Download Supplementary Information (doc 488K)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
SUPPLEMENTAL MATERIAL
Figure Legends
Supplemental Figure One. A. Detailed characterization of six iPSC cell lines—three from controls
(C1-C3), and three from bipolar patients (BP1-BP3). Fibroblast cell lines from each patient sample
exhibit a fusiform morphology and express the fibroblast marker Te-7 (Fibroblast; Cy3-secondary
antibody, red). As they form aggregates of iPSC, Te-7 expression is downregulated (iPSC; primary
antibody Te-7, Cy3-secondary antibody). Hoechst 23487 (blue) identifies nuclei, Scale bars = 200 m.
B. Markers of pluripotency including the nuclear marker Nanog, and cell surface restricted proteins
SSEA4,Tra-1-60 and alkaline phosphatase (AP) are induced. Cy3 – secondary antibody.
C. PCR analysis of the expression of pluripotency markers, Nanog, Oct4 and Sox2, in each of the six
iPSC lines. B-actin – loading control.
D. IPSC from each patient sample were differentiated in suspension culture in complete medium to
form embryoid bodies. After 45 days of differentiation, RNA was extracted and subjected to PCR to
determine the expression of lineage markers: alpha-fetoprotein (AFP, endoderm), smooth muscle actin
(SMA), and ectoderm (B-III tubulin), B-actin – control.
Supplemental Figure Two. Characterization of Neural Progenitors. After rosettes were picked and
passaged 2-3 times, cells were plated for differentiation in defined medium. Neural progenitor cells
express nuclear Sox2 (Cy3-secondary antibody) and cytoplasmic nestin (FITC-secondary antibody).
Scale bars = 200 m.
Supplemental Figure Three. A. Scatterplots illustrate the distribution of transcripts significantly
altered in cells derived from BP and control individuals (FC > 15% and A > 4, p < 0.05). Average probe
intensities are shown on the X axis, mean fold change in log2 ratio on the Y axis. Red = transcripts upregulated, Green = down-regulated transcripts.
B. Dendrogram illustrating a distinct transcriptional signature in neurons from patients with bipolar
disorder (N2; 7-9) compared with controls (N1; 10-12), whereas iPSCs from bipolar samples (1-3) or
controls (4-6) have indistinguishable transcriptional signatures.
Supplemental Figure Four. Immunohistochemical localization of the ventral protein NKX2-1 and of
the dorsal marker EMX2 in neuronal precursors exposed to purmorphamine (PM), no treatment (0), or
to lithium chloride (Li), in control (C), or BP cell lines. Neuronal precursors respond to purmorphamine
by increasing the number of NKX2-1 + cells present (A,D) compared to untreated cultures (B,E), while
exposure to lithium increased the number of cells expressing EMX2 in both groups (C,F). Scale
Supplemental Figure Five. KCl induced changes in Flo-4AM fluorescence intensity (y axis) over 5
minutes (x axis) in C vs BP neurons + Li treatment.
Supplemental Tables
Supplemental Table 1
A.
Antibodies
Antibody
EMX2
NKX2-1
Nanog
Nestin
PAX6
SOX2
SSEA4
Synapsin1
Te-7
Tra1-60
Source
Santa Cruz; sc-19956
AbCam; ab76013
Abcam; AAB21624
Millipore; MAB4304
Stemgent; 09-0075
Santa Cruz; Sc17317
Millipore; MAB4304
Cell Signaling; 5297
Millipore; CBL271
Millipore; MAB4360
Dilution
1:100
1:250
1:200
1:500
1:500
1:100
1:200
1:200
1:500
1:200
B.
PRIMERS
Transcript
Forward
Reverse
-fetoprotein
CCATGTACATGAGCACTGTTG
CTCCAATAACTCCTGGTATCC
-III tubulin
ATGCGGGAGATCGTGCACAT
CCCTGAGCGGACACTGT
-actin
GCCGAGGACTTTGATTGC
GTGTGGACTTGGGAGAGG
Nanog
TAGCAATGGTGTGACGCAGA
CCTCGCTGATTAGGCTCCAA
Nkx2.1
GCAAGATGTAGGCTTCTATTGTCTTG GCTGCCTCGCGTTTGTTTTA
OCT4
CTGCAGTGTGGGTTTCGGGCA
CTTGCTGCAGAAGTGGGTGGAGGA
Smooth muscle actin
GATCACCATCGGAAATGAAACGT
TTTAGAAGCATTTGCGGTGGAC
Sox-2
ATGCACCGCTACGACG
CTTTTGCACCCCTCCCATTT
C.
Transcript
MEAN ct
FC TaqMan
t test
FC MA
t-test MA
array
BDNF
-1.0686
2.0974
-0.201
-1.5520
0.074
-
GABRA3
-0.3676
1.2902
0.58
-1.4906
0.045
-
GLI1
-1.3540
2.5562
0.06
1.7146
0.146
+
Taq-man Analysis
HOXA2
LEFTY1
-4.3788
1.5619
20.8052
-2.9526
0.12
0.04
2.2778
-5.8886
0.083
0.012
+
+
MAP2
-3.4913
11.2458
0.03
5.0126
0.07
+
SNAI2
-4.2276
18.7337
0.04
4.6951
0.05
+
ZIC1
-3.5820
11.9750
0.1
6.4566
0.13
+
Supplemental Table 1. A. Antibodies employed, their source, and working dilutions. B. Primer
sets. C. Taq-man validation of chosen transcripts. Data are expressed as BP vs C. The final row
illustrates corresponding (+) or not corresponding (-) expression levels in microarray analysis.
