-A31S, predisposes to
hypertrophic cardiomyopathy and ventricular fibrillation. J Biol Chem 2012;287:3184555.
Carniel E, Taylor MR, Sinagra G et al. -myosin heavy chain: a sarcomeric gene
associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation
2005;112:54-9.
Wang H, Li Z, Wang J et al. Mutations in NEXN, a Z-disc gene, are associated with
hypertrophic cardiomyopathy. Am J Hum Genet 2010;87:687-93.
Hayashi T, Arimura T, Itoh-Satoh M et al. Tcap gene mutations in hypertrophic
cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 2004;44:2192-201.
Arimura T, Bos JM, Sato A et al. Cardiac ankyrin repeat protein gene (ANKRD1)
mutations in hypertrophic cardiomyopathy. J Am Coll Cardiol 2009;54:334-42.
Vasile VC, Ommen SR, Edwards WD, Ackerman MJ. A missense mutation in a
ubiquitously expressed protein, vinculin, confers susceptibility to hypertrophic
cardiomyopathy. Biochem Biophys Res Commun 2006;345:998-1003.
Vasile VC, Will ML, Ommen SR, Edwards WD, Olson TM, Ackerman MJ.
Identification of a metavinculin missense mutation, R975W, associated with both
hypertrophic and dilated cardiomyopathy. Mol Genet Metab 2006;87:169-74.
Matsushita Y, Furukawa T, Kasanuki H et al. Mutation of junctophilin type 2 associated
with hypertrophic cardiomyopathy. J Hum Genet 2007;52:543-8.
Chiu C, Tebo M, Ingles J et al. Genetic screening of calcium regulation genes in familial
hypertrophic cardiomyopathy. J Mol Cell Cardiol 2007;43:337-43.
Landstrom AP, Adekola BA, Bos JM, Ommen SR, Ackerman MJ. PLN-encoded
phospholamban mutation in a large cohort of hypertrophic cardiomyopathy cases:
summary of the literature and implications for genetic testing. Am Heart J 2011;161:16571.
Bernstein HS, Bishop DF, Astrin KH et al. Fabry disease: six gene rearrangements and an
exonic point mutation in the -galactosidase gene. J Clin Invest 1989;83:1390-9.
Nakao S, Takenaka T, Maeda M et al. An atypical variant of Fabry's disease in men with
left ventricular hypertrophy. N Engl J Med 1995;333:288-93.
Nishino I, Fu J, Tanji K et al. Primary LAMP-2 deficiency causes X-linked vacuolar
cardiomyopathy and myopathy (Danon disease). Nature 2000;406:906-10.
Arad M, Maron BJ, Gorham JM et al. Glycogen storage diseases presenting as
hypertrophic cardiomyopathy. N Engl J Med 2005;352:362-72.
Gollob MH, Green MS, Tang AS et al. Identification of a gene responsible for familial
Wolff-Parkinson-White syndrome. N Engl J Med 2001;344:1823-31.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
Arad M, Benson DW, Perez-Atayde AR et al. Constitutively active AMP kinase
mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J
Clin Invest 2002;109:357-62.
Zhong N, Martiniuk F, Tzall S, Hirschhorn R. Identification of a missense mutation in
one allele of a patient with Pompe disease, and use of endonuclease digestion of PCRamplified RNA to demonstrate lack of mRNA expression from the second allele. Am J
Hum Genet 1991;49:635-45.
Gerull B, Gramlich M, Atherton J et al. Mutations of TTN, encoding the giant muscle
filament titin, cause familial dilated cardiomyopathy. Nat Genet 2002;30:201-4.
Herman DS, Lam L, Taylor MR et al. Truncations of titin causing dilated
cardiomyopathy. N Engl J Med 2012;366:619-28.
Kamisago M, Sharma SD, DePalma SR et al. Mutations in sarcomere protein genes as a
cause of dilated cardiomyopathy. N Engl J Med 2000;343:1688-96.
Villard E, Duboscq-Bidot L, Charron P et al. Mutation screening in dilated
cardiomyopathy: prominent role of the  myosin heavy chain gene. Eur Heart J
2005;26:794-803.
Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT. Actin mutations in dilated
cardiomyopathy, a heritable form of heart failure. Science 1998;280:750-2.
Lakdawala NK, Dellefave L, Redwood CS et al. Familial dilated cardiomyopathy caused
by an -tropomyosin mutation: the distinctive natural history of sarcomeric dilated
cardiomyopathy. J Am Coll Cardiol 2010;55:320-9.
