Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Igneous petrology Part III – Important igneous associations • Granites (and convergence/collision) • Ophiolites (oceanic crust) and MORB (Mid-ocean ridge basalts) • Layered igneous complexes (intra-plate, economic importance) • Oceanic island basalts (OIB) (intraplate) • Continental alkali series (intraplate) • Andesites (active subductions) • Continental arcs (active subductions) • TTG (Archaean) • Komatiites (Archaean) Granites and collisions Exemple of the Himalaya • Granites are typically associated to convergent plate boundaries • Different types form at different moments of the convergence • Example of an active collision zone : the Himalaya Subducting oceanic lithosphere deforms sediment at edge of continental plate Collision – welding together of continental crust Post-collision: two continental plates are welded together, mountain stands where once was ocean Rifting of continental crust to form a new ocean basin The Himalayas: geodynamic context • India-Eurasia convergence • Destruction of the Tethys ocean • Subduction stage (> 100 Ma – 25 Ma = Cretaceous-Oligocene) • Collision stage (25 Ma – present = Miocene and Pliocene) • Post-collision stage (present) Himalayan collision 5 cm/an 10 cm/an 18 cm/an Remontée de l ’Inde et collision à 55 Ma C. 70 Ma 30° M ak ra n Asian Margin O m KohistanLadakh an F u tu Arabia 0° re IT SZ Tibet W S.L. F Fr u t u r ac e tu O w re e zo n ne Africa S.T. ? 30° India Intra-oceanic arc Active continental margin The subduction stage Les témoins de la subduction de l ’Inde sous l ’Asie Zanskar Indian crust MHT The Les témoins de la collisioncollision stagecontinentale Std Ky Bt Mu Zanskar Indian crust MHT 400 T°C 500 700 600 2 4 L 50 Ma M2 18-25 Ma 6 8 M1 10 45 Ma 37-32 Ma SSW NNE Spontang Tethys -Himalaya MHT Higher Himalaya Tibet Ladakh Moho 55 Ma N eo t eth Shikar Beh Higher Himalaya Tethys -Himalaya MHT Ladakh Tibet 50 Ma 55-40 Ma : > 400 km > 2.6 cm/y Sub-Himalaya Tethys -Himalaya Lesser Himalaya Ladakh Higher Himalaya MHT Tibet 40 Ma ISZ STDS MCT 0 Sub-Himalaya 30 60 km Less er H im Tethys -Himalaya alaya Tibet Moho MHT 0 30 60km 40-20 Ma : ~ 360 km , ~ 1.8 cm/y 20 Ma ys Erosion 200 400 600 200°C 10 400 20 600 30 800 40 50 km 800 0 100 200 km The « late to post » collision stage Successive magmatic associations (mostly granites!) 150 125 100 75 50 25 0 tps (Ma) Subduction stage • Trans-Himalayan batholith • Cretaceous-Oligocene • Similar to Andean or Cordileran (California, British Columbia, Japan…) plutons • I-types (Andean) Diorites Tonalites Granodiorites Granites Hornblende granodiorite Hbl-Biotite granodiorite Cpx Hbl Bt Major elements • .. See assignment Trace elements Isotopes Mixed sources (mantle + some crust ?) Origin • Will be discussed during the « subduction » lectures Successive magmatic associations (mostly granites!) 150 125 100 75 50 25 0 tps (Ma) Collision stage • High Himalaya leucogranites • Miocene • S-type Granites ± Alk. Granites ± Granodiorites 2 micas granites Tourmaline granite Bt Kfs Ms Pl • • • • • Biotite Muscovite Tourmaline Garnet (Cordierite) Major elements • .. See assignment Trace elements Isotopes Very « crustal » Origin 1. Lesser Himalaya 2. Formation I (Greywackes et métapélites) 3. Formation II (Gneiss calciques) 4. Formation III (Orthogneiss) 5. Sédiments tibétains 6. Leucogranite du Manaslu 7. Dykes Dalle du Tibet Les granites syncollisionels du Haut Himalaya Migmatites de la formation I Successive magmatic associations (mostly granites!) 150 125 100 75 50 25 0 tps (Ma) Late to post-collision stage • Syenites and alkali granites • Miocene to present • A-type • N.B. Some « sub-alkali », « Mg-K » I-types (cf. Vredenburg pluton as seen in Paternoster) are also emplaced at this stage Le magmatisme « post-collisionel » himalayen Cas du magmatisme Néogène du Sud Karakorum Syenites Qtz. Syenites Granites Alk. granites Cpx, Fe-rich Sometimes Na-Cpx or Amph Little/no plag (Riebeckite, Aegyrine Ardfersonite) Major elements • .. See assignment Trace elements Isotopes 10 Asthénosphère 5 eNd 0 -5 Composite (mantle + crust), with some mantle-derived units and some crustal units -10 -15 leucogranites du Haut Himlaya, 20 Myr -20 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 86Sr/87Sr Sud Karakorum Hemasil, 8 Myr Hunza, 4 -25 Myr Baltoro, 17-25 Myr Sud Tibet, 10-16 Myr Sud Tibet, 17 Myr Sud Tibet, 18-23 Myr Sud Tibet, 23 - 25 Myr Origin • Shear heating • Slab breakoff « Shear heating » ? Chaleur de frottement Karakorum Kunlun BALTORO MKT N K2 HEMASIL MMT Lamprophyres South Tibet neogenous magmatism North Tibet neogenous magmatism Himalaya Tibetan plateau MCT 200km MBT ITSZ « Slab breakoff » Conclusion: a succession of granite types • Subduction (pre-collision): I « andean » • Syn-collision: S-type leucogranites • Post-collision : A (and I « Mg-K ») This is, of course, a very simplified view ! Trace elements are markers… • Of the different types of magmas • Of their origin • Ba = fluid mobile element • Rb = strongly incomp.element • Zr: fluid immobile,relatively depelted in the crust but not in the mantle… Assignment for this week: 1. Read from J.D. Winter, Chapter 18, pages 343—361 2. Material available for discussion – Thin sections and samples of Cape Granite Suite I, A and S granites, to be used as examples; – Your field observations, photos and notes from 1 and 2 April; – An excel table with composition of examples of I, S and A granites; – This lecture, for additional examples. 3. Assignment Propose a comparison table for I, S and A granites, including: – – – – – – Field characteristics; Mineralogy & texture; Chemical and/or normative composition; Possible sources and evolution of the magmas; Typical geodynamical context or contexts; And any other interesting features you can think of ! Obviously, you will need either a very big table, or a lot of attached explanatory notes, graphs, sketches, etc…