I. Transcripts Increased in iPSC vs Neurons
Supplemental Table 2
KEGG PATHWAY: Calcium signaling
Transcript
ATP2A2
ATP2B1
GNAS
ADRA1D
ADRB3
CACNA1E
CAMK2B
CAMK2D
CAMK2G
CALM3
CALML3
F2R
EDNRA
EGFR
GRIN2C
GNA14
HRH1
ITPR3
TNF
LTB4R2
NOS1
NOS3
PPID
PDE1A
PLN
PLCE1
PHKA2
PHKB
PTAFR
PRKCA
PRKACB
PPP3CC
P2RX1
RYR1
SPHK1
SPHK2
1
Chromosome
12q24.11
12q21.3
20q13.3
20p13
8p12
1q25.3
7p14.3-p14.1
4q26
10q22
19q13.2-q13.3
10p15.1
5q13
4q31.22
7p12
17q25
9q21
3p25
6p21
6p21.3
14q11.2-q12
12q24.2-q24.31
7q36
4q31.3
2q32.1
6q22.1
10q23
Xp22.2-p22.1
16q12-q13
1p35-p34.3
17q22-q23.2
1p31.1
8p21.3
17p13.3
19q13.1
17q25.2
19q13.2
Association1
SZ27
BP35
BP63
0
0
ASD73
SZ72
SZ34; BP94
0
0
0
0
BP45
BP92
0
0
0
0
BP26
0
SZ91
BP82
0
MDD112
0
BP2
0
0
0
SZ12
MDD90; BP3
BP62
0
NMS88
0
0
Legend: ADHD=attention deficit hyperactivity disorder; ASD = autism spectrum disorder; BP = bipolar disorder; DS=
down syndrome; ID=intellectual disability; MDD= major depressive disorder; NB=neuroblastoma; NMS= neuroleptic
malignant syndrome; SCA=spinocerebellar ataxia; SZ = schizophrenia; TTS = Tourette’s syndrome.
TNNC1
3p21.1
SZ89
VDAC3
8p11.2
0
Supplemental Table Two. KEGG pathway analysis of the transcripts expressed at significantly higher
levels in iPSC compared with neurons identified 38 members of the Calcium signaling pathway. Many
have previously been associated with neuroaffective or neurodevelopmental disorders (Association) or
are located at BP susceptibility loci.
II. Transcripts Increased in BP vs Control iPSC
Supplemental Table 3
Cluster One:
Transcript
COL2A1
DLC1
EDN1
FBN2
FOXG1
FZD3
GAS1
GREM1
HOXA1
MSX2
NEUROD1
RARB
ROR2
SATB2
SLIT2
TFAP2A
TSHZ1
Embryonic morphogenesis
Chromosome Association
12q13.11
0
8p22
0
6p24.1
0
5q23-q31
0
14q13
Microcephaly54
8p21
SZ46,48
9q21.3-q22
0
15q13.3
SZ3
7p15.3
ASD13
5q35.2
0
2q32
MDD36
3p24.2
3p; SZ78
9q22
0
2q33
ID83
4p15.2
4p; Suicide attempters93
6p24
ADHD59
18q22.3
18q
Supplemental Table Three. Of the 14 significant clusters of genes expressed at higher levels in BP vs
C iPSC, Cluster One contained 17 genes associated with embryonic development including: patterning
factors, signaling molecules, and cell-cell or cell-extracellular matrix adhesion factors.
Supplemental Table 4
CLUSTER Two: Signal
Transcript
Chromosome
ACVRIB
12q13
ADAMTS19 5q23.3
ANTXR2
4q21.21
BMP5
6p12.1
BMPR1B
4q22-q24
CADM1
11q23.2
CD47
3q13.1-q13.2
CDH2
18q11.2
CDH6
5p13.3
COL1A2
7q22.1
COL2A1
12q13.11
COL4A6
Xq22.3
CXCL14
5q31
DLL1
6q27
EDN1
6p24.1
EDNRA
4q31.22
EPHA7
6q16.1
FAM20A
17q24.2
FBN2
5q23-q31
FNDC5
1p35.1
FST
5q11.2
FZD3
8p21
GALP
11q13.43
GAS1
9q21.3-q22
GREM1
15q13.3
LEPR
1p31
LHCGR
2p21
LPHN3
4q13.1
LPL
8p22
LRIG3
12q14.1
LRP2
2q24-q31
LRP4
11p11.2
LRRN3
7q31.1
LYPD1
2q21.2
NID2
14q22.1
PAPPA
9q33.2
PCDH10
4q28.3
PCDH17
13q21.1
PCDH18
4q31
PI15
8q21.11
PLAT
8p12
Association
SZ44
0
0
SZ44
0
ASD30
SZ68
18q
0
0
0
Lissencephaly25
0
6q; ASD32; DS67
0
0
6q
0
0
0
0
SZ46,48
0
0
SZ3
ID39; MDD105
0
Dyslexia29
SZ57
0
ASD42
0
ASD60
0
0
0
ASD69
13q
0
8q
ASD, SZ97
PRTG
RGMB
RNASE1
RNASE4
RNF43
ROR2
SEMA3C
SLIT2
SLITRK6
SOST
SPON1
TFPI
THBS3
UNC5C
WLS
15q21.3
5q15
14q11.2
14q11
17q22
9q22
7q21-q31
4p15.2
13q31.1
17q11.2
11p15.2
2q32
1q21
4q21-q23
1p31.3
ASD110
ASD86
MDD5; SZ4
0
0
0
SZ3
4p; Suicide attempters93
13q; BP37
0
SZ33
0
0
ASD71
0
Supplemental
Table Four. Of the
transcripts
expressed at
significantly higher
levels in BP vs C
iPSC, Cluster Two contained 56 transcripts associated with the term “Signal”. This group contained
secreted factors as well as extracellular matrix and cell surface molecules and receptors.
Supplemental Table 5
Cluster Three: Axonogenesis
Transcript Chromosome Association
EPHA7
6q16.1
6q
SLITRK6
13q31.1
13q; BP37
BMPR1B
4q22-q24
0
FOXG1
14q13
Microcephaly54
GAS1
9q21.3-q22
0
HOXA1
7p15.3
ASD13
SLIT2
4p15.2
4p; Suicide attempters93
UNC5C
4q21-q23
ASD71
ULK2
17p11.2
SZ40
Supplemental Table Five. Cluster Three contained 9 genes associated with the GO Term
“Axonogenesis” that were expressed at higher levels in BP iPSC compared with control iPSC. These
included cell surface molecules and receptors.