Murphy RT, Mogensen J, Shaw A, Kubo T, Hughes S, McKenna WJ. Novel mutation in
cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet 2004;363:3712.
Carballo S, Robinson P, Otway R et al. Identification and functional characterization of
cardiac troponin I as a novel disease gene in autosomal dominant dilated
cardiomyopathy. Circ Res 2009;105:375-82.
Arimura T, Ishikawa T, Nunoda S, Kawai S, Kimura A. Dilated cardiomyopathyassociated BAG3 mutations impair Z-disc assembly and enhance sensitivity to apoptosis
in cardiomyocytes. Hum Mutat 2011;32:1481-91.
Norton N, Li D, Rieder MJ et al. Genome-wide studies of copy number variation and
exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy.
Am J Hum Genet 2011;88:273-82.
Villard E, Perret C, Gary F et al. A genome-wide association study identifies two loci
associated with heart failure due to dilated cardiomyopathy. Eur Heart J 2011;32:106576.
Goldfarb LG, Park KY, Cervenakova L et al. Missense mutations in desmin associated
with familial cardiac and skeletal myopathy. Nat Genet 1998;19:402-3.
Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG. Desmin
myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin
gene. N Engl J Med 2000;342:770-80.
Li D, Tapscoft T, Gonzalez O et al. Desmin mutation responsible for idiopathic dilated
cardiomyopathy. Circulation 1999;100:461-4.
Muntoni F, Cau M, Ganau A et al. Brief report: deletion of the dystrophin musclepromoter region associated with X-linked dilated cardiomyopathy. N Engl J Med
1993;329:921-5.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
Muntoni F, Wilson L, Marrosu G et al. A mutation in the dystrophin gene selectively
affecting dystrophin expression in the heart. J Clin Invest 1995;96:693-9.
Milasin J, Muntoni F, Severini GM et al. A point mutation in the 5' splice site of the
dystrophin gene first intron responsible for X-linked dilated cardiomyopathy. Hum Mol
Genet 1996;5:73-9.
Ortiz-Lopez R, Li H, Su J, Goytia V, Towbin JA. Evidence for a dystrophin missense
mutation as a cause of X-linked dilated cardiomyopathy. Circulation 1997;95:2434-40.
Davey KM, Parboosingh JS, McLeod DR et al. Mutation of DNAJC19, a human
homologue of yeast inner mitochondrial membrane co-chaperones, causes DCMA
syndrome, a novel autosomal recessive Barth syndrome-like condition. J Med Genet
2006;43:385-93.
Ojala T, Polinati P, Manninen T et al. New mutation of mitochondrial DNAJC19 causing
dilated and noncompaction cardiomyopathy, anemia, ataxia, and male genital anomalies.
Pediatr Res 2012;72:432-7.
Bione S, Maestrini E, Rivella S et al. Identification of a novel X-linked gene responsible
for Emery-Dreifuss muscular dystrophy. Nat Genet 1994;8:323-7.
Fatkin D, MacRae C, Sasaki T et al. Missense mutations in the rod domain of the lamin
A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J
Med 1999;341:1715-24.
Schmitt JP, Kamisago M, Asahi M et al. Dilated cardiomyopathy and heart failure caused
by a mutation in phospholamban. Science 2003;299:1410-3.
Haghighi K, Kolokathis F, Pater L et al. Human phospholamban null results in lethal
dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin
Invest 2003;111:869-76.
Haghighi K, Kolokathis F, Gramolini AO et al. A mutation in the human phospholamban
gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad
Sci U S A 2006;103:1388-93.
Brauch KM, Karst ML, Herron KJ et al. Mutations in ribonucleic acid binding protein
gene cause familial dilated cardiomyopathy. J Am Coll Cardiol 2009;54:930-41.
Li D, Morales A, Gonzalez-Quintana J et al. Identification of novel mutations in RBM20
in patients with dilated cardiomyopathy. Clin Transl Sci 2010;3:90-7.
Millat G, Bouvagnet P, Chevalier P et al. Clinical and mutational spectrum in a cohort of
105 unrelated patients with dilated cardiomyopathy. Eur J Med Genet 2011;54:e570-5.
Wells QS, Becker JR, Su YR et al. Whole exome sequencing identifies a causal RBM20
mutation in a large pedigree with familial dilated cardiomyopathy. Circ Cardiovasc Genet
2013;6:317-26.
