Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
4 5 1 1 21 1 42 2 m 2 (BC) 1 24 2 52 3 m 3 (CA ) 1 1 4 3 From ( 1 ) , ( 2 ) and ( 3 ) m 1 ( AB ) .......... ( 1 ) .......... ( 2 ) .......... ( 3 ) A , B and C are collinear [167] Find the value of y which makes the triangle ABC A right-angled triangle at C , where A ( 2 , 3 ), B ( 5 , 7 ) and C ( 1 , y ) . Solution: y3 y3 y7 y7 , m 2 (CB ) 1 2 1 1 5 4 ABC is a right angled at C m 1 (CA ) m 1 (CA ) m 2 (CB ) 1 y3 y7 1 y 3 y 7 4 1 4 y 2 10 y 21 4 0 y 2 10 y 25 0 y 5 0 2 y 5 0 y 0 5 5 [168] ABC is a triangle , the coordinates of its vertices Are A ( - 4 , 1 ) , B ( 6 , 3 ) and C ( 4 , 5 ) if AD is A median, M and N AD where AM =MN = ND , Then find the value of x and y where M ( x , 2 ) and N(2,y) Solution: 1 AD is a median D is the mid point of BC 64 35 D , 5,4 2 2 x ( 4)2 2 12 x 42 1 unit length 2 2 MN x 2 2 y unit length 2 2 2 ND 5 2 y 4 9 y 4 unit length 2 2 AD 5 ( 4) 4 1 9 2 3 2 AM 81 9 90 unit length AD 3 AM 3 ND x 42 1 2 90 9 x 4 1 9 9 x2 8 x 7 0 x 2 8 x 16 1 10 0 x 0 1 1 or 90 3 9 y 4 2 90 9 9 y 4 9 9 y 2 8 y 15 0 y 0 3 3 2 x 7 x 1 0 x 0 7 7 90 9 x 4 1 90 3 2 2 90 9 9 y 4 y 2 8 y 16 9 10 0 y 3 y 5 0 or y 05 5 [169] ABCD is a parallelogram, A ( - 3 , 0 ) , B x axis , C ( 7 , 4 ) , D y axis find the Coordinates of D and B 2 Solution: Let D ( 0 , y ) and B ( x , 0 ) 73 40 The mid - point of AC , 2,2 2 2 x0 y0 x y The mid - point of BD , , 2 2 2 2 ABCD is a parallelog ram x x y 2 , 2 , 2 2 2 2 y 2 y 2 2 4 2 B (4 , 0 ) and D ( 0 , 4 ) x 2 2 4 [170] Find the equation of the straight line whose slope 1 Is 4 and cuts 5 units of the positive part of the x-axis. Solution: y 1 x5 4 [171] Find the value of k which makes the triangle XYZ is an isosceles and right-angled triangle at Y , where X ( 1 , 2 ) , Y ( - 2 , 6 ) and Z ( 2 , k ) Find its area. Solution: XY ( 2 1) 2 (6 2) 2 3 2 4 2 9 16 25 5 unit length 3 2 22 k 62 16 k 62 2 2 16 k 6 5 16 k 6 5 2 25 YZ k 2 12 k 36 16 25 0 k 2 12 k 27 0 k 3 k 9 0 k 0 3 3 or m 1 ( XY ) k 09 9 k6 k6 , 4 2 ( 2) 4 62 21 3 XYZ is a right - angled at Y m 2 ( YZ ) k6 k6 4 1 1 3 3 4 Z ( 2 , 9 ) k 6 3 9 k 6 3 1 Area 5 5 12.5 squared unit 2 [172] Prove that : The straight line passing through the Points ( 4 , 2 ) and ( 5 , 6 ) is parallel to the straight Line passing through the points ( 0 , 5 ) and (-1,1) Solution: 62 4 4 54 1 1 5 4 m2 4 1 0 1 From (1) and ( 2) : m 1 m 2 m1 4 ........(1) .........( 2) The two straight line are parallel [173] Prove that : The straight line whose equation is : 3 x – 2 y + 5 = 0 is parallel to the straight line whose equation is : 6 y – 9 x + 7 = 0 Solution: 2y 3x 5 2 2 2 3 5 3 y x m1 ..........(1) 2 2 2 6y 9x 7 6y 9x 7 6 6 6 9 7 9 3 y x m 2 .........(2) 6 6 6 2 From (1) and ( 2) : m 1 m 2 The two straight line are parallel [174] If the straight lines : 2 x + y + 1 = 0 and x – a y + 1 = 0 are parallel , find the value of a 2y 3x 5 Solution: y 2 x 1 m 1 2 ay x 1 1 1 y x a a From (1) and ( 2) : m1 m 2 ay x 1 a a a 1 m2 ......( 2) a 1 2 a 1 5 .......(1) a 11 1 2 2 [175] If the straight line : x – y = 5 and the straight line Passing through the two points ( a , 3 ) and ( 4 , 5 ) Are parallel , find the value of a Solution: y x 5 y x 5 m 1 1 ....(1) 53 2 4a 4a From (1) and ( 2) m2 ....( 2) 2 1 2 1 4 a 2 4a 1 a 2 4 2 a 2 [176] If the straight line : a x + 3 y – 7 = 0 is parallel to the Straight line passing through the points ( 2 , 3 ) and ( - 1 , 4 ) , then find the value of a Solution: 3y ax 7 3y ax 7 3 3 3 a m1 ......(1) 3 a 7 y x 3 3 34 1 m2 2 ( 1) 3 .......( 2) From (1) and ( 2) m 1 m 2 a 1 3 3 a 1 6 a 1 [177] Find the equation of the straight line which Intercepts from the y-axis a positive part of length 3 Units and parallel to the straight line passing Through the points ( 2 , 3 ) and ( 5 , 1 ) Solution: For the second straight line : m 2 31 2 25 3 The two straight line are parallel m 1 m 2 2 3 The equation of the first straight line is y 2 x3 3 [178] Find the equation of the straight line passing Through the origin and parallel to AB where A = ( 1 , 3 ) and B = ( 5 , 4 ) Solution: m 2 ( The slope of AB ) 43 1 51 4 The straight line parallel to AB The equation of the straight line is y 1 x 4 [179] Show that the points A ( - 1 , 1 ) , B ( 0 , 5 ) , C ( 4 , 2 ) and D ( 5 , 6 ) are the vertices of a Parallelogram. Solution: 7 m 1 (The slope of AB ) 51 4 4 .......