Supplemental Table 6
Cluster Six: Cell adhesion
Transcript
Chromosome Association
ARHGAP5
14q12
0
BMPR1B
4q22-q24
0
CADM1
11q23.2
ASD30
CD47
3q13.1-q13.2
SZ68
CDH2
18q11.2
18q
CDH6
5p13.3
0
COL2A1
12q13.11
0
COL4A6
Xq22
Lissencephaly25
DLC1
8p22
0
NEDD9
6p25-p24
0
NID2
14q22.1
0
PCDH10
4q28.3
ASD81,103
PCDH17
13q21.1
13q; SZ23
PCDH18
4q31
0
RGMB
5q15
ASD86
RHOB
2p24
0
ROR2
9q22
0
SPON1
11p15.2
SZ33
THBS3
1q21
0
Supplemental Table Six. Cluster Six contained 19 transcripts that encode proteins involved in cell- or
cell-extracellular matrix adhesion that were up-regulated in BP iPSC
Supplemental
Cluster Ten: Positive regulation of development
Transcript
Chromosome
Association
ACVRIB
12q13
SZ44
BMPR1B
4q22-q24
0
FOXG1
4q13
Microcephaly54
FST
5q11.2
0
ID2
2p25
0
IRX3
16q12.2
0
LPL
8p22
SZ57
NEUROD1
2q32
MDD36
RHOB
2p24
0
SLIT2
4p15.2
4p; Suicide attempters93
TIAM1
21q22.11
0
ZFHX3
16q22.3
0
Table 7
Supplemental Table Seven. Cluster Ten identified 12 transcripts expressed at higher levels in BP vs
C iPSC that are associated with the positive regulation of development. They include cell surface
receptors, transcription factors and secreted molecules.
III. Transcripts Increased In BP vs Control Neurons
Supplemental Table 8
CLUSTER ONE: Plasma Membrane part
Transcript
Chromosome
ALK
2p23
AP1S3
2q36.1
CACNA1E
1q25.3
CHRNB4
15q24
CNTN1
12q11-q12
CTNNA3
10q22.2
DIRAS2
9q22.2
DLGAP3
1p35.3-p34.1
GABRG2
5q34
GPR22
7q22-q31.1
GRIA4
11q22
HSPA12A
10q26.12
ITGBL1
13q33
KCNA3
1p13.3
KCND3
1p13.3
KCNIP4
4p15.32
KCNJ3
2q24.1
LOC100287987
3q13.11
LOC441528
Xp22.33
MAOB
Xp11.23
MME
3q25.2
MPP2
17q12-q21
NLGN1
3q26.31
NPY1R
4q31.3-q32
P2RX5
17p13.3
PCDH17
13q21.1
PRKX
Xp22.3
PRMT8
12p13.3
PTGER3
1p31.2
RAB7L1
1q32
RAPH1
2q33
SEMA5A
5p15.2
SEMA6A
5123.1
SLC12A5
20q13.12
SLC13A3
20q13.12
SLC7A1
13q12.3
SNTG1
8q11-q12
TF
3q22.1
TGFB1i1
16p11.2
TJP2
9q13-q21
TYRO3
15q15
Association
NB24
SZ33
0
ADHD, MDD14
SZ70
0
ADHD, BP82
TTS22
SZ115
0
SZ61
SZ77
13q; SZ18
BP9
SCA56
4p; ADHD109
SZ113
0
0
SZ, ASD76,108
0
ID28
ASD114; ASD,ID,SZ38
SZ43
0
13q; SZ23
0
0
SZ98
BP74
0
ASD65
0
MDD,SZ99
0
13q
8q
SZ80
16p
SZ70
0
Additional transcripts significantly increased in BP neurons, but not
included in Cluster 1
GAMT
19p13.3
ID58
FGF14
13q34
SCA11
RCAN2
6p12.3
DS84.96
SMARCA2
TUBB4A
9p22.3
19p13.3
ID104; SZ51
Agenesis of the corpus callosum101
Supplemental Table Eight. Of the transcripts that were significantly increased in BP vs C neurons
Functional Annotation Cluster analysis identified a cluster of 41 transcripts associated with the term
“Plasma membrane part”. Additional transcripts that have been previously associated with
neurodevelopmental disorders, but not present in Cluster one are also included in this table.
Supplemental Table 9
Cluster Two: Ion Transport
Gene
Chromosome
CACNA1E 1q25.3
CHRNB4
15q24
GABRG2
5q34
GRIA4
11q22
KCNA3
1p13.3
KCND3
1p13.3
KCNIP4
4p15.32
KCNJ3
2q24.1
P2RX5
17p13.3
SLC12A5
20q13.12
SLC13A3
20q13.12
SLC24A3
20p13
SLC38A4
12q13
SLC41A2
12q23.3
TF
3q22.1
Association
0
ADHD14
SZ115
SZ61; BP16
BP9
SCA56
4p; ADHD109
SZ99
0
SZ80
0
0
0
0
SZ80
Supplemental Table Nine. Cluster Two contained 15 transcripts involved in ion transport that were
significantly increased in BP neurons, including genes involved in cation channels, receptors and cell
surface molecules.
IV. Transcripts Increased In Control vs BP Neurons
Supplemental Table 10
Cluster 1. Nucleus
Transcript
Chromosome
AEN
15q26.1
BC2L1
20q11.21
BCL11B
14q32.2
CDK1
10q21.1
CECR2
22q11.2
CHD1L
1q12
CHD2
15q26
CSRP2
12q21.1
DCP2
5q22.2
DMRTA2
1p32.3
EMX2
10q26.1
EOMES
3p24.1
EYA3
1p36
FEZF2
3p14.2
GATAD2A
19p13.11
HDAC4
2q37.3
HNRNPC
14q11.2
HNRNPD
4q21
HNRNPM
19p13.3-p13.2
KHDRBS2
6q11.1
KIFC1
6p21.3
MED13L
12q24.21
MLLT10
10p12
MZF1
19q13.4
NCOA2
8q13.3
NFIB
9p24.1
NR6A1(GCNF) 9q33.3
PLCD4
2q35
PPARA
22q13.31
SNRPA
19q13.1
SOX6
11p15.3
SRSF3
6p21
STK36
2q35
TCF3
19p13.3
TIPIN
15q22.31
UHRF1
19p13.3
YES1
18p11.31-p11.21
ZCCHC18
Xq22.2
ZNF207
17q11.2
ZNF536
19q12
ZNF586
19q13.43
ZNF606
19q13.4
Association
0
SZ40
MDD55
0
Neurulation defect7
0
0
ASD32
0
0
Schizencephaly10,100
Microcephaly6
0
ASD95
0
ID87
SZ33
SZ64
BP49
6q
0
Psychosis102
0
0
8q
ASD17
0
BP36
SZ20
0
SZ70
BP107
Hydrocephalus106
0
0
0
18p
0
0
Microcephaly8
0
0
Supplemental Table Ten. Of the transcripts expressed at significantly higher levels in Control vs BP
neurons, a single significant cluster of 42 transcripts associated with the term “Nucleus” was identified.