Olson TM, Keating MT. Mapping a cardiomyopathy locus to chromosome 3p22-p25. J
Clin Invest 1996;97:528-32.
McNair WP, Ku L, Taylor MR et al. SCN5A mutation associated with dilated
cardiomyopathy, conduction disorder, and arrhythmia. Circulation 2004;110:2163-7.
Olson TM, Michels VV, Ballew JD et al. Sodium channel mutations and susceptibility to
heart failure and atrial fibrillation. JAMA 2005;293:447-54.
Bione S, D'Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D. A novel Xlinked gene, G4.5. is responsible for Barth syndrome. Nat Genet 1996;12:385-9.
Daehmlow S, Erdmann J, Knueppel T et al. Novel mutations in sarcomeric protein genes
in dilated cardiomyopathy. Biochem Biophys Res Commun 2002;298:116-20.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
Moller DV, Andersen PS, Hedley P et al. The role of sarcomere gene mutations in
patients with idiopathic dilated cardiomyopathy. Eur J Hum Genet 2009;17:1241-9.
Mogensen J, Murphy RT, Shaw T et al. Severe disease expression of cardiac troponin C
and T mutations in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol
2004;44:2033-40.
Hershberger RE, Norton N, Morales A, Li D, Siegfried JD, Gonzalez-Quintana J. Coding
sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from
312 patients with familial or idiopathic dilated cardiomyopathy. Circ Cardiovasc Genet
2010;3:155-61.
Duboscq-Bidot L, Charron P, Ruppert V et al. Mutations in the ANKRD1 gene encoding
CARP are responsible for human dilated cardiomyopathy. Eur Heart J 2009;30:2128-36.
Moulik M, Vatta M, Witt SH et al. ANKRD1, the gene encoding cardiac ankyrin repeat
protein, is a novel dilated cardiomyopathy gene. J Am Coll Cardiol 2009;54:325-33.
Vatta M, Mohapatra B, Jimenez S et al. Mutations in Cypher/ZASP in patients with
dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol
2003;42:2014-27.
Hassel D, Dahme T, Erdmann J et al. Nexilin mutations destabilize cardiac Z-disks and
lead to dilated cardiomyopathy. Nat Med 2009;15:1281-8.
Melacini P, Fanin M, Duggan DJ et al. Heart involvement in muscular dystrophies due to
sarcoglycan gene mutations. Muscle Nerve 1999;22:473-9.
Tsubata S, Bowles KR, Vatta M et al. Mutations in the human -sarcoglycan gene in
familial and sporadic dilated cardiomyopathy. J Clin Invest 2000;106:655-62.
Schonberger J, Wang L, Shin JT et al. Mutation in the transcriptional coactivator EYA4
causes dilated cardiomyopathy and sensorineural hearing loss. Nat Genet 2005;37:41822.
Li D, Parks SB, Kushner JD et al. Mutations of presenilin genes in dilated
cardiomyopathy and heart failure. Am J Hum Genet 2006;79:1030-9.
Duboscq-Bidot L, Xu P, Charron P et al. Mutations in the Z-band protein myopalladin
gene and idiopathic dilated cardiomyopathy. Cardiovasc Res 2008;77:118-25.
Meyer T, Ruppert V, Ackermann S et al. Novel mutations in the sarcomeric protein
myopalladin in patients with dilated cardiomyopathy. Eur J Hum Genet 2013;21:294-300.
Al-Hassnan ZN, Shinwari ZM, Wakil SM et al. A substitution mutation in cardiac
ubiquitin ligase, FBXO32, is associated with an autosomal recessive form of dilated
cardiomyopathy. BMC Med Genet 2016;17:3.
Theis JL, Sharpe KM, Matsumoto ME et al. Homozygosity mapping and exome
sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy.
Circ Cardiovasc Genet 2011;4:585-94.
Li RG, Li L, Qiu XB et al. GATA4 loss-of-function mutation underlies familial dilated
cardiomyopathy. Biochem Biophys Res Commun 2013;439:591-6.
Zhang L, Hu A, Yuan H et al. A missense mutation in the CHRM2 gene is associated
with familial dilated cardiomyopathy. Circ Res 2008;102:1426-32.
