Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
MIDTERM MATH 31 1 3, 18, 20 Text page 157 1. REVIEW p 344 CHAP. 1 to 8 NAME_______________ 1, 7 b, g, h 8 14 Fill in the chart and use the limiting value of the slope of a sequence of secants (m ABn ) 1 to find the slope of y = sin x at A , accurate to 2 decimal places. 6 2 A B1 B2 B3 x /6 1 0.6 0.53 sinx 1/2 _______ _______ _______ _______ _______ _______ _______ _______ slope ABn y x B4 0.523 limiting value of slope of secantsABn = slope of tangent at /6 = ___________ dy dy f ( x h) f ( x ) lim as the definition of the derivative of y = f(x) find for dx dx h0 h y = ax2 + b where a and b are constants. 2. Using 3. If a closed circular cylinder is to have a volume of 1000 cm3, find accurate to 2 decimal places, the radius and height of the cylinder which will have a minimum surface area. 1 4. Find and simplify dy for each of the following expressions. dx 3 a) y = x 3 - 8x 2 + 8x - 5 c) y = 3x 5 x7 b) y = 5sin( 2x 3) d) y = ( e 3x )( 5x 2 + 7 ) e) y = 3 log8 (4x + 1) f) y = 5 cos ( e 8x ) g) siny = x lny h) y = (2x 3)3(3 4x) 4 i) x2 + 3xy2 2y2 + 5x = 8 2 5. Water is running out of a conical funnel at 100 cm3/s. If the radius of the funnel is 10 cm at the top and the height is 20 cm find the rate at which the radius is decreasing, accurate to 2 decimal places, when the water is 5 cm below the top? 10 cm 20 cm 6. a) c) e) lim x 9 = b) lim e x cos x = d) x 13 x 0 lim x 2 ln(cos x) g) lim 5 x 3 = x = x3 8 lim 2 x 2 x 4 = x 2 5x 6 lim x 2 3x 6 x3 8 f) lim 2 x 2 x 4 h) lim 3 cos x x = = = 3 7. Using the Newton-Raphson Approximation, to ex = x xn+1 = xn f ( x) f / ( x) to find a solution accurate to 6 decimal places. 8. If s = t4 2t2 where s is displacement in meters after t seconds, find: a) the average acceleration in the third second b) the instantaneous acceleration at t = 5s 9. What is the equation of the tangent line to y = 10. Determine the concavity and find the points of inflection for 1 3 x x2 + 7x 3 at its point of inflection? 6 y = 4 sin 2 x 1 for [0,]. 4 11. Clearly indicate the x- intercepts, critical points and points of inflection for Y the graph of 20 5 3 y = 3x 10x . 10 X -4 -3 -2 -1 0 1 2 3 4 -10 -20 Created with an unregistered version of Advanced Grapher - http:/ / www.serpik.com/ agraphe 12. Determine the intervals of increase (Given f / (2) = 0; use synthetic division) and the intervals of downward concavity for the graph of f(x) = x 4 18 x 2 + 40 x + 3. 5 13. Using y= 14. dy dy f ( x) f (a ) as the definition of the derivative of y = f(x) find for lim dx dx x a xa 3x 2 . Use calculus to find the equation of the tangent to the circle x2 + (y 4)2 = 25 at (3, 0). 