Transcripts that encode patterning factors and signaling molecules, as well as transcription factors were
present in this group.
V. Transcripts Coordinately Expressed in BP Premotor Cortex and in BP
iPSC- Derived Neurons
Supplemental Table 11
Transcript
AKAP11
ATP5O
C11orf31
C19orf42/SMIM7
C1orf57/NTPCR
C20orf30/TMEM230
C6orf106
CCDC88A
CCND2
CEP68
CIAO1
CLASP2
CNOT7
CNTN4
COG5
COPS3
CSNK2A1
DR1
FANCF
FBXO38
GTF2H1
HEMK1
HIPK2
JTB
KPNA6
LARS
MAD2L1
MAGI1
MAPK14
MIB1
MPHOSPH9
MPI
MRPL16
Coordinate Regulation
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
UP
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
UP
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
Chromosome
13q14.11
21q22.11
11q12.1
19p13.11
1q42,2
20p13
6p21.31
2p16.1
12p13
2p14
2q11.2
3p22.3
8p22-021.3
3p26.3
7q31
17p11.2
20p13
1p22.1
11p15
5q32
11p15.1-p14
3p21.3
7q32-q34
1q21
1p35.1
5q32
4q27
3p14.1
6p21.3-p21.2
18q11.2
12q24.31
15q22qter
11q12.1
Association
0
BP53
SZ33
0
SZ31
ASD32
0
0
BP9; SZ78
0
0
BP85
0
ASD21
0
0
SZ3
SZ1
0
0
0
0
0
0
0
0
0
BP47
0
0
0
0
0
MRPS22
MRS2
NMT1
OGT
PCNP
PDE4DIP
POLR3E
PSMA5
PSMB4
PSMD4
RC3H2
RNF146
SLC25A15
SLC6A15
SSBP1
STK17B
SUPT7L
TMEM43
TPI1
TTC14
UBE2Z
XRCC5
ZSCAN18
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
3q23
6p22.3-p22.1
17q21.31
Xq13
3q12.3
1q12
16p12.2
1p13
1q21
1q21.3
9q34
6q22.1-q22.33
13q14
12q21.3
7q34
2q32.3
2p23.3
3p25.1
12p13
3q26.33
17q21.32
2q35
19q13.43
0
0
0
0
0
ASD41
0
SZ19
MDD112
0
0
0
SZ66
MDD52
ASD75
0
NTDs15
0
SZ50
0
0
0
SZ31
Supplemental Table Eleven. Transcripts expressed at significantly higher levels in BP vs C neurons
were compared with transcripts expressed at significantly higher levels in the premotor cortex of
patients with BP who were not taking typical antipsychotic medications. Of the 57 transcripts that were
coordinately expressed, only two were both up-regulated. Kinases, cell cycle and signaling pathway
members were present; some have previously been associated with neurodevelopmental or psychiatric
conditions.
Supplemental References
1. Akaho R, Matsushita I, Narita K, Okazaki Y, Okabe Y, Matsushita M et al., Support for an
association between HLA-DR1 and schizophrenia in the Japanese population. Am J Med Genet 200;
96: 725-727.
2. Alliey-Rodriguez N, Zhang D, Badner JA, Lahey BB, Zhang X, Dinwiddie S et al. Genome-wide
association study of personality traits in bipolar patients. Psychiatr Genet. 2011; 21: 190-194.
3. Arion D, Horvath S, Lewis DA, Mirnics K. Infragranular gene expression disturbances in the
prefrontal cortex in schizophrenia: signature of altered neural development? Neurobiol Dis 2010; 37:
738-746.
4. Aston C, Jiang l, Sokolov BP. Microarray analysis of postmortem temporal cortex from patients with
schizophrenia. Mol Psychiatry 2005; 10: 309-322.
5. Aston C, Jiang L, Sokolov BP. Transcriptional profiling reveals evidence for signaling and
oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. J
Neurosci Res 2004; 77: 858-866.
6. Baala L, Briault S, Etchevers HC, Laumonnier F, Natiq A, Amiel J, Boddaert N, Picard C, Sbiti A,
Asermouh A, Attie-Bitach T, Encha-Razavi F, Munnich A, Sefiani A, Lyonnet S. Homozygous silencing
of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum
agenesis. Nat Genet 2007; 39: 454-456.
7. Banting GS, Barak O, Ames TM, Burnham AC, Kardel MD, Cooch NS, Davidson CE, Godbout R,
McDermid HE, Shiekhattar R. CECR2, a protein involved in neurulation, forms a novel chromatin
remodeling complex with SNF2L. Hum Mol Genet 2005; 14: 513-524.
8. Bartsch O, Schindler D, Beyer V, Gesk S, van't Slot R, Feddersen I, Buijs A, Jaspers NG, Siebert R,
Haaf T, Poot. A girl with an atypical form of ataxia telangiectasia and an additional de novo 3.14 Mb
microduplication in region 19q12. Eur J Med Genet 2012; 55: 49-55.
9. Benes FM, Lim B, Matzilevich D, Subbaraju S, Walsh JP. Circuitry-based gene expression profiles
in GABA cells of the trisynaptic pathway in schizophrenics versus bipolars. Proc Natl Acad Sci 2008;
105: 20935-20940.
10. Brunelli S, Faiella A, Capra V, Nigro V, Simeone A, Cama A et ak. Germline mutations in the
homeobox gene EMX2 in patients with severe schizencephaly. Nat Genet 1996; 12: 94-96.
11. Brusse E, De Koning I, Maat-Kievit A, Oostra BA, Heutink P, van Swieten JC. Spinocerebellar
ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): a new phenotype.