Mohapatra B, Jimenez S, Lin JH et al. Mutations in the muscle LIM protein and alphaactinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet
Metab 2003;80:207-15.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
Knoll R, Hoshijima M, Hoffman HM et al. The cardiac mechanical stretch sensor
machinery involves a Z disc complex that is defective in a subset of human dilated
cardiomyopathy. Cell 2002;111:943-55.
Hershberger RE, Parks SB, Kushner JD et al. Coding sequence mutations identified in
MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or
idiopathic dilated cardiomyopathy. Clin Transl Sci 2008;1:21-6.
Bienengraeber M, Olson TM, Selivanov VA et al. ABCC9 mutations identified in human
dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet 2004;36:3827.
Kirk EP, Sunde M, Costa MW et al. Mutations in cardiac T-box factor gene TBX20 are
associated with diverse cardiac pathologies, including defects of septation and
valvulogenesis and cardiomyopathy. Am J Hum Genet 2007;81:280-91.
Costa MW, Guo G, Wolstein O et al. Functional characterization of a novel mutation in
NKX2-5 associated with congenital heart disease and adult-onset cardiomyopathy. Circ
Cardiovasc Genet 2013;6:238-47.
Erdmann J, Hassfeld S, Kallisch H, Fleck E, Regitz-Zagrose V. Genetic variants in the
promoter (g983G>T) and coding region (A92T) of the human cardiotrophin-1 gene
(CTF1) in patients with dilated cardiomyopathy. Hum Mutat 2000;16:448.
Olson TM, Illenberger S, Kishimoto NY, Huttelmaier S, Keating MT, Jockusch BM.
Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation
2002;105:431-7.
Barresi R, Di Blasi C, Negri T et al. Disruption of heart sarcoglycan complex and severe
cardiomyopathy caused by  sarcoglycan mutations. J Med Genet 2000;37:102-7.
Piccolo F, Roberds SL, Jeanpierre M et al. Primary adhalinopathy: a common cause of
autosomal recessive muscular dystrophy of variable severity. Nat Genet 1995;10:243-5.
Arimura T, Hayashi T, Matsumoto Y et al. Structural analysis of four and half LIM
protein-2 in dilated cardiomyopathy. Biochem Biophys Res Commun 2007;357:162-7.
Murakami T, Hayashi YK, Noguchi S et al. Fukutin gene mutations cause dilated
cardiomyopathy with minimal muscle weakness. Ann Neurol 2006;60:597-602.
Arimura T, Hayashi YK, Murakami T et al. Mutational analysis of fukutin gene in dilated
cardiomyopathy and hypertrophic cardiomyopathy. Circ J 2009;73:158-61.
Minoretti P, Arra M, Emanuele E et al. A W148R mutation in the human FOXD4 gene
segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality.
Int J Mol Med 2007;19:369-72.
Knoll R, Postel R, Wang J et al. Laminin-4 and integrin-linked kinase mutations cause
human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells.
Circulation 2007;116:515-25.
Levitas A, Muhammad E, Harel G et al. Familial neonatal isolated cardiomyopathy
caused by a mutation in the flavoprotein subunit of succinate dehydrogenase. Eur J Hum
Genet 2010;18:1160-5.
Inagaki N, Hayashi T, Arimura T et al.  B-crystallin mutation in dilated
cardiomyopathy. Biochem Biophys Res Commun 2006;342:379-86.
Pilotto A, Marziliano N, Pasotti M, Grasso M, Costante AM, Arbustini E. B-crystallin
mutation in dilated cardiomyopathies: low prevalence in a consecutive series of 200
unrelated probands. Biochem Biophys Res Commun 2006;346:1115-7.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
Rodriguez G, Ueyama T, Ogata T et al. Molecular genetic and functional characterization
implicate muscle-restricted coiled-coil gene (MURC) as a causal gene for familial dilated
cardiomyopathy. Circ Cardiovasc Genet 2011;4:349-58.
Zhang Q, Bethmann C, Worth NF et al. Nesprin-1 and -2 are involved in the pathogenesis
of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity.
Hum Mol Genet 2007;16:2816-33.
Puckelwartz MJ, Kessler EJ, Kim G et al. Nesprin-1 mutations in human and murine
cardiomyopathy. J Mol Cell Cardiol 2010;48:600-8.
Arndt AK, Schafer S, Drenckhahn JD et al. Fine mapping of the 1p36 deletion syndrome
identifies mutation of PRDM16 as a cause of cardiomyopathy. Am J Hum Genet
2013;93:67-77.