(1) 0 ( 1) 1 62 4 4 54 1 21 1 m 3 (The slope of AC ) 4 ( 1) 5 m 2 (The slope of CD ) 65 1 50 5 From (1) , ( 2) , ( 3) and (4) m 4 (The slope of BD) ........( 2) ........( 3) ...........(4) m 1 m 2 and m 3 m 4 AB // CD and AC // BD ABDC is a paralle log ram [180] Prove that : the points A ( 0 , 2 ) , B ( 4 , 8 ) and C ( 6 , 11 ) are collinear. Solution: 82 6 3 40 4 2 11 8 3 m 2 (The slope of BC ) 64 2 From (1) and ( 2) m 1 (The slope of AB ) ...........(1) ............( 2) m1 m 2 A and B and C are collinear [181] Prove that : The point ( 2 , 3 ) lies on the straight Line passing through the points ( 1 , 1 ) and ( 0 , - 1 ) Solution: 8 31 2 2 21 1 11 2 m 2 (The slope of (1 , 1) and (0 , 1) ) 2 01 1 m1 m 2 m 1 (The slope of ( 2 , 3) and (1 , 1) ) ( 2 , 3) , (1 , 1) and (0 , 1) are collinear [182] If the straight line passing through the two points ( 1 , 3 ) and ( - 1 , 5 ) is parallel to the straight line passing through the two points ( 3 , 5 ) and ( x , y ) , Find the relation between x and y. Solution: 53 2 1 11 2 y5 m 2 (The slope of ( 3 , 5) and ( x , y ) x3 The two straight line are parallel m1 m 2 m1 ( The slope of (1 , 3) and (1 , 5) ) y5 1 x3 y 5 x 3 y 5 1( x 3) y x 3 5 y x 8 [183] If the straight line : 2 x – y + 5 = 0 is parallel to the Straight line : a x + y – 3 = 0 , then find the value of a . Solution: 9 m 1 (The slope of the first straight line ) a a 1 a 2 coefficient of x 2 2 coefficient of y 1 m2 a 2 [184] If the straight line passing through the points ( x , 5 ) and ( 2 , 3 ) is parallel to the straight line Passing through the points ( 3 , 4 ) and ( 5 , 2 ) , then Find the value of x . Solution: 53 2 x2 x2 42 2 m 2 (The slope of ( 3 , 4) and (5 , 2) ) 1 35 2 m1 m 2 m1 (The slope of (x , 5) and (2 , 3) ) 2 1 x2 x 2 2 0 1( x 2) 2 x 2 2 [185] Prove that : the straight line passing through the Points A ( - 1 , 4 ) and C ( - 1 , - 2 ) is perpendicular To the straight line passing through the points B ( 1 , 1 ) and D ( - 3 , 1 ) Solution: 10 m 2 (The slope of ( 3 , 4) and (5 , 2) ) 42 2 1 35 2 m1 m 2 2 1 x2 x 2 2 0 1( x 2) 2 x 2 2 [186] Prove that : the straight lines : 2 x – y = 5 and x + 2 y = 5 are orthogonal. Solution: m1 2 2 1 m1 m 2 2 , m2 1 2 1 1 2 Then the two straight lines are orthogonal [187] Find the slope of the straight line perpendicular to The straight line passing through the points A ( 2 , - 3 ) and B ( 3 , 5 ) Solution: m 2 (The slope of second straight line ) m1 5 ( 3 ) 8 8 32 1 1 1 m2 8 [188] If the straight line passing through the two points ( 2 , 3 ) and ( 5 , 7 ) is perpendicular to the straight Line a x – 3 y = 7 , then find the value of a Solution: 11 73 4 52 3 a a m 2 (The slope of the second straight line ) 3 3 The two straight lines are orthogonal m 1 (The slope of the first straight line ) m2 1 4 3 1 m1 3 4 a 3 3 4 [189] a 3 3 9 4 4 AB is perpendicular to the straight line 5 x – 4 y = 7 where A ( 3 , 4 ) and B ( 5 , y ) , find the Value of y. Solution: 5 5 4 4 y4 y4 m 2 (The slope of the second straight line ) 53 2 The two straight line are orthogonal 1 y4 4 m2 m1 2 5 m 1 (The slope of the first straight line ) 2 4 8 y 4 1.6 5 5 y 1.6 4 2.4 y 4 [190] Find the equation of the straight line which Intercepts from the y-axis a positive part of length 4 Units and is perpendicular to the straight line : 3x–4y+1=0 12 Solution: m 2 (The slope of the second straight line ) m1 3 3 4 4 1 3 4 1 m2 4 3 The equation of the first equation is y 4 x4 3 [191] Find the equation of the straight line passing Through the origin and perpendicular to the Straight line 2 x – 3 y = 5 Solution: m 2 (The slope of the second straight line ) m1 2 2 3 3 1 2 3 1 m2 3 2 Then the equation of the first equation is y 3 x 2 [192] Find the equation of the straight line passing Through the origin point and perpendicular to the Straight line passing through the points A ( 2 , 5 ) And B ( - 3 , 4 ) Solution: 13 m 2 (The slope of the second straight line ) m1 54 1 2 ( 3 ) 5 1 1 1 5 m2 5 Then the equation of the first straight line is y 5x [193] Prove that : The shape whose vertices A ( 1 , 1 ) , B ( 4 , - 2 ) , C ( 6 , 0 ) and D ( 3 , 3 ) is a rectangle. Solution: 1 6 1 0 The mid po int of AC , 3.5,0.5 2 2 3 4 3 2 The mid po int of BD , 3.5,0.5 2 2 Then The two diagonals AC and BD bi sects each other 1 ( 2 ) 3 