Mov Disord 2006; 21: 396-401.
12. Carroll LS, Williams NM, Moskvina V, Russell E, Norton N, Williams HJ et al. Evidence for rare and
common genetic risk variants for schizophrenia at protein kinase C, alpha. Mol Psychiat 2010; 15:
1101-1111.
13. Chakrabarti B, Dudbridge F, Kent L, Wheelwright S, Hill-Cawthorne G, Allison C et al. Genes
related to sex steroids, neural growth, and social-emotional behavior are associated with autistic traits,
empathy, and Asperger syndrome. Autism Res 2009; 2: 157-177.
14. Chen LS, Xian H, Grucza RA, Saccone NL, Wang JC, Johnson EO et al. Nicotine dependence and
comorbid psychiatric disorders: examination of specific genetic variants in the CHRNA5-A3-B4
nicotinic receptor genes. Drug Alcohol Depend 2012; 123S1: S42-51.
15. Chen X, Shen Y, Gao Y, Zhao H, Sheng X, Zou J et al. Detection of copy number variants reveals
association with neural tube defects. PLosOne 2013; 8: e54492. Doi: 10.1371/journal.pone.0054492
16. Chiesa A, Crisafulli C, Porcelli S, Balzarro B, Han C, Patkar AA et al. Case-control association
study of GRIA1, GRIA2 and GRIA4 polymorphisms in bipolar disorder. Int J Psychiatry Clin Pract 2012;
16: 18-26.
17. Choi J, Ababon MR, Matteson PG, Millonig JH. Cut-like homeobox1 and nuclear factor I/B mediate
ENGRAILED autism spectrum disorder-associated haplotype function. Hum Mol Genet 2012; 21:
1566-1580.
18. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic
and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in
schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675-13680.
19. Cohen OS, Mccoy SY, Middleton FA, Bialosuknia S, Zhang-James Y, Liu L et al. Transcriptomic
analysis of postmortem brain identifies dysregulated splicing events in novel candidate genes in
schizophrenia. Schizophr Res 2012; 142: 188-199.
20. Costa M, Squassina A, Congiu D, Chillotti C, Niola P, Galderisi S et al. Investigation of
endocannabinoid system genes suggests association between peroxisome proliferator activator
receptor -  gene (PPARA) and schizophrenia. Eur Neuropsychopharmacol. 2012; ePub. August 21.
21. Cottrell CE, Bir N, Varga E, Alvarez CE, Bouyain S, Zernzach R et al. Contactin 4 as an autism
susceptibility locus. Autism Res 2011; 4: 189-199.
22. Crane J, Fagerness J, Osiecki L, GunnellB, Stewart SE, Pauls DL et al. Tourette Syndrome
International Consortium for Genetics. Family-based genetic association study of DLGAP3 in Tourette
Syndrome. Am J Med Genet B. Neuropsychiatr Genet 2011; 156B: 108-114.
23. Dean B, Keriakous D, Scarr E, Thomas EA. Gene expression profiling in Brodmann’s area 46 from
subjects with schizophrenia. Aust NZ J Psychiat 2007; 41: 308-320.
24. dePontual L, Kettaneh D, Gordon CT, Oufadem M, Boddaert N, Lees M et al. Germline gain-offunction mutations of ALK disrupt central nervous system development. Hum Mutat 2011; 32: 272-276.
25. Dobyns WB, Andermann E, Andermann F, Czpansky-Beilman D, Dubeau F, Dulac O et al. Xlinked malformations of neuronal migration. Neurology 1996; 47: 331-339.
26. Doganavsargil-Baysal O, Cinemre B, Aksoy UM, Akbas H, Metin O, Fettahoglu C et al. Levels of
TNF-α, soluble TNF receptors (sTNFR1, sTNFR2), and cognition in bipolar disorder. Hum
Psychopharmacol 2012; 28: 160-167.
27. Earls LR, Fricke RG, Yu J, Berry RB, Baldwin LT, Zakharenko SS. Age-dependent microRNA
control of synaptic plasticity in 22q11 deletion syndrome and schizophrenia. J Neurosci 2012; 32:
14132-14144.
28. Echaniz-Laguna A, Mohr M, Epailly E, Nishino I, Charron P, Richard P et al. Novel lamp-2 gene
mutation and successful treatment with heart transplantation in a large family with Danon disease.
Muscle Nerve 2006; 33: 393-397.
29. Field LL, Shumansky K, Ryan J, Truong D, Swiergala E, Kaplan BJ.. Dense-map genome scan for
dyslexia supports loci at 4q13, 16p12, 17q22; suggests novel locus at 7q36. Genes Brain Behav 2013;
12: 56-69.
30. Fujita E, Tanabe Y, Imhof BA, Momoi MY, Momoi T. A complex of synaptic adhesion molecule
CADM1, a molecule related to autism spectrum disorder, with MUPP1 in the cerebellum. J Neurochem
2012; 123: 886-894.
31. Gardiner EJ, Cairns MJ, Liu B, Beveridge NJ, Carr V, Kelly B et al. Gene expression analysis
reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear
cells. J Psychiatr Res 2013; 47: 425-437.
32. Ghahramani Seno MM, Hu P, Gwadry FG, Pinto D, Marshall CR, Casallo G et al. Gene and
miRNA expression profiles in autism spectrum disorders. Brain Res 2011; 1380: 85-97.
33. Glatt SJ, Stone WS, Nossova N, Liew C-C, Seidman LJ, Tsuang MT. Similarities and differences in
peripheral blood gene-expression signatures of individuals with schizophrenia and their first-degree
biological relatives. Am J Med Genet 2011; 156: 869-887.
34. Glessner JT, Reilly MP, Kim CE, Takahashi N, Albano A, Hou C et al. Strong synaptic
transmission impact by copy number variations in schizophrenia. Proc Natl Acad Sci USA 2010; 107:
10584-10589.
35. Gordon-Smith K, Jones LA, Burge SM, Munro CS, Tavadia S, Craddock N. The neuropsychiatric
phenotype in Darier disease. Br J Dermatol 2010; 163: 515-522.
