Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
UNIT –IV MA2264 NUMERICAL METHODS
INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS
PART-A
1. Explain the Taylor series algorithm for the first order differential equation.
2.
What is the disadvantage in using the Taylor series method
3. Using Taylor’s series find y(0.1) correct to 4 decimal places if y(x) satisfies y'=x+y , y(0) =1
Ans : 1.1103
4. Write down Euler and modified Euler algorithm for solving a first order differential equation
5. Using Modified Euler’s method, compute y(0.1) from
dy
2x
, y(0) = 1
 y
dx
y
Ans: 1.09548
6. Given y    y and y (0) =1, determine the values of y at x= 0.01 by Euler method Ans : 0.99
7. Write the Runge-kutta formulae of Fourth order for solving a first order differential equation
8. Write the Runge-kutta formulae of Fourth order for solving a second order differential equation
9. Write the Milne’s and Adam’s Predictor-Corrector formulae.
10. Compare Runge-kutta and Predictor-Corrector methods for solving an initial value problem.
PART-B
1. Using Taylor method , Compute y(0.2) and y(0.4) correct to 4 decimal places given
dy
 1  2 xy and y(0) = 0.
Ans: y(0.2)=0.19475,y(0.4) =0.35988
dx
dy
 e x  y 2 ,y(0) =1,find y(0.1) Ans:1.005
2. Using Taylor series for (i)
dx
dy
 2 y  3e x ,y(0)=0,find y at x=0.1 , 0.2
(ii)
Ans: 0.349 , 0.811
dx
3.
Using Euler’s method find y(0.3) of y(x)satisfies the initial value problem
dy 1 2
 ( x  1) y 2 ,y(0.2)=1.1114.
Ans : y(0.3)= 1.1756
dx 2
dy
 x  y  xy , y(0)=1 compute y at x=0.1,by taking h=0.05.
4.
Using Euler’s method solve
dx
Ans=1.0527
dy
 ( y  x 2 )3 ,y(1)=0,find y(1.2) Ans :0.44
5.
Using Modified Euler method (i)
dx
(ii) y'=1-y,y(0)=0,find x=(0.1)(0.1)(0.2) Ans: 0.095, 0.1809, 0.2587
dy x  y
(iii)
,y(2)=1 find y(1) by taking h=-0.2 0.73207

dx x  y
6.
Using Runge-kutta method of fourth order compute. (i)y(0.2), y(0.4)and y(0.6) given
Ans:2.073,2.452,3.023
y   x 3  y ,y(0)=2,
dy
xy

(ii) y(0.1) given
, y(0)=1
Ans:1.00492
dx 1  x 2
dy y 2  x 2
(iii)y at x=0.2,0.4
,y(0) =1 Ans: 1.1959, 1.3751

dx y 2  x 2
dy
1
y ( 0)  1
(iv) y at 0.1 and 0.2 for
Ans: 1.0914,1.1696

dx x  y
7.
Using the fourth order Runge-kutta method solve
d2y
i)
Ans:1.0013, 1.0107
 xy 2 , y (0)  1, y (0)  0 at x=02 and 0.4
dx 2
d2y
dy
 2  2 y  e 2 x sin x with y(0)=-0.4, y'(0)=-0.6
dx 2
dx
2
(v)
y"-0.1(1-y )y'+y=0 with y(0), y'(0)=1
(vi)
Given y  xy  y =0,y(0),y'(0)=0,find the value of y(0.1) by R-K method of 4 order
.
Ans :0.9950
1
8.
Using Milne’s Predictor and Corrector methods (i) Find y(2) if dy/dx= (x+y) ,
2
y(0)=2,y(0.5)=2.636,y(1)= 3.595 and y(1.5)=4.968
Ans y4,p=6.8710 , y4,c=6.8732
y(0.2) for
(ii) Find y(0.8) and y(1) if y'=x-y2 , y(0)=0 , y(0.2) = 0.02, y(0.4)= 0.0795, y(0.6)= 0.1762
Ans:yp =0.3049 , 0.4553 yc= 0.3046 , 0.4515
9.
Given y'=1-y , and y(0)=0 ,find (i) y(0.1) by Euler method (ii) y(0.2) by modified Euler method
(iii) y(0.3) = 0.2629 (iv) y(0.4) by Milne’s method. Ans (i)0.1 (ii) 0.1855(iv) yp 0.3280,yc 0.3333
10.
Given y'=x3+y,y(0)=2 the values of y(0.2)=2.073,y(0.4)=0.452 and y(0.6)=3.023 are got by R-K
method of 4th order ,Find y(0.8) by Milne’s.(h=0.2).
Ans yp=4.1664, yc= 3.7956
1
11.
Find y(2) ,given y'= (x+y), y(0)=2, y(0.5)=2.636, y(1)=3.595, y(1.5)=4.968 by Adam2
Bashforth Method
Ans :yp=6.8708, yc=6.8731.
12.
Given y'=x2(1+y) ,y(1)=1 , y(1.1)= 1.233 ,y(1.2)= 1.548 , y(1.3)= 1.979 , evaluate y(1.4) by
Adam’s method.
Ans: yp=2.5722, yc= 2.5749
13.
Find y(0.1),y(0.2),y(0.3) from y'=xy+y2 , y(0)=1 by using R-K 4th order and hence obtain y(0.4)
by Adam’s method. Ans :y(0.1)=1.1169,y(0.2)=1.2774,y(0.3)=1.5041 yp=1.8341, yc=1.8389
14.
Using Adam Bashforth method find y(0.4) given
xy
y '  ,y(0)=1,y(0.1)=1.01,y(0.2)=1.022,y(0.3)=1.023
Ans yp=1.0408, yc= 1.0410
2
Related documents