1 1 4 3 0 ( 2) 2 m 2 (The slope of BC) 1 64 2 Then m1 m 2 1 1 1 m1 (The slope of AB ) Then AB BC Then the quadrilate ral ABCD is a rec tan gle [194] Prove that : the points A ( 1 , 3 ) , B ( 6 , 4 ) , C ( 7 , 9 ) and D ( 2 , 8 ) are the vertices of A rhombus. Solution: 14 1 7 3 9 The mid po int of AC , 4,6 2 2 6 2 4 8 The mid po int of BD , 4,6 2 2 Then the two diagonals AC and BD bi sec ts each other 93 71 48 m 1 (The slope of BD) 62 m 1 m 2 1 1 1 m 1 (The slope of AC ) 6 1 6 4 1 4 AC BD Then the quadrilate ral ABCD is a r hom bus [195] Prove that : ABC is a right-angled triangle at B Where A ( - 1 , - 1 ) , B ( 2 , 3 ) and C ( 6 , 0 ) Solution: m 1 (The slope of AB ) 3 ( 1) 4 2 ( 1) 3 m 2 (The slope of BC) 30 3 26 4 m1 m 2 4 3 1 3 4 AB BC ABC is a right angled triangle at B [196] If ABC is a triangle in which A ( 5 , - 4 ) , B ( 4 , 4 ) and C ( - 2 , 0 ), then: 1) Prove that the triangle ABC is isosceles. 2) Find the area of the triangle ABC. 15 Solution: 2 2 AB 5 4 4 4 1 64 65 unit length BC 4 (2)2 4 02 62 42 36 16 52 unit length AC 5 (2)2 4 02 72 42 49 16 65 unit length AB AC then ABC is an isosceles triangle 4 2 4 0 D (The mid - point of BC ) , 1 , 2 2 2 AD 5 12 4 22 42 62 16 36 52 unit length 1 BC AD 2 1 1 52 52 52 26 squared unit 2 2 Area of the triangle [197] The circle M passes through the point A ( 2 , 6 ). If M ( 2 , - 1 ) , find: 1) The circumference of the circle M. 22 2) Its area, 7 Solution: 16 r : ( radius of the circle AM ) 2 22 6 ( 1)2 7 2 7 unit length. C ( The circumfere nce of the circle ) 2 r 22 7 44 cm. 7 22 Area of the circle r 2 7 2 154 squared unit. 7 2 [198] Find the equation of the straight line that passes Through the point ( 3 , 4 ) and is parallel to the Straight line 2 x + y + 7 = 0 , then find the X-axis Intercept and the Y-axis intercept by the Obtained straight line. Solution: 17 m 1 ( The slope of the straight line 2 x y 7 0 ) 2 2 1 m 2 ( The slope of the straight line perpendicu lar to The straight line 2 x y 7 0 ) 1 2 1 2 The general form of the straight line y m x b At ( 3 , 4 ) 4 1 3b b 4 1 .5 2 .5 2 y 0.5 x 2.5 The intercepte d part of y - axis at x 0 y 0.5 0 2.5 y 2.5 The intercepte d part of x - axis at y 0 0 0.5 x 2.5 0.5 x 2.5 0.5 0 .5 0.5 x 0 2.5 2.5 x 5 [199] If the points A ( 2 , 3 ) , B ( - 1 , - 1 ) and C ( 3 , - 4 ) form a triangle ABC , prove that The triangle ABC is right-angled triangle then Find its area. Solution: 2 2 AB 2 (1) 3 ( 1) 32 42 25 5 unit length. 18 BC 3 (1)2 4 (1)2 42 32 16 9 25 5 unit length. 3 22 4 32 AC 1 72 50 unit length AB BC 5 2 5 2 50 squared unit. 2 2 AC 2 50 50 squared unit. 2 2 2 AB BC AC 2 The triangle ABC is right - angled at B Area of the triangle 1 AB BC 2 1 5 5 12.5 squared unit. 2 [200] Graph the points A ( 5 , 6 ) , B ( 4 , 0 ) and C ( - 1 , 5 ) on the coordinates plane then draw The triangle ABC. Prove that: 1) The triangle ABC is isosceles 2) Find the equation of the straight line that Passes through the mid-point of AB 3) Prove that A The perpendicu lar to BC Solution: AB 5 42 6 02 1 62 1 36 37 unit length. [201] Prove that the points A ( 3 , - 1 ) , B ( - 4 , 6 ) , C ( 2 , - 2 ) which belong to an orthogonal Cartesian co – ordinates plane lie on the circle 19 whose centre M ( - 1 , 2 ) then find the circumference of the circle. Solution MA 1 3 2 1 2 2 5 unit length MB 1 4 2 6 5 unit length MC 1 2 2 2 5 unit length 2 2 2 2 A , B and C are lies on the circle M Circumference of the circle = 2 r = 2 5 = 10 [202] Find the value of a in each of the following : 1) If the distance between the two ( a , 7 ) and ( - 2 , 3 ) equals 5 2) If the distance between the two points ( a , 7 ) and ( 3 a – 1 , - 5 ) equals 13 Solution 1) d 5 a 2 2 7 3 2 25 a 2 16 a 2 25 16 9 2 2 a 2 9 3 a 3 2 1 or a 3 2 4 20 3a 1 a 5 7 169 2a 1 144 2a 1 2) d 13 2 2 2 2 169 144 25 2a 1 25 5 2a 5 1 6 a 6 3 2 4 2 2 [203] If A ( x , 3 ) , B ( 3 , 2 ) , C ( 5 , 1 ) and if AB = BC find the value of x or 2a 5 1 4 a Solution AB x 3 3 2 BC 5 3 2 1 2 2 2 2 2 2 5 AB BC AB 2 BC2 x 3 1 5 x 3 5 1 4 2 2 x 3 4 2 x 3 2 x 3 2 5 or x 3 2 x 2 3 1 [204] If the points ( 0 , 1 ) , ( a , 3 ) , ( 2 , 5 ) are collinear Find the value of a Solution 21 51 2 20 31 2 m 2 : The slope of the two points ( 0 , 1 ) , ( a , 3 ) = a0 a 2 2 a 21 2 1 a 1 m1 : The slope of the two points ( 0 , 1 ) , ( 2 , 5 ) = [205] If the distance between ( x , 5 ) and the point ( 6 , 1 ) equals 2 5 find the value of x Solution x 6 5 1 2 2 2 5 2 20 x 6 16 20 x 6 20 16 4 2 2 x 6 4 2 2 x 6 2 x 2 6 8 or x 2 6 4 [206] In which of the following cases , the point A , B and C are collinear? Explain your answer. 