Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
UNIT –IV MA2264 NUMERICAL METHODS INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS PART-A 1. Explain the Taylor series algorithm for the first order differential equation. 2. What is the disadvantage in using the Taylor series method 3. Using Taylor’s series find y(0.1) correct to 4 decimal places if y(x) satisfies y'=x+y , y(0) =1 Ans : 1.1103 4. Write down Euler and modified Euler algorithm for solving a first order differential equation 5. Using Modified Euler’s method, compute y(0.1) from dy 2x , y(0) = 1 y dx y Ans: 1.09548 6. Given y y and y (0) =1, determine the values of y at x= 0.01 by Euler method Ans : 0.99 7. Write the Runge-kutta formulae of Fourth order for solving a first order differential equation 8. Write the Runge-kutta formulae of Fourth order for solving a second order differential equation 9. Write the Milne’s and Adam’s Predictor-Corrector formulae. 10. Compare Runge-kutta and Predictor-Corrector methods for solving an initial value problem. PART-B 1. Using Taylor method , Compute y(0.2) and y(0.4) correct to 4 decimal places given dy 1 2 xy and y(0) = 0. Ans: y(0.2)=0.19475,y(0.4) =0.35988 dx dy e x y 2 ,y(0) =1,find y(0.1) Ans:1.005 2. Using Taylor series for (i) dx dy 2 y 3e x ,y(0)=0,find y at x=0.1 , 0.2 (ii) Ans: 0.349 , 0.811 dx 3. Using Euler’s method find y(0.3) of y(x)satisfies the initial value problem dy 1 2 ( x 1) y 2 ,y(0.2)=1.1114. Ans : y(0.3)= 1.1756 dx 2 dy x y xy , y(0)=1 compute y at x=0.1,by taking h=0.05. 4. Using Euler’s method solve dx Ans=1.0527 dy ( y x 2 )3 ,y(1)=0,find y(1.2) Ans :0.44 5. Using Modified Euler method (i) dx (ii) y'=1-y,y(0)=0,find x=(0.1)(0.1)(0.2) Ans: 0.095, 0.1809, 0.2587 dy x y (iii) ,y(2)=1 find y(1) by taking h=-0.2 0.73207 dx x y 6. Using Runge-kutta method of fourth order compute. (i)y(0.2), y(0.4)and y(0.6) given Ans:2.073,2.452,3.023 y x 3 y ,y(0)=2, dy xy (ii) y(0.1) given , y(0)=1 Ans:1.00492 dx 1 x 2 dy y 2 x 2 (iii)y at x=0.2,0.4 ,y(0) =1 Ans: 1.1959, 1.3751 dx y 2 x 2 dy 1 y ( 0) 1 (iv) y at 0.1 and 0.2 for Ans: 1.0914,1.1696 dx x y 7. Using the fourth order Runge-kutta method solve d2y i) Ans:1.0013, 1.0107 xy 2 , y (0) 1, y (0) 0 at x=02 and 0.4 dx 2 d2y dy 2 2 y e 2 x sin x with y(0)=-0.4, y'(0)=-0.6 dx 2 dx 2 (v) y"-0.1(1-y )y'+y=0 with y(0), y'(0)=1 (vi) Given y xy y =0,y(0),y'(0)=0,find the value of y(0.1) by R-K method of 4 order . Ans :0.9950 1 8. Using Milne’s Predictor and Corrector methods (i) Find y(2) if dy/dx= (x+y) , 2 y(0)=2,y(0.5)=2.636,y(1)= 3.595 and y(1.5)=4.968 Ans y4,p=6.8710 , y4,c=6.8732 y(0.2) for (ii) Find y(0.8) and y(1) if y'=x-y2 , y(0)=0 , y(0.2) = 0.02, y(0.4)= 0.0795, y(0.6)= 0.1762 Ans:yp =0.3049 , 0.4553 yc= 0.3046 , 0.4515 9. Given y'=1-y , and y(0)=0 ,find (i) y(0.1) by Euler method (ii) y(0.2) by modified Euler method (iii) y(0.3) = 0.2629 (iv) y(0.4) by Milne’s method. Ans (i)0.1 (ii) 0.1855(iv) yp 0.3280,yc 0.3333 10. Given y'=x3+y,y(0)=2 the values of y(0.2)=2.073,y(0.4)=0.452 and y(0.6)=3.023 are got by R-K method of 4th order ,Find y(0.8) by Milne’s.(h=0.2). Ans yp=4.1664, yc= 3.7956 1 11. Find y(2) ,given y'= (x+y), y(0)=2, y(0.5)=2.636, y(1)=3.595, y(1.5)=4.968 by Adam2 Bashforth Method Ans :yp=6.8708, yc=6.8731. 12. Given y'=x2(1+y) ,y(1)=1 , y(1.1)= 1.233 ,y(1.2)= 1.548 , y(1.3)= 1.979 , evaluate y(1.4) by Adam’s method. Ans: yp=2.5722, yc= 2.5749 13. Find y(0.1),y(0.2),y(0.3) from y'=xy+y2 , y(0)=1 by using R-K 4th order and hence obtain y(0.4) by Adam’s method. Ans :y(0.1)=1.1169,y(0.2)=1.2774,y(0.3)=1.5041 yp=1.8341, yc=1.8389 14. Using Adam Bashforth method find y(0.4) given xy y ' ,y(0)=1,y(0.1)=1.01,y(0.2)=1.022,y(0.3)=1.023 Ans yp=1.0408, yc= 1.0410 2