Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
1 Chapter 4. Operational amplifiers 2015. 9. 24. EMLAB Contents 2 1. Introduction 2. Op-Amp Models 3. Fundamental Op-Amp Circuits 4. Comparators 5. Application Examples 6. Design Examples EMLAB Why operational amplifiers ? 3 1. Originally, the op-amp was designed to perform mathematical operations such as addition, subtraction, differentiation, and integration. 2. By adding simple networks to the op-amp, we can create these “building blocks” as well as voltage scaling, current-to-voltage conversion, and myriad more complex applications. EMLAB 4 2. Op-amp model Ideal op-amp : Ri , RO 0, A0 iin 0, in 0 iin EMLAB 5 Example VO Ri RL A0 A0 VS Ri RTh1 RO RL EMLAB Example : unity gain buffer 6 VS I ( RS Ri RO ) A0Vin VO IRO A0Vin Vin IRi VO IRO A0Vin IRO A0 IRi 1 VS I ( RS Ri RO ) A0Vin I ( RS Ri RO ) A0 IRi VO VS EMLAB 7 Example 4.2 Let us determine the gain of the basic inverting op-amp configuration shown in the figure using both the non-ideal and ideal op-amp models 1 S 1 1 o 0 R1 Ri R2 0 1 o A e 0 R2 Ro 0 S R2 / R1 1 1 1 1 1 1 R1 R2 Ri R2 Ro 1 1 A R2 R2 Ro R2 R1 EMLAB 8 Ideal model I I 0 [V ] Virtual short S IR1 , o IR2 • • • o R 2 S R1 Step 1. Use the ideal op-amp model: Ao → ∞, Ri → ∞, Ro = 0. i+= i-=0, v+= vStep 2. Apply nodal analysis to the resulting circuit. Step 3. Solve nodal equations to express the output voltage in terms of the op-amp input signals. EMLAB 9 Example 4.3 Let us now determine the gain of the basic non-inverting op-amp configuration shown in the figure. in in 0 in RI RF 1 1 in 0 RI RF RF 0 R 1 F in RI EMLAB 10 Example 4.5 Consider the op-amp circuit shown in the figure. Let us determine an expression for the output voltage. R4 2 R3 R4 1 o R1 R2 o R R4 R2 R R (1 ) 2 1 1 2 2 2 ( 2 1 ) R1 R1 R1 R1 R3 R4 ( R4 R2 , R3 R1 ) EMLAB 11 Example 4.6 The circuit shown in the figure is a precision differential voltage-gain device. It is used to provide a single-ended input for an analog-to-digital converter. We wish to derive an expression for the output of the circuit in terms of the two inputs. 1 o 1 a 1 2 0 R2 R1 RG 2 a 2 1 2 0 R1 RG R2 R 2R o (1 2 )1 2 2 R1 RG EMLAB 12 Example 4.7 V1 Vx V1 V2 V1 Vx 0 10k 10k V1 V2 V1 Vx 2V1 V2 Vx 10k V Vo o 10k 30k 4 V0 0 4 Vo 8V1 4V2 EMLAB 13 4.4 Comparators (a) An ideal comparator and (b) its transfer curve. (a) A zero-crossing detector and (b) the corresponding input/output waveforms. EMLAB 14 Application example 4.11 An instrumentation amplifier of the form shown in Fig. 4.26 has been suggested. This amplifier should have high-input resistance, achieve a voltage gain Vo/(V1-V2) of 10, employ the MAX4240 op-amp listed in Table 4.1, and operate from two 1.5 V AA cell batteries in series. Let us analyze this circuit, select the resistor values, and explore the validity of this configuration. Vx 2 V1 V2 Vx V1 V2 V y V1 V2 R1 R2 R Vx Vx Vo 2 2 Vo Vx V y RA RA Vy EMLAB 15 Vx V1 R1 R (V1 V2 ), V y V2 2 (V1 V2 ) R R R R R R Vx 1 1 V1 1 V2 , V y 2 V1 1 2 V2 R R R R R R2 Vo Vx V y Vx 1 1 (V1 V2 ) R Vo 2R 1 1 10 ( R1 R2 ) V1 V2 R R1 4.5R ex ) R 100 k, R1 450 k EMLAB 16 Design example 4.14 We wish to design a weighted-summer circuit that will produce the output Vo= - 0.9V1 - 0.1V2 The design specifications call for use of one op-amp and no more than three resistors. Furthermore, we wish to minimize power while using resistors no larger than 10kΩ. If I1 I 2 I f V1 V2 0 Vo R1 R2 R 0 Vo R R V1 V2 R1 R2 R 0.9, R1 R 0.1 R2 R1 R R , R2 0.9 0.1 ex. R 270 [], R1 300 [], R2 2.7 [k], EMLAB