1) A ( - 1 , 5 ) , B ( 0 , - 3 ) , C ( 2 , 1 ) 2) A ( - 2 , 1 ) , B ( 2 , 3 ) , C ( 4 , 4 ) 3) A ( 0 , 2 ) , B ( 4 , 8 ) , C ( 6 , 11 ) [207] Identify the type of the triangle whose vertices are A ( - 2 , 4 ) , B ( 3 , - 1 ) , C ( 4 , 5 ) due to its sides lengths. Solution 22 AB 4 3 1 5 5 2 unit length AC 2 3 BC 2 3 1 4 5 2 unit length 2 2 2 4 5 26 unit length 2 2 2 AB = BC ABC is isosceles triangle [208] Prove that triangle whose vertices A ( 5 , - 5 ) , B ( - 1 , 7 ) , C ( 15 , 15 ) is right angled at B , then calculate its area. Solution AB 5 7 5 1 180 unit length BC 15 1 15 7 320 unit length AC 15 5 15 5 500 unit length 2 2 2 2 2 2 2 2 2 AC2 AB 2 BC2 ABC is right angle at B 1 180 320 2 1 = 3 2 10 4 2 120 squared units 2 [209] Prove that ( 5 , 3 ) , ( 6 , - 2 ) , ( 1 , - 1 ) , ( 0 , 4 ) are vertices of a rhombus , then find its area. Area = Solution 23 AB 5 6 3 2 26 unit length BC 6 1 2 1 26 unit length CD 1 0 2 DA 2 2 2 2 1 4 26 unit length 2 0 5 2 4 3 26 unit length 2 AB BC CD DA ABCD is a rhombus AC 5 1 BD = 6 0 2 2 3 1 4 2 unit length 2 2 4 6 2 unit length 2 1 Area 4 2 6 2 24 squared unit 2 [210] Prove that the points A ( - 2 , 5 ) , B ( 3 , 3 ) , C ( - 4 , 2 ) are not collinear and if D ( - 9 , 4 ) prove that the figure ABCD is a parallelogram. Solution 24 AB 2 3 5 3 29 BC 4 3 3 2 50 AC 4 2 5 2 45 2 2 2 2 2 2 AC AB BC AC AB 2 4 5 2 The midpoint of AC is , 3 ,3.5 2 2 3 9 3 4 The midpoint of BD is , 3 ,3.5 2 2 Then AC and BD bisect each other. ABCD is a parallelogram [211] Let A ( 5 , - 6 ) , B ( 3 , 7 ) and C ( 1 , - 3 ). Find the equation of the straight line which passes through A and the mid – point of BC Solution 3 1 3 7 Let D is the midpo int of BC = , 2, 2 2 2 6 2 8 m The slope of AD = 52 3 8 y m x + b y = x+b 3 8 16 22 At 2, 2 2 2b b 2 3 3 3 8 22 The equation is : y x 3 3 25 [212] Find the equation of the straight line passing through the point ( 3 , - 5 ) and parallel to the straight line x + 2 y – 7 = 0 Solution 1 2y 7 x 7 1 1 or 2 y = 7 x y xm 2 2 2 2 2 2 2 1 1 The equation y = b at 3 , 5 5 3 b 2 2 1 5 1.5 b b 5 1.5 3.5 y x 3.5 2 m [213] Find the equation of the straight line which intercepts the two axes two positive parts of lengths 4 and 9 for X and Y – axes respectively. Solution The two points are ( 4 , 0 ) and ( 0 , 9 ) 90 9 0 4 4 The equation of the straight line is y = m x + b m( The slope ) = 9 x9 4 [214] If A ( 1 , - 6 ) , B ( 9 , 2 ) find the co-ordinates of the points which divide AB into four equal parts in length. Then the equation is y = Solution 26 1 9 6 2 Let the mid-point of AB is C , = 5 , 4 2 2 1 5 6 4 The mid-point of AC is D , = 3 , 5 2 2 9 5 2 4 The mid-point of BC is E , = 7 , 1 2 2 [215] Prove that the points A ( 6 , 0 ) , B ( 2 , - 4 ) and C ( - 4 , 2 ) are vertices of a right angled triangle at B then find the co – ordinates of the point D which makes the figure ABCD a rectangle. Solution 4 0 1 26 4 2 m 2 The slope of BC 1 2 4 m1 m 2 1 ABC is right angled at B m1 The slope of AB Let D ( x , y ) then the midpoint of 6 4 0 2 AC , 1,1 2 2 2 x 4 y The midpoint of BD , 1,1 2 2 2 x 1 x2 2 x 0 2 1 4 y 1 and 4 y 2 y 4 2 6 D ( 0 , 6 ) 2 1 27 [216] If the points A ( 3 , 2 ) , B ( 4 , - 3 ) , C ( - 1 , - 2 ) , D ( - 2 , 3 ) are vertices of a rhombus find : a) The co – ordinates of the point of intersection of its two diagonals b) The area of the rhombus ABCD. Solution AB 3 4 2 3 2 2 26 unit length BC 4 1 CD 1 2 2 3 26 unit length DA 2 3 2 3 2 26 unit length 2 2 2 2 3 2 26 unit length 2 3 1 2 2 M , 1 , 2 2 2 AC 3 1 BD = 4 2 2 2 2 2 4 2 unit length 2 3 3 6 2 unit length 2 1 4 2 6 2 24 squared unit 2 [217] If A ( - 1 , - 1 ) , B ( 2 , 3 ) , C ( 6 , 0 ) , D ( 3 , - 4 ) are four points on an orthogonal Cartesian co – ordinates plane. Prove that AC and BD bisect each other. What is the name of this figure? Area = Solution 28 1 6 1 0 The mid-point of AC is , = 2.5 , 0.5 2 2 2 3 34 The mid-point of BD is , = 2.5 , 0.5 2 2 The figure is a parallelogram [218] ABCD is a parallelogram where A ( 3 , 4 ) , B ( 2 , - 1 ) , C ( - 4 , - 3 ) , find the co – ordinates of point D then find the co – ordinates of E such that the figure ABCE becomes a trapezium in which AE // BC , AE = 2 BC Solution Let the point D ( x , y ) 3 4 4 3 1 1 The mid-point of AC is , , = 2 2 2 2 x 2 y 1 1 1 The mid-point of BD is , , = 2 2 2 2 x 2 1 x 2 1 x 1 2 3 2 2 y 1 1 y 1 1 y 11 2 D ( 3 , 2 ) 2 2 Let the point E ( s , t ) s 3 t 4 s 3 3 t 4 2 D ( 3 , 2 ) , , 2 2 2 1 2 1 s 3 6 s 6 3 9 t 4 4 t 4 4 0 E 9,0 29 [219] If the straight line L1 passes through the two points ( 3 , 1 ) and ( 2 , k ) , and the straight line L2 makes with the positive direction of the X – axis an angle of measure 45 , find the value of K if : 1) L1 // L2 2) L1 = L2 Solution 1) k 1 tan 45 1 23 k 1 1 k 1 1 0 L1 // L 2 k 1 tan 45 1 23 k 1 1 1 1 k 1 1 2 2) L1 L 2 [220] Using the slope to prove that the points A ( - 1 , 3 ) , B ( 5 , 1 ) , C ( 6 , 4 ) , D ( 0 , 6 ) are vertices of a rectangle. Solution 31 2 1 1 5 6 3 6 4 2 1 The slope of CD m 2 0 6 6 3 41 3 The slope of BC m 3 3 65 1 63 3 The slope of DA m 4 3 0 1 1 1 m1 m 2 ,m 3 m 4 ,m1 m 3 3 1 3 ABCD is a rectangle. The slope of AB m 1 30 Model (1) [1] Complete each of the following: 1) If A ( 1 , 2 ) , B ( 3 , 4 ) , then the coordinates of the midpoint of AB is ............ 2) The equation of the straight line which is parallel to X – axis and passes through the point ( - 2 , 3 ) is ....... 3) If x , y are the measures of two complementary angles , where x : y = 1 : 2 then sin x + cos y = ....... 4) The distance between the points ( 6 , 0 ) , ( - 4 , 0 ) equals ......... 5) If the point ( 0 , a ) belongs to the straight line 3 x – 4 y + 12 = 0 then a = ........... 2 6) If AB // CD and the slope of AB 3 , then the slope of CD ......... [2] Choose: 1) If cos 2 x = 1 , then m x ...... 2 15 , 30 , 45 , 60 2) Theslope of the straight line whose equation 2 3 2 3 2 x – 3 y 5 0 equals ...... , , , 3 2 3 2 31 3) The length of the line segment which is drawn between the two points ( 0 , 0 ) , ( 5 , 12 ) equals ........... ( 5 , 7 , 12 , 13 ) 1 1 4) tan 45 ....... 3 , ,1, 2 3 5) In ABC , if m B 90 , then sin A + cos C = ................... 2 sin A , 2 sin C , 2 sin B , 2 cos A 2 1 1 6) tan 45 sin 30 ....... , 1 , , 3 4 2 [3] ABC is right - angled triangle at B 2 AB = 3 AC , find the trigonometric ratios of C [4] Find the equation of the straight line passes through the point ( 2 , - 1 ) and parallel to the straight line 2x–y+5=0 [5] Pr ove that : cos 60 cos 2 30 sin 2 30 [6] ABCD is a parallelogram , its diagonals intersects at E , if A ( 3 , - 1 ) , B ( 6 , 2 ) , C ( 1 , 6 ) then find : 1) the coordinates of E , D 2) The length of DE [7] 32 Pr ove that : tan 60 2 tan 30 1 tan 2 30 [8] Find the slope , intercepted part of Y - axis of the straight line whose equaation x y 1 2 3 Model (2) [1] Complete each of the following: 1) If the two straight line 2 x + b y + 3 = 0 , 3 x – y + 2 = 0 are perpendicular , then b = ............ 2) If sin x = 0.5 , x is an acute angle , then m x ........ 3) The distance between the two points ( 5 , 0 ) , ( 0 , - 12 ) equals ........... 4) sin 60 cos 30 tan 60 ......... 5) If the two straight lines k x – 2 y + 3 = 0 , 6 x + 3 y – 5 = 0 are parallel , then k = ............ 6) The slope of the perpendicular straight line to the line which passes through the two points ( 2 , 6 ) , ( - 4 , 1 ) equals ............. [2] Choose: 1) 2 sin 30 cos 30 .......... sin 60 , cos 60 , tan 60 , 2 sin 60 2) The points ( - 3 , 0 ) , ( 0 , 3 ) , ( 3 , 0 ) are the vertices of a triangle a) Scalene triangle b) Equilateral triangle c) Obtuse – angled triangle d) Right – angled triangle and isosceles 33 3) The equation of the straight line which passes through the point ( 2 , - 3 ) , parallel to X – axis is ........... ( x = - 2 , y = - 3 , x = 2 , y = 3 ) 4) If the straight line whose equation x + 3 y – 6 = 0 is perpendicular to the straight line whose equation a x – 3 y + 7 = 0 , then a = ....... ( 2 , 9 , - 9 , - 2 ) 5) If the point ( 0 , 4 ) is the midpoint of the distance between the two points ( - 1 , - 1 ) , ( x , y ) , then the point ( x , y ) is .......... 1 3 ( 1 , 9 ) , ( 1 , 9 ) , , , ( 1 , 3 ) 2 2 6) In ABC , if m B 90 , AB = 3 cm , BC = 4 cm , then sin A cos C 9 12 16 = ........ 