Download Class notes - Nayland Maths

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Starter
Expand & Simplify
1)
(3x + 1)(x 1)(x + 2) = (2008 achieve)
6m5
2) Simplify
16
9m
=
(2008 achieve)
(x + 2)(x + 3)
3) Simplify
4)
x
2
9
= (2008 achieve)
8 4n
=
Simplify 27n
Convert between index equation and log equation
5) 29 = 512
6)
log 3 729 = 6
HW Theta pg 34 & 35 Done?
. Log Rules: What do you notice? .
Ex 9.02
Simplify these logs
1) Log 5 + Log 7 = Log 35
2) Log 3 + Log 12 = Log 36
3) Log 2 + Log 7 = Log 14
4) Log 15 + Log 2 = Log 30
5) Log 80 – Log 8 = Log 10
6) Log 35 – Log 5 = Log 7
7) Log 15 – Log 5 = Log 3
8) Log 30 – Log 10 = Log 3
9) 3Log 5 = Log 125
10) 2Log 3 = Log 9
11) 3Log 2 = Log 8
12) Log 94 = 4Log 9 = 4Log 32 =
4×2Log 3 = 8Log3
12) Simplify
3Log5 + 2Log2 – Log5
Merit!
= Log53 + Log22 – Log5 = Log125 + Log4 – Log5
= Log(125×4÷5)
=
Log100
Log Rules
LogAB   LogA LogB
10  10  10
2
5
7
When multiplying numbers we ADD the logs
A
Log   LogA  LogB
B 
1022 ÷ 10 8 = 1014
LogA
10 
Theta
Ex 9.02
When divide numbers we SUBTRACT the logs
n
  n  LogA
5 3
 101 5
When we raise the number to a power we MULTIPLY the logs
Skills: simplify logs:
1)
log 4  log6 
2)
log12  log 4 
3)
5 log 4 
4)
2 log3  3 log 4 
5)
4 log3  log2  log6 
7)
log128

log16
6)
log16

log2
HW Theta pg 36 & 37
Related documents