36. Gratacos M, Costas J, de Cid R, Bayes M, Gonzalez JR, Baca-Garcia E et al. Psychiatric Genetics
Network. 2009. Identification of new putative susceptibility genes for several psychiatric disorders by
association analysis of regulatory and non-synonymous SNPs of 306 genes involved in
neurotransmission and neurodevelopment. Am J Med Genet B. Neuropsychiatr Genet 2009; 150B:
808-816.
37. Greenwood TA, the Bipolar Genome Study Consortium, Kelsoe JR. 2013. Genome-wide
association study of irritable vs elated mania suggests genetic differences between clinical subtypes of
bipolar disorder. PLoS One 8: e53804.
38. Guilmatre A, Dubourg C, Mosca AL, Legallic S, Goldenberg A, Drouin-Garraud V et al. Recurrent
rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in
schizophrenia, autism and mental retardation. Arch Gen Psychiatry 2009; 66: 947-956.
39. Guo M, Lu Y, Garza J, Li Y, Chua SC, Zhang W et al. Forebrain glutamatergic neurons mediate
leptin action on depression-like behaviors and synaptic depression. Transl Psychiat 2012; 2: e83.
40. Horesh Y, Katsel P, Haroutunian V, Domany E. Gene expression signature is shared by patients
with Alzheimer’s disease and schizophrenia at the superior temporal gyrus. Eur J Neurol 2011; 18:
410-424.
41. Hu VW, Sarachana T, Kyung SK, Nguyen A, Kulkami S, Steinberg ME et al. Gene expression
profiling differentiates autism case-controls and phenotypic variants of autism spectrum disorders:
evidence for circadian rhythm dysfunction in severe autism. Autism Res 2009; 2: 78-7.
42. Ionita-Laza I, Makarov V, the ARRA Autism Sequencing Consortium 3, Buxbaum JD. Scan-statistic
approach identifies clusters of rare disease variants in LRP2, a gene linked and associated with autism
spectrum disorders, in three datasets. Am J Hum Genet 2012; 90: 1002-1013.
43. Iwamoto K, Kato T. Gene expression profiling in schizophrenia and related mental disorders.
Neuroscientist 2006; 12: 349-361.
44. Jia, P, Wang L, Meltzer HY, Zhao Z.. Common variants conferring risk of schizophrenia: a
pathway analysis of GWAS data. Schizophrenia Res 2010; 122: 38-42.
45. Kaneva R, Milanova V, Angelicheva D, MacGregor S, Kostov C, Vladimirova R et al. Bipolar
disorder in the Bulgarian Gypsies: genetic heterogeneity in a young founder population. Am J Med
Genet 2009; 150B: 191-201.
46. Kang C, Zhou L, Liu H, Yang J. Association study of the frizzled 3 gene with Chinese Va
schizophrenia. Neurosci Lett 2011; 505: 196-199.
47. Karlsson R, Graae L, Lekman M, Wang D, Favis R, Axelsson T et al. MAGI1 copy number variation
in bipolar affective disorder and schizophrenia. Biol Psychiat 2012; 71: 922-930.
48. Katsu, T, Ujike H, Nakano T, Tanaka Y, Nomura A, Nakata K et al. The human frizzled-3 (FZD3)
gene on chromosome 8p21, a receptor gene for Wnt ligands, is associated with the susceptibility to
schizophrenia. Neurosci Lett 2003; 353: 53-56.
49. Kazuno A-a, Ohtawa K, Otsuki K, Usui M, Sugawara H, Okazaki Y et al. Proteomic analaysis of
lymphoblastoid cells derived from twins discordant for bipolar disorder: a preliminary study. PLoS One
2013; 8: e53855
50. Kim HJ, Eom CY, Kwon J, Joo J, Lee S, Nah SS et al. Roles of interferon-gamma and its target
genes in schizophrenia: proteomics-based reverse genetics from mouse to human. Proteomics 2012;
12: 1815-1829.
51. Koga M, Ishiguro H, Yazaki S, Horiuchi Y, Arai M, Niizato K et al. Involvement of SMARCA2/BRM
in the SWI/SNF chromatin-remodeling complex in schizophrenia. Hum Mol Genet 2009; 18: 24832494.
52. Kohli MA, Lucae S, Saemann PG, Schmidt MV, Demirkan A, Hek K et al. The neuronal transporter
gene SLC6A15 confers risk to major depression. Neuron 2011; 70: 252-265.
53. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S. Molecular evidence for
mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 2004; 61: 300-308.
54. Kortum F, Das S, Flindt M, Morris-Rosendahl DJ, Stefanova I, Goldstein A et al. The core FOXG1
syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language,
dyskinesia and corpus callosum hypogenesis. J Med Genet 2011; 48: 396-406.
55. Lee PH, Perlis RH, Jung J-Y, Byrne EM, Rueckert E, Siburian R et al. Multi-locus genome-wide
association analysis supports the role of glutamatergic synaptic transmission in the etiology of major
depressive disorder. Transl Psychiatry 2012; 2: e184.
56. Lee Y-C, Durr A, Majczemko K, Huang Y-H, Liu Y-C, Lien C-C et al. Mutations in KCND3 cause
spinocerebellar ataxia type 22. Ann Neurol 2012; 72: 859-869.
57. Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE et al. Towards understanding
the schizophrenia code: an expanded convergent functional genomics approach. AM J Med Genet B.
Neuropsychiatr Genet 2007; 144B: 129-158.
58. Leuzzi V. Inborn errors of creatine metabolism and epilepsy: clinical features diagnosis, and
treatment. J Child Neurol 2002; 17S3: 3S89-97.
59. Lionel AC, Crosbie J, Barbosa N, Goodale T, Thiruvahindrapuram B, Rickaby J et al. Rare copy
number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Sci Transl
Med 2011; 3: 95ra75; doi: 10.1126/scitranslmed.3002464
60. Maestrini E, Pagnamenta AT, Lamab JA, Bacchelli E, Sykes NH, Sousa I et al. High-density SNP
association study and copy number variation analysis of the AUTS1 and AUTS5 loci implicate the
IMMP2L-DOCK4 gene region in autism susceptibility. Mol Psychiat 2010; 15: 954-968.