1 , , , 25 25 25 [3] Find the equation of the straight line which passes through the point ( 1 , 6 ) and the midpoint of AB , where A ( 1 , - 2 ) , B ( 3 , - 4 ) [4] Prove that : sin3 30 9 cos 3 60 tan 2 45 [5] Prove that the triangle whose vertices A ( 1 , 4 ) , B ( - 1 , - 2 ) , C ( 2 , - 3 ) right at B , then find its area. [6] In the opposite figure: 34 AD BC , AB = 13 cm , AC = 15 cm , find in the simplest form the value of : tan CAD tan BAD tan CAD tan BAD A 15 cm 13 cm [7] Find the equation of the straight line which C D 9 cm passes through the point ( 3 , 4 ) and perpendicular to the straight line : 5x–2y+7=0 [8] ABCD is a trapezium in which AD // BC , m B 90 if AB = 3 cm , AD = 6 cm , BC = 10 cm , prove that : cos DCB tan ACB 1 2 Model (3) [1] Complete each of the following : 1) cos2 45 + tan 2 60 sin 30 = ......... 2) If A ( 2 , - 1 ) , B ( 5 , 3 ) , then AB = ........ 3) If L1 : k x – 2 y + 4 = 0 , L2 : x + 3 y – 7 = 0 and L1 L2 , then k = ...... 4) sin 30 cos 60 cos 30 sin 60 ......... 5) The equation of the straight line which passes through the point ( - 2 , 7 ) , parallel to Y – axis is 35 B .............. 6) ABC is right - angled at A , if tan B = 1 , then tan C sin C cos C = .......... [2] Choose: 1) The equation of the straight line whose slope is 1 , passes through the origin point is ........ (x=1,y=1,y=x,y=-x) 2) If LM EO , E ( - 1 , 2 ) , O ( 0 , 0 ) 1 1 , then the slope of LM ...... 2 , , , 2 2 2 3) If tan 3 x = 3 , where ( 3 x ) is an acute , then m ( x ) = ......... 10 , 20 , 30 , 60 4) If the origin point is a centre of a circle of diameter length 6 unit length , then the point which belongs to the circle is ........ (6 , 0) , (0 , -6) , ( 8 , 1) , (1 , 5) 5) In ABC , if C is right , then sin B + cos B ....... 1 , > , < , 1 6) If sin x = , x is an acute , then 2 1 3 1 sin 2 x = ....... 1 , , , 4 2 3 [3] Prove that the triangle whose vertices the points : 36 Y ( 2 , 4 ) , X ( 0 , 6.8 ) , Z ( - 5 , - 1 ) is right – angled triangle at Y [4] ABC is a triangle in which AB = AC = 10 cm , BC = 12 cm , AD is a perpendicular to BC intersects it at D , prove that : 1) sin B + cos C = 1.4 2) sin 2 C + cos 2 C = 1 [5] Without using calculator , find the value of : cos 2 60 cos 2 30 tan 2 45 sin 60 tan 60 sin 30 [6] Represent graphically the points A ( 2 , 3 ) , B ( -1 , -1) , C ( 3 , - 4 ) , D ( 6 , 0 ) , in the coordinate plane , then prove that they are vertices of a square , then find its area. [7] Find the value of x , where 0 < x < 90 , if sin x sin 45 cos 45 tan 60 tan 2 45 cos 2 60 1 [8] A straight line, its slope is 2 , intersects a positive part of Y – axis of length two units , find : 1) The equation of this straight line 2) Its intersection point with the Y – axis. 37 Model (4) [1] Complete each of the following: 1) The slope of the straight line which is parallel to the straight line which passes through the two points ( 3 , 1 ) , ( 5 , - 1 ) equals ............... 2) The equation of the straight line which passes through the origin point and perpendicular to the straight line y = 2 x is ................... 3) The value of the expression: sin 60 cos 30 cos 60 sin 30 .......... 4) If tan 3 x = 1 , where 3 x is an acute angle , then x = ........ 5) The slope of the perpendicular straight line to straight line 3 x + 4 y – 9 = 0 is ........... x 3 x 6) If cos , where is an 3 2 3 acute angle , then x = ........ [2] Choose: 1 1 1) sin 2 60 cos 2 60 .......... 0 , , , 1 4 2 2) If the origin point is a centre of a circle of radius 3 unit length , then the point .......... belongs to it. ( 1 , 2 ) , ( -2 , 5) , ( 3 , 1) , ( 2 , 1) 3) The slope of the straight line which is parallel to the X – axis is .......... ( - 1 , 0 , 1 , undefined ) 4) If the slope of the straight line a x – y + 3 = 0 equals 1 38 1 1 , then a ............ , -1 , , 1 3 3 5) The perpendicular distance between the two straight lines y – 3 = 0 , y + 2 = 0 equals ........ ( 1 , 2 , 3 , 5 ) 6) If sin 30 cos , where is an acute angle , then m ....... 