0.864 0.866 = mtangent = 0.87 2. y / = 2ax 4. a) 3x2 12x1/2 + 8 b) 10 cos(2x 3) - 3 1 12 c) (x + 7) 2 (3x + 47) d) e3x (15x2 + 10x + 21) e) 2 (4 x 1) ln 8 ln y y ln y f) 40 e8x sin e8x g) h) 2(2x 3)2(3 4x)5(4x 15) x y cos y x cos y y Answers: 1. mAB = 0.717 0.846 3. r = 5.42 h = 10.84 2x 3 y 2 5 dr 0.28 cm/s 5. 6. a) 2 b) 3 c) 1 2 y (2 3 x) dt r 7.5,h15 6. d) 1/3 e) f) does not exist g) 3 h) 1/3 7. 0.567143 Y 20 2 8. a) 72 m/s b) 296 m/s 9. y = p.i.at (2,25/3) tangent is y = 5x 5/3 3 3 10. concave down , p.i. at ,1 and ,1 4 4 4 4 i) 30 ,0 c.p. (0,0), ( 2 ,11.31), ( 2 ,11.31) 11. (0,0), 3 p.i, (1,7), (0,0), (1, 7) 12. concave down ( 3 , 3 ) -4 increasing for (1 6 , 1 + 6 ) and (2, ) dy 3 13. 14. 3x 4y 9 = 0 dx 2 3a 2 10 X -3 -2 -1 0 1 2 3 4 -10 6 -20 Created with an unregistered version of Advanced Grapher - http:/ / www.serpik.com/ a MIDTERM REVIEW 1 3, 18, 20 Text page 157 1. MATH 31 CHAP. 1 to 8 p 344 NAME_______________ 1, 7 b, g, h 8 14 Fill in the chart and use the limiting value of the slope of a sequence of secants (m ABn ) 1 to find the slope of y = sin x at A , accurate to 2 decimal places. 6 2 . sin 1 sin y 6 0.71677 eg. slope AB1 Note that x is in radians and slope ABn x 1 6 A B1 B2 B3 x /6 1 0.6 0.53 0.523 sinx 1/2 0.841 0.565 0.505 0.499 0.717 0.846 0.864 0.866 slope ABn y x limiting value of slope of secantsABn = slope of tangent at 2. B4 = 0.87 6 dy dy f ( x h) f ( x ) lim for as the definition of the derivative of y = f(x) find h 0 dx dx h y = f(x) = ax2 + b where a and b are constants. Using dy f ( x h) f ( x ) lim h 0 dx h a(x h) 2 b ax 2 b dy lim dx h 0 h 2 2 2 ax 2axh ah ax dy lim dx h 0 h h 2ax ah dy lim 2ax 0 2ax dx h 0 h 7 3. If a closed circular cylinder is to have a volume of 1000 cm3, find accurate to 2 decimal places, the radius and height of the cylinder which will have a minimum surface area. V cylinder = p r 2h = 1000 so h = 1000 pr 2 Acylinder = 2pr 2 + 2prh ж1000 ц ж2000 ц ч = 2pr 2 + 2000r - 1 A = 2pr 2 + 2pr зз 2 ч = 2pr 2 + зз ч ч и pr ш и r ш dA = (2)2p r 1 + (- 1)2000r - 1- 1 = 4p r - 2000r - 2 dr dA c.p. at = 0 = 4p r - 2000r - 2 = 4r - 2 (p r 3 - 500) r 0 dr 1 500 ж500 ц 3 ч and r = зз or 5.42 (p r 3 = 500), so r 3 = ч иp ш p 3 1000 h= = pr 2 1 1000 2 (500) 2 (500)3 2 (500)3 = = = = 2r or 10.84 2 2 3 2 1 500 3 500 й 500 1 щ 3 3ъ p p3 p3 pк p p кл p ъ ы ( ) 0 dA dr ( ) _─ __ ( ) 5.42 + c.p. is a minimum 4. Find and simplify dy for each of the following expressions. dx 3 1 a) y = x 3 - 8x 2 + 8x - 5 y / = 3x 2 - 12x 2 + 8 b) y = 5 sin (2x - 3) y / = 5 cos (2x - 3) c) y 1 3x 5 3x 5 x 7 2 x7 d (2x - 3) = 10 cos (2x - 3) dx 1 1 d d x 7 2 x 7 2 3x 5 dx dx 3 1 d 1 3x 5 x 7 2 x 7 x 7 2 3 dx 2 y / 3x 5 3 1 