61. Makino C, Fujii Y, Kikuta R, Hirata N, Tani A, Shibata A et al. Positive association of the AMPA
receptor subunit GluR4 gene (GRIA4) haplotype with schizophrenia: linkage disequilibrium mapping
using SNPs evenly distributed across the gene region. Am J Med Genet B. Neuropsychiatric Genet
2003; 116B: 17-22.
62. Mathieu F, Miot S, Etain B, El Khoury MA, Chevalier F, et al. Association between the PPP3CC
gene, coding for the calcineurin gamma catalytic subunit, and bipolar disorder. Behav Brain Funct
2008; 4:2. Doi: 10.1186/1744-9081-4-2.
63. McDonald ML, MacMulle C, Liu DJ, Leal SM, Davis RL. Genetic association of cyclic AMP
signaling genes with bipolar disorder. Translational Psychiatry 2012; 2, e169. doi: 10.1038/tp.2012.92
64. McInnis LA, Lauriat TL. RNA metabolism and dysmyelination in schizophrenia. Neurosci Biobehav
Rev 2006; 30: 551-561.
65. Melin M, Carlsson B, Anckarsater H, Rastam M, Betancur C, Isaksson A et al. Constitutional
downregulation of SEMA5A expression in autism. Neuropsychobiol 2006; 54: 64-69.
66. Mistry M, Gillis J, Pavlidis P. Genome-wide expression profiling of schizophrenia using a large
combined cohort. Mol Psychiat 2013; 18: 215-225.
67. Moldrich RX, Dauphinot L, Laffaire J, Vitalis T, Herault Y, Beart PM et al. Proliferation deficits and
gene expression dysregulation in Down’s syndrome (Ts1Cje) neural progenitor cells cultured from
neurospheres. J Neurosci Res 2009; 87: 3143-3152.
68. Moon HJ, Yim S-V, Lee WK, Jeon Y-W, Kim YH, Ko YJ et al. Identification of DNA copy-number
aberrations by array-comparative genomic hybridization in patients with schizophrenia. Biochem
Biophys Res Comm 2006; 344: 531-539.
69. Morrow EM, Yoo SY, Flavell SW, Kim TK, Lin Y, Hill RS et al. Identifying autism loci and genes by
tracing recent shared ancestry. Science 2008; 321: 218-223.
70. Narayan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B et al. Molecular profiles of
schizophrenia in the CNS at different stages of illness. Brain Res 2008; 1239: 235-248.
71. Nava C, Keren B, Mignot C, Rastetter A, Chantot-Bastaraud S, Faudet A et al. Prospective
diagnostic analysis of copy number variants using SNP microarrays in individuals with autism spectrum
disorders. Eur J Hum Genet online pub 1 May 2013; doi: 10.1038/3jhg.2013.88
72. Novak G, Seeman P, Tallerico T. Increased expression of calcium/calmodulin-dependent protein
kinase II beta in frontal cortex in schizophrenia and depression. Synapse 2006; 59: 61-81.
73. O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al. Sporadic autism exomes
reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246-250.
74. Pedroso I, Lourdusamy A, Rietschel M, Nothen MM, Cichon S, McGuffin P et al. Common genetic
variaants and gene-expression changes associated with bipolar disorder are over-represented in brain
signaling pathways. Biol Psychiat 2011; 72: 311-317.
75. Picard BS, Millar JK, Porteous DJ, Muir WJ, Blackwood DHR. Cytogenetics and gene discovery in
psychiatric disorders. Pharmacogenomics J 2005; 5: 81-88.
76. Piton A, Gauthier J, Hamdan FF, Lafreniere RG, Yang Y, Henrion E et al. Systematic resequencing
of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiat 2011;
16: 867-880.
77. Pongrac JL, Middleton FA, Peng L, Lewis DA, Levitt P, Mirnics K. Heat shock protein 12A shows
reduced expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiat 2004; 56:
943-950.
78. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL et al. Mitochondrial
dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol
Psychiatry 2004; 9: 684-697.
79. Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL et al. Schizophrenia: a
genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med
Genet 1995; 60: 252-260.
80. Qu M, Yue W, Tang F, Wang L, Han Y, Zhang D. Polymorphisms of transferrin gene are
associated with schizophrenia in Chinese Han population. J Psychiatr Res 2008; 42: 877-883.
81. Redies C, Hertel N, Hubner CA. Cadherins and neuropsychiatric disorders. Brain Res 2012; 1470:
130-144.
82. Reif A, Nguyen TT, Weissflog L, Jacob CP, Romanos M, Renner TTJ et al. DIRAS2 is associated
with adult ADHD, related traits, and co-morbid disorders. Neuropsychopharm 2011; 36: 2318-2327.
83. Rosenfield JA, Ballif BC, Lucas A, Spence EJ, Powell C, Aylsworth AS et al. Small deletions of
SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome. PLoS One 2009; 4:
36568.
84. Rothermel B, Vega RB, Yang J, Wu H, Bassel-Duby R, Williams RS. A protein encoded within the
Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling. J Biol
Chem 2000; 275: 8719-8725.
85. Ryan MM, Lockstone HE, Huffacker SJ, Wayland MT, Webster MJ, Bahn S. Gene expression
analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic
genes. Mol Psychiatry 2006; 11: 965-978.
86. Salyakina D, Ma DQ, Jaworski JM, Konidari I, Whitehead PL, Henson R et al. Variants in several
genomic regions associated with Asperger disorder. Autism Res 2010; 3: 303-310.
87. Sando R 3rd, Gounko N, Pieraut SS, Liao L, Yates J 3rd, Maximov A. HDAC4 governs a
transcriptional program essential for synaptic plasticity and memory. Cell 2012; 151: 821-834.
88. Sato T, Nishio H, Iwata M, Tamura A, Miyazaki T, Suzuki K. Postmortem molecular screening for
mutations in ryanodine receptor type 1 (RYR1) gene in psychiatric patients suspected of having died of
neuroleptic malignant syndrome. Forensic Sci Int 2010; 194: 77-79.
89. Schmitt A, Leonardi-Essmann F, Durrenberger PF, Wichert SP, Spanagel R, Arzberger T et al.
Structural synaptic elements are differentially regulated in superior temporal cortex of schizophrenia
patients. Eur Archiv Psychiat Clin Neurosci 2012; 262: 565-577.