60 , 45 , 10 , 30 [3] AB is a diameter of circle M if B ( 8 , 11 ) , M ( 5 , 7 ) , then find : 1) the coordinate of A 2) the length of the radius of the circle 3) the equation of the perpendicular straight line to AB from the point B [4] Find the value of x , if : sin x = sin 60 cos 30 cos 60 sin 30 , where 0 x 90 [5] ABC is right at C in which AB = 10 cm , BC = 8 cm. find the value of : sin A cos B + cos A sin B [6] Find the equation of the straight line which passes 39 through the two points ( 2 , 3 ) , ( - 3 , 2 ) [7] Without using calculator , find the numerical value of the expression : cos 60 sin 30 sin60 cos 30 [8] If the points A ( 1 , 0 ) , B ( - 1 , 4 ) , C ( 7 , 8 ) , D ( 9 , 4 ) in the coordinate plane , prove that : ABCD is a rectangle , find the length of its diagonal. Model (5) [1] Complete each of the following: 1) If sin ( y + 7 ) = 0.5 then y = ........ 2) The equation of the straight line which passes through the point ( 3 , - 2 ) and parallel to X – axis is .............. 3) The distance between the point ( 4 , 3 ) , the origin point in the coordinate plane equals ............. 4) If m1 , m 2 are the slopes of two perpendicular straight lines , then m1 m 2 .......... 5) 2 sin 30 cos 30 sin ........ 6) If the straight line y = x sin 30 c passes through the point ( 4 , 6 ) , then c = .......... [2] Choose: 1) If 2 k , are the slopes of two parallel 3 2 3 1 4 straight lines , then k = ....... , , , 3 4 3 3 40 2) If AB is a diameter of a circle , where A ( 3 , - 5 ) , B ( 5 , 1 ) , then the centre of the circle is ......... (4 , -2) , (4 , 2) , (2 , 2) , ( 8 , -2) 3) sin 60 cos 30 tan 60 ......... 3 ,3 3 , 3 ,2 3 4) If the distance between the two points ( a , 0 ) , ( 0 , 1 ) is 1 length unit , then a = ......... ( - 1 , 0 , 1 , 1 ) 5) The straight line which passes through the two points ( 1 , y ) , ( 3 , 4 ) , its slope is tan 45 , then y = ........... (1,-1,2,4) 6) If XYZ right at Z , XY = 25 cm , YZ = 24 cm 31 17 , then sin X + sin Y = ........ , , 2 , 1 25 25 [3] If the two equations of two straight lines L1 , L2 respectively 2 x – 3 y + a = 0 , 3 x + b y – 6 = 0. Then find: 1) the value of b which makes L1 // L2 2) the value of b which makes L1 L2 3) If the point ( 1 , 3 ) lies on L1 , then find the value of a. [4] In cause of wind, the upper part of a tree was broken made an angle of measure 60 with the 41 Ground. If the point of contact of the top of the tree with the ground was at distance 4 m from its bottom , find the length of the tree to the nearest metre. [5] Pr ove that : sin 60 2 sin 30 cos 30 [6] ABCD is a parallelogram , A ( x , 2 ) , B ( 3 , 8 ) , C ( 9 , 10 ) and D ( 7 , 4 ) , find x [7] Prove that the triangle whose vertices A ( 1 , - 2 ) , B ( - 4 , 2 ) , C ( 1 , 6 ) is an isosceles triangle. [8] In the opposite figure: m C 40 , AC = 12 , find to the A nearest one decimal place the length of AB and the length of BC to the C 40 nearest cm. Cairo 2012 [1] Complete: 1) If sin x = 3 , where x is the measure 2 of an acute angle , then x = ......... 2) If A ( 5 , 3 ) , B ( 1 , 7 ) , then the coordinates of the mid - point of AB is ....... 3) The equation of the straight line whose slope 5 and intersects 7 units from the positive part of the y – axis is ............... 42 B 4) If ABCD is a rhombus , where A ( 6 , 4 ) , B ( 4 , - 2 ) , then the perimeter of the rhombus ABCD = ......... 5) 2 cos 60 ........ 6) In the opposite figure : ABC is a right angled triangle at B AB = 3 cm , BC = 4 cm , then cos C = .......... [2] Choose: 1) If cos x = sin 45 , where x is the measure C 3 cm A 4 cm B of an acute angle , then x = ....... ( 15 , 30 , 45 , 60 ) 2) The distance between the point ( 3 , - 5 ) and the x - axis equals ........ unit of length. ( - 5 , 3 , 5 , 34 ) 3) If the straight line L is perpendicular to the straight line whose equation y 2 x = 7 , then the slope of L equals ....... (3,2, 1 1 , ) 3 2 4) The slope of AB which passes through 1 1 A ( 1 , 5 ) , B ( 2 , 3 ) is ..... 2 , , 2 , 2 2 5) The equation of the straight line which is parallel to the line 3 x + 9 y – 6 = 0 and passes through ( 0 , 5 ) is .............. 6) If 2 sin x = tan 60 where x is an acute angle , then m x .......... 60 , 45 , 30 , 40 43 [3] Without using calculator , find the value of x which satisfies : tan x = 4 cos 60 sin 30 where x is the measure of an acute angle [4] If the straight line whose equation a x + 2 y – 3 = 0 is parallel to the straight line passing through the points ( 2 , 3 ) and ( 1 , 5 ) which lie on the same plane , then find the value of a [5] If AB is a diameter in circle M where M ( 5 , 2 ) and A ( 1 , 3 ) , then find the equation of the tangent to the circle at A [6]The time in which the particle covers in distance of 3.5 metres from the beginning of the movement. Giza 2012 [1] Complete: 1) cos 45 ............ 