Tegtmeyer LC, Rust S, van Scherpenzeel M et al. Multiple phenotypes in
phosphoglucomutase 1 deficiency. N Engl J Med 2014;370:533-42.
Taylor MR, Slavov D, Gajewski A et al. Thymopoietin (lamina-associated polypeptide 2)
gene mutation associated with dilated cardiomyopathy. Hum Mutat 2005;26:566-74.
Elliott P, O'Mahony C, Syrris P et al. Prevalence of desmosomal protein gene mutations
in patients with dilated cardiomyopathy. Circ Cardiovasc Genet 2010;3:314-22.
Garcia-Pavia P, Syrris P, Salas C et al. Desmosomal protein gene mutations in patients
with idiopathic dilated cardiomyopathy undergoing cardiac transplantation: a
clinicopathological study. Heart 2011;97:1744-52.
Norgett EE, Hatsell SJ, Carvajal-Huerta L et al. Recessive mutation in desmoplakin
disrupts desmoplakin-intermediate filament interactions and causes dilated
cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 2000;9:2761-6.
Krajinovic M, Pinamonti B, Sinagra G et al. Linkage of familial dilated cardiomyopathy
to chromosome 9. Am J Hum Genet 1995;57:846-52.
Jung M, Poepping I, Perrot A et al. Investigation of a family with autosomal dominant
dilated cardiomyopathy defines a novel locus on chromosome 2q14-q22. Am J Hum
Genet 1999;65:1068-77.
Sylvius N, Tesson F, Gayet C et al. A new locus for autosomal dominant dilated
cardiomyopathy identified on chromosome 6q12-q16. Am J Hum Genet 2001;68:241-6.
Schonberger J, Kuhler L, Martins E, Lindner TH, Silva-Cardoso J, Zimmer M. A novel
locus for autosomal-dominant dilated cardiomyopathy maps to chromosome 7q22.3-31.1.
Hum Genet 2005;118:451-7.
Bleyl SB, Mumford BR, Thompson V et al. Neonatal, lethal noncompaction of the left
ventricular myocardium is allelic with Barth syndrome. Am J Hum Genet 1997;61:86872.
Ichida F, Tsubata S, Bowles KR et al. Novel gene mutations in patients with left
ventricular noncompaction or Barth syndrome. Circulation 2001;103:1256-63.
Luxan G, Casanova JC, Martinez-Poveda B et al. Mutations in the NOTCH pathway
regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med
2013;19:193-201.
Budde BS, Binner P, Waldmuller S et al. Noncompaction of the ventricular myocardium
is associated with a de novo mutation in the -myosin heavy chain gene. PLoS One
2007;2:e1362.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
Hoedemaekers YM, Caliskan K, Majoor-Krakauer D et al. Cardiac -myosin heavy chain
defects in two families with non-compaction cardiomyopathy: linking non-compaction to
hypertrophic, restrictive, and dilated cardiomyopathies. Eur Heart J 2007;28:2732-7.
Xing Y, Ichida F, Matsuoka T et al. Genetic analysis in patients with left ventricular
noncompaction and evidence for genetic heterogeneity. Mol Genet Metab 2006;88:71-7.
Monserrat L, Hermida-Prieto M, Fernandez X et al. Mutation in the -cardiac actin gene
associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and
septal defects. Eur Heart J 2007;28:1953-61.
Klaassen S, Probst S, Oechslin E et al. Mutations in sarcomere protein genes in left
ventricular noncompaction. Circulation 2008;117:2893-901.
Luedde M, Ehlermann P, Weichenhan D et al. Severe familial left ventricular noncompaction cardiomyopathy due to a novel troponin T (TNNT2) mutation. Cardiovasc
Res 2010;86:452-60.
Ouyang P, Saarel E, Bai Y et al. A de novo mutation in NKX2.5 associated with atrial
septal defects, ventricular noncompaction, syncope and sudden death. Clin Chim Acta
2011;412:170-5.
Chang B, Nishizawa T, Furutani M et al. Identification of a novel TPM1 mutation in a
family with left ventricular noncompaction and sudden death. Mol Genet Metab
2011;102:200-6.
Probst S, Oechslin E, Schuler P et al. Sarcomere gene mutations in isolated left
ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ
Cardiovasc Genet 2011;4:367-74.
Sasse-Klaassen S, Probst S, Gerull B et al. Novel gene locus for autosomal dominant left
ventricular noncompaction maps to chromosome 11p15. Circulation 2004;109:2720-3.