90. Shelton RC, Hal Manier D, Lewis DA. Protein kinases A and C in post-mortem prefrontal cortex
from persons with major depression and controls. Int J Neuropsychopharmacol 2009; 12: 1223-1232.
91. Silberberg G, Ben-Shachar D, Navon R. Genetic analysis of nitric oxide synthase 1 variants in
schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 1318-1328.
92. Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K et al. Whole genome association
study of bipolar disorder. Mol Psychiat 2008; 13: 558-569.
93. Sokolowski M, Wasserman J, Wasserman D. Association of polymorphisms in the SLIT2 axonal
guidance gene with anger in suicide attempters. Mol Psychiat 2010; 15: 10-11.
94. Sprooten E, Fleming KM, Thomson PA, Bastin ME, Whalley HC, Hall J et al. White matter integrity
as an intermediate phenotype: Exploratory genome-wide association analysis in individuals at high risk
of bipolar disorder. Psychiatry Res 2013; 206: 223-231.
95. Srinivasan K, Leone DP, Bateson RK, Dobreva G, Kohwi Y, Kohwi-Shigematsu T et al. A network
of genetic repression and derepression specifies projection fates in the developing neocortex. Proc
Natl Acad Sci USA 2012; 109: 19071-19078.
96. Strippoli P, Lenzi L, Petrini M, Carinci P, Zannotti M. A new gene family including DSCR1 (Down
Syndrome Candidate Region 1) and Zaki-4: characterization from yeast to human and identification of
DSCR1-like 2; a novel human member (DSCR1L2). Genomics 2000; 64: 252-263.
97. Tabares-Seisdedos R, Rubenstein JL. Chromosome 8p as a potential hub for developmental
neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiat 2009; 14:
463-589.
98. Tang B, Capitao C, Dean B, Thomas EA. Differential age- and disease-related effects on the
expression of genes related to the arachidonic acid signaling pathway in schizophrenia. Psychiatry Res
2012; 196: 201-206.
99. Tao R, Li C, Newburn EN, Ye T, Lipska BK, Herman MM, Weinberger DR, Kleinman JE, Hyde TM.
2012. Transcript-specific associations of SLC12A5 (KCC2) in human prefrontal cortex with
development, schizophrenia and affective disorders. J Neurosci 32: 5216-5222.
100. Tietjen I, Bodell A, Apse K, Mendonza AM, Chang BS, Shaw GM et al. Comrehensive EMX2
genotypinc of a large schizencephaly case series. Am J Med Genet A 2007; 143A: 1313-1316.
101. Tischfield MA, Engle EC. Distinct alpha- and beta-tubulin isotypes are required for the positioning,
differentiation and survival of neurons; new support for the ‘multi-tubulin’ hypothesis. Biosci Rep 2010;
30: 319-330.
102. Tomppo L, Ekelund J, Lichtermann D, Veijola J, Jarvelin M-R, Hennah W. DISC1 Conditioned
GWAS for psychosis proneness in a large Finnish cohort. PLos ONE 2012; 7: e30643.
103. Tsai NP, Wilkerson JR, Guo W, Maksimova MA, Demartino GN, Cowan CW et al. Multiple
autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold
PSD-95. Cell 2012; 151: 1581-1594.
104. Van Houdt JK, Nowakowska BA, Sousa SB, van Schaik BD, Seuntjens E, Avonce N et al.
Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nat Genet
2012; 44: 445-449.
105. Vauthier V, Jaillard S, Journel H, Dubourg C, Jockers R, Dam J. Homozygous deletion of an 80kb
region comprising part of DNAJC6 and LEPR genes on chromosome 1P31.3 is associated with early
onset obesity, mental retardation and epilepsy. Mol Genet Metab 2012; 106: 345-350.
106. Vogel P, Read RW, Hansen GM, Payne BJ, Small D, Sands AT et al. Congenital hydrocephalus
in genetically engineered mice. Vet Pathol 2012; 49: 166-181.
107. Watanuki T, Funato H, Uchida S, Matsubara T, Kobayashi A et al. Increased expression of
splicing factor SRp20 mRNA in bipolar disorder patients. J Affect Disord. 2008; 110: 62-69.
108. Wei YL, Li CX, Li SB, Liu Y, Hu L. Association study of monoamine oxidase A/B genes and
schizophrenia in Han Chinese. Behav Brain Funct 2011; 7: 42.
109. Weissflog L, Scholz CJ, Jacob CP, Nguyen TT, Zamzow K, Gross-Lesch S et al. KCNIP4 as a
candidate gene for personality disorders and adult ADHD. Eur Neuropsychopharm 2012; doi:
10.1016/j.euroneuro.2012.07.017
110. Wigg KG, Feng Y, Crosbie J, Tannock R, Kennedy JL, Ickowicz A et al. Association of ADHD
and the protogenin gene in the chromosome 15q21.3 reading disabilities linkage region. Genes Brain
Behav 2008; 7: 877-886.
111. Wong ML, Dong C, Maestre-Mesa J, Licinio J. Polymorphisms in inflammation-related genes are
associated with susceptibility to major depression and antidepressant response. Mol Psychiat 2008;
13: 800-812.
112. Wong ML, Whelan F, Deloukas P, Whittaker P, Delgado M, Cantor RM et al. Phosphodiesterase
genes are associated with susceptibility to major depression and antidepressant treatment response.
Proc Natl Acad Sci 2006; 103: 15124-15129.
113. Yamada K, Iwayama Y, Toyota T, Ohnishi T, Ohba H, Maaekawa M et al. Association study of
the KCNJ3 gene as a susceptibility candidate for schizophrenia in the Chinese population. Hum Genet
2012; 131: 443-451.
114. Ylisaukko-oja T, Rehnstrom K, Auranen M, Vanhala R, Alen R, Kempas E et al. Analysis of four
neuroligin genes as candidates for autism. Eur J Hum Genet 2005; 13: 1285-1292.
115. Zai CC, Tiwari AK, King N, De Luca V, Mueller DJ, Shaikh S et al. Association study of the
gamma-aminobutyric acid type a receptor gamma2 subunit gene with schizophrenia. Schizophr Res
2009; 114: 33-38.
Related documents