1 3x 5 x 7 2 1 x 7 2 3 2 3 1 x 7 2 3x 5 3 2 x 7 2 3 1 x 7 2 3x 47 2 8 4. y / e3x d d 5x 2 7 5x 2 7 e3x dx dx / 3x 2 3x y e 10x 5x 7 e 3 d) y e3x 5x 2 7 y / e3x 10x 3 5x 2 7 y / e3x 15x 2 10x 21 e) y 3log8 4x 1 3 1 d 4x 1 ln 8 4x 1 dx 12 1 y/ ln 8 4x 1 3 ln 4x 1 ln 8 y/ y / 5 sin e8x f) y 5cos e8x d 8x e dx y / 5sin e8x e8x 8 y / 40e8x sin e8x d d d sin y x ln y ln y x dx dx dx d 1 d cos y y x y ln y 1 dx y dx dy x dy cos y ln y dx y dx dy x cos y ln y dx y g) sin y x ln y dy ln y y ln y dx x y cos y x cos y y h) y 2x 3 3 4x 3 4 d 4 4 d 3 2x 3 3 4x 3 4x dx dx 5 d 4 3 2 d y / 2x 3 43 4x 3 4x 3 4x 3 2x 3 2x 3 dx dx 5 4 3 2 / y 2x 3 43 4x 4 3 4x 3 2x 3 2 y / 2x 3 3 161 2x 3 3 4x 61 2x 3 3 4x 16 1 2x 3 3 4x 6 1 2x 3 3 4x 32x 48 18 24x y/ 2x 3 3 4x y/ y/ 2 5 2 5 2 5 y / 2 2x 3 3 4x 2 5 4x 15 9 4. i) x2 + 3xy2 2y2 + 5x = 8 d 2 d d d d d x 3x y 2 y 2 3x 2 y2 5x 8 dx dx dx dx dx dx d d d 2x x 3x 2y y y 2 3 2 2y y 5 0 dx dx dx dy dy 2x 1 3x 2y 3y 2 4y 5 0 dx dx dy dy 2x 1 3y 2 5 4y 6xy dx dx dy 2x 3y 2 5 4y 6xy dx dy 2x 3y 2 5 dx 4y 6xy 5. Water is running out of a conical funnel at 100 cm3/s. If the radius of the funnel is 10 cm at the top and the height is 20 cm find the rate at which the radius is decreasing, accurate to 2 decimal places, when the water is 5 cm below the top? 10 cm 20 cm r 10 so h 2r h 20 1 1 2 V r 2 h r 2 2r r 3 3 3 3 d 2 d 2 d dr V r 3 3r 2 r 2r 2 dt 3 dt 3 dt dt water 5 cm below top so h = 15, r = 7.5 dV 2 dr 100 2 7.5 dt dt 100 8 dr or 0.28 2 9 dt r 7.5 2 7.5 so 6. a) b) lim x 13 x 9 x3 8 lim x 2 x 2 4 = = = lim x 13 x 9 13 9 4 2 x 2 x 2 2x 4 x 3 23 lim 2 lim 2 x 2 x 2 x 2 x 2 x 2 2 x 2 2x 4 2 2 2 4 lim x 2 x 2 2 2 3 10 6. c) d) e) lim e x cos x x 0 x 2 5x 6 lim x 2 3x 6 lim x 2 ln(cos x) x3 8 f) lim 2 x 2 x 4 e0 cos 0 11 1 = x 2 x 3 x 3 2 3 1 lim lim x 2 x 2 3 3 3 3 x 2 = lim ln(cos x) ln cos ln small positive 2 x 2 = x 2 x 2 2x 4 x 3 23 lim xlim x 2 x 2 2 2 2 x 2 x 2 = 2 x 2 2x 4 2 2 2 4 lim x 2 x 2 2 2 = Does not exist = 5 3 h) lim 3 cos x = 3cos 31 x 4 0 1 1 3 3 03 3 5 g) lim 5 x 3 x 7. = 1 3 x n 1 x n Using the Newton-Raphson Approximation, f (x) f / (x) to find a solution to ex = x accurate to 6 decimal places. f (x) ex x, f / (x) e x 1 Here x1 can be 0, ─1 or any other number. I used x1 = ─1 = ANS f (x) x n 1 x n / f (x) e 1 e ANS f 1 f (x) x 2 x1 / 1 / 1 ANS 0.5378828 1 ANS f (x) f 1 e 1 e 1 x 3 0.56698699, 1 ANS x 4 0.5671432904 x 5 x solution 0.567143 11 8. If s = t4 2t2 where s is displacement in meters after t seconds, find: a) the average acceleration in the third second b) the instantaneous acceleration at t = 5s displacement is s = t4 2t2 ds velocity is v 4t 3 4t dt v v t 3 v t 2 a average t 3 2 3 4 3 4 3 4 2 3 4 2 a avg 3 2 108 12 32 8 72 m a avg 3 2 s2 9. What is the equation of the tangent line to y ds 4t 3 4t dt d 2s dv acceleration is a 2 12t 2 4 dt dt velocity is v a t 5 12 5 4 296 2 1 3 x x 2 7x 3 6 m s2 at its point of inflection? 