Coonar AS, Protonotarios N, Tsatsopoulou A et al. Gene for arrhythmogenic right
ventricular cardiomyopathy with diffuse nonepidermolytic palmoplantar keratoderma and
woolly hair (Naxos disease) maps to 17q21. Circulation 1998;97:2049-58.
McKoy G, Protonotarios N, Crosby A et al. Identification of a deletion in plakoglobin in
arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and
woolly hair (Naxos disease). Lancet 2000;355:2119-24.
Asimaki A, Syrris P, Wichter T, Matthias P, Saffitz JE, McKenna WJ. A novel dominant
mutation in plakoglobin causes arrhythmogenic right ventricular cardiomyopathy. Am J
Hum Genet 2007;81:964-73.
Alcalai R, Metzger S, Rosenheck S, Meiner V, Chajek-Shaul T. A recessive mutation in
desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder, and woolly
hair. J Am Coll Cardiol 2003;42:319-27.
Rampazzo A, Nava A, Malacrida S et al. Mutation in human desmoplakin domain
binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular
cardiomyopathy. Am J Hum Genet 2002;71:1200-6.
Gerull B, Heuser A, Wichter T et al. Mutations in the desmosomal protein plakophilin-2
are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet
2004;36:1162-4.
Syrris P, Ward D, Asimaki A et al. Clinical expression of plakophilin-2 mutations in
familial arrhythmogenic right ventricular cardiomyopathy. Circulation 2006;113:356-64.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
Dalal D, Molin LH, Piccini J et al. Clinical features of arrhythmogenic right ventricular
dysplasia/cardiomyopathy associated with mutations in plakophilin-2. Circulation
2006;113:1641-9.
Pilichou K, Nava A, Basso C et al. Mutations in desmoglein-2 gene are associated with
arrhythmogenic right ventricular cardiomyopathy. Circulation 2006;113:1171-9.
Awad MM, Dalal D, Cho E et al. DSG2 mutations contribute to arrhythmogenic right
ventricular dysplasia/cardiomyopathy. Am J Hum Genet 2006;79:136-42.
Heuser A, Plovie ER, Ellinor PT et al. Mutant desmocollin-2 causes arrhythmogenic right
ventricular cardiomyopathy. Am J Hum Genet 2006;79:1081-8.
Syrris P, Ward D, Evans A et al. Arrhythmogenic right ventricular
dysplasia/cardiomyopathy associated with mutations in the desmosomal gene
desmocollin-2. Am J Hum Genet 2006;79:978-84.
Merner ND, Hodgkinson KA, Haywood AF et al. Arrhythmogenic right ventricular
cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a
missense mutation in the TMEM43 gene. Am J Hum Genet 2008;82:809-21.
Baskin B, Skinner JR, Sanatani S et al. TMEM43 mutations associated with
arrhythmogenic right ventricular cardiomyopathy in non-Newfoundland populations.
Hum Genet 2013;132:1245-52.
Christensen AH, Andersen CB, Tybjaerg-Hansen A, Haunso S, Svendsen JH. Mutation
analysis and evaluation of the cardiac localization of TMEM43 in arrhythmogenic right
ventricular cardiomyopathy. Clin Genet 2011;80:256-64.
Beffagna G, Occhi G, Nava A et al. Regulatory mutations in transforming growth factor3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res
2005;65:366-73.
van der Zwaag PA, van Rijsingen IA, Asimaki A et al. Phospholamban R14del mutation
in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular
cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy.
Eur J Heart Fail 2012;14:1199-207.
Taylor M, Graw S, Sinagra G et al. Genetic variation in titin in arrhythmogenic right
ventricular cardiomyopathy-overlap syndromes. Circulation 2011;124:876-85.
Severini GM, Krajinovic M, Pinamonti B et al. A new locus for arrhythmogenic right
ventricular dysplasia on the long arm of chromosome 14. Genomics 1996;31:193-200.
Rampazzo A, Nava A, Miorin M et al. ARVD4, a new locus for arrhythmogenic right
ventricular cardiomyopathy, maps to chromosome 2 long arm. Genomics 1997;45:25963.
Li D, Ahmad F, Gardner MJ et al. The locus of a novel gene responsible for
arrhythmogenic right-ventricular dysplasia characterized by early onset and high
penetrance maps to chromosome 10p12-p14. Am J Hum Genet 2000;66:148-56.