1 3 x x 2 7x 3 6 dy 3 2 x 2x 7 dx 6 d2 y x2 dx 2 point of inflection at x ─ 2 = 0 so x = 2 2 1 3 25 p.i. is (2, f(2)) or 2, 2 2 7 2 3 2, 6 3 3 2 dy slope at p.i. is slope at x = 2 is 2 2 2 7 5 dx x 2 6 25 y y y1 3 or 5x 10 y 25 so y 5x 5 tangent is m or 5 x x1 x2 3 3 y 10. Determine the concavity and find the points of inflection for y = 4 sin 2 x 1 for [0,]. y 4sin 2 x 1 4 sin x 1 2 y / 4 2 sin x 1 d sin x 0 8sin x cos x 4 2sin x cos x 4sin 2x dx d 2x 8cos 2x dx potential p.i. at y// 0 8cos 2x, cos 2x 0 3 3 so 2x , and x , 2 2 4 4 y // 4 cos 2x 12 y// 0 _+_ _ 4 3 4 _─ __ _+_ _ 3 1 2 , , y 4 1 2 1 1 4 4 2 3 3 3 so p.i. at ,1 , ,1 concave up 0, , , , concave down , 4 4 4 4 4 4 at x Y 11. 20 Clearly indicate the x- intercepts, critical points and points of inflection for the graph of 5 3 y = 3x 10x . 16 f (x) 3x 5 10x 3 x 3 3x 2 10 12 f ( x) 3x 5 10x 3 3x 5 10x 3 f x 8 so f(x) is odd and symmetric about the origin 10 , 0 about 1.82, 0 x─intercepts at 0, 0 , 3 f / (x) 15x 4 30x 2 15x 2 x 2 2 4 -5 -4 -3 -2 2, 11.32 3 -12 2 -16 f // (x) 0 60x x 2 1 at x 0, 1 p.i. at (0,0), (─1,7) and (1,─7) 12. 2 -8 f (x) 60x 60x 60x x 1 3 1 -4 c.p at x 0, 2 i.e. 0,0 , 2,11.32 , // 0 -1 f // (x) ─ (─1) -20 (0) ─ + (1) + Determine the intervals of increase (Given f / (2) = 0; use synthetic division) and the intervals of downward concavity for the graph of f(x) = x 4 18 x 2 + 40 x + 3. f / (x) 4x 3 36x 40 4 x 3 9x 10 2 for P(x) = x 3 9x 10 , P(2) = 0; so (x ─ 2) is a factor c.p. at f / (x) 0 4 x 3 9x 10 4 x 2 x 2 2x 5 1 0 ─9 1 2 2 4 ─10 ─5 0 10 2 22 4 1 5 b b2 4ac 2 24 2 2 6 c.p. at x 2, 2, 2, 2, 2, 1 6 2a 2 1 2 2 y/ _─ __ decrea sin g , 1 _+_ 1 6 _─ _2 _+ + + _ _ _ 6 or 1 6, 2 , increa _ sin g 1 6, 1 6 1 6 _ or 2, 13 4 5 f // (x) 12x 2 36 12 x 2 3 so potential p.i. at x 3 concave up 13. Using y= , 3 or 3, , concave down 3, 3 dy dy f ( x) f (a ) lim as the definition of the derivative of y = f(x) find for dx dx x a xa 3x 2 . 3x 2 3a 2 dy f (x) f (a) lim lim dx x a x a x a x a 3x 2 3a 2 3x 2 3a 2 dy lim 3x 2 3a 2 dx x a x a 3x 2 3a 2 dy lim dx x a x a 3x 2 3a 2 3x a dy lim dx x a x a 3x 2 3a 2 dy 3 3 dx 3 a 2 3a 2 2 3a 2 14. Use calculus to find the equation of the tangent to the circle d 2 d d 2 x y 4 25 dx dx dx d d 2x x 2 y 4 y 4 0 dx dx 2x 1 2 y 4 dy 0 dx dy 2x dx dy 2x x dx 2 y 4 y 4 2 y 4 x2 + (y 4)2 = 25 at (3, 0). slope of tangent at (3,0) x 3 3 dy dx 3,0 y 4 0 4 4 y y1 tangent is m x x1 3 y0 4 x 3 3x ─ 4y ─ 9 = 0 14