2) The distance between the point ( - 3 , 4 ) and the point of origin equals ............... 3) If L1 // L 2 and the slope of L1 1 , then the slope of L 2 ........... 4) 3 tan 60 ......... 5) If ABCD is a square , where A ( 7 , - 2 ) , B ( - 3 , 1 ) , then the area of the square ABCD = ............. [2] Choose: 44 1) If sin x = 3 , wherexisanacuteangle 2 ,thenx ........ 30 , 45 , 60 , 90 2) If A ( 2 , 4 ) , B ( 6 , 0 ) , then the coordinates of the mid-point of AB ........ 3) If sin x = cos 60 , where x is an acute angle , then m x ....... 60 , 45 , 30 , 15 4) The straight line of equation : 2 y = 3 x + 1 intersects a part of the y - axis equals ........... units. 1 1 , 2 , 3 , 2 2 5) The points A ( - 2 , 4 ) , B ( 1 , - 1 ) , C ( 4 , 5 ) represents : ( three collinear points , equilateral triangle , isosceles triangle , a scalene triangle ) 6) If m B 90 , AB = 5 cm , BC = 12 cm , AC = 13 cm , then sin C = ...................... 5 12 13 5 , , , 13 12 13 5 [3] 45 AB is a diameter in circle M where A ( 1 , 5 ) , B ( 2 , 6 ) find the coordinates of B [4] ABC is a right - angled in B , 2 AB = 3 AC , find the main trigonometrical ratios of the angle C. [5] If sin X = sin 60 cos 30 sin 30 cos 60 without using calculator , find m X where X is an acute angle. [6] Prove that : the points A ( - 3 , 0 ) , B ( 3 , 4 ) and C ( 1 , - 6 ) are the vertices of an isosceles triangle of vertex A. [7] Find the equation of the straight line drawn passing to the point ( 1 , 3 ) and perpendicular to st. line of equation y = 1 x 2. 4 [8] If the ratio between two measures of supplementary angles as a ratio 3 : 5. Find the value of each one by circular measure. Alexandria 2012 [1] Choose: 46 1) ABC is right - angled at B , A ( 2 , 5 ) , B ( - 2 , - 3 ) , then the slope of BC equals ....................... 2 , 0.5 , 0.5 , 2 1 2) If sin ( x + 5 ) = , then x = ....... 5 , 10 , 25 , 30 2 3) The slope of straight line which is perpendicular 2 2 3 3 to straight line 2 x + 3 y = 1 is .......... , , , 3 3 2 2 4) The distance between the two straight lines y – 3 = 0 , y + 2 = 0 is ........... ( 1 , 2 , 3 , 5 ) 5) The slope of straight line which parallel to the x – axis is ........... ( 1 , - 1 , 0 , unknown ) [2] Complete: 1) Cos 60 ........... 2) The straight line 2 x + 3 y = 6 intercepts from the y – axis a part of length .................. 3) If L1 L 2 , the slope of L1 0 , then the slope of L 2 ............ 4) If cos A = 0.6217 , where A is an acute angle , then m A ...... ....... \ .....\ \ [3] XYZ is a right angled triangle at Y in which XY = 6 cm , XZ = 10 cm , find the value of : 1) tan X = tan Z 2) sin X Z 30 [4] Prove that the points A ( 4 , 3 ) , B ( 1 , 1 ) and 47 C ( - 5 , - 3 ) are located on the collinear. [5] Find the equation of the straight line passing through the points ( 1 , 2 ) and parallel to the straight line passing through the two points A(-3,2),B(-4,5) [6] ABCD is a parallelogram in which E is the intersection point of its diagonals , A ( 3 , - 1 ) , B ( 6 , 2 ) , C ( 1 , 7 ) find : 1) Coordinates of each of E , D 2) Length of DE Cairo 2013 [1] Choose: 1 1 1) tan 45 ........ 3 , , 1 , 2 3 1 2) tan x , then m ( x ) = ...... ( 90 , 60 , 45 , 30 ) 2 3) The length of the line segment drawn from the point ( 0 , 0 ) to the point ( - 4 , 3 ) equals ........ 3 , 4 , 7 , 5 units of length. 4) The slope of the straight line which is parallel to X - axis equals ...... ( 4 , 2 ) , ( 1 , - 3 ) , ( 2 , - 6 ) , ( 8 , 4 ) 48 6) The equation of the straight line passing through the origin point and makes an angle of measure 45 with the positive direction of X - axis is ........ (X=1,Y=1,Y=X,Y=-X) [2] Find the numerical value of: 2 sin 45 cos45 4 sin 30 cos60 [3] Prove that the triangle ABC whose vertices are A ( 5 , 1 ) , B ( 2 , 5 ) , C ( - 1 , 1 ) is an isosceles Triangle , then find its perimeter. [4] Prove that: cos 60 cos2 45 . [5] If C is the mid – point of AB where A ( - 3 , y ) , B ( 3 , 12 ) and C ( x , 7 ) , find the value of x and y. Qalubia 2012 [1] Complete: 1) If A ( 3 , 5 ) , B ( 1 , - 1 ) , C is midpoint of AB , then C ( ........ , ....... ) 2) tan 30 ............ 3) If tan x 15 1 , then m x ........ 4) If sin x = 2 sin 45 cos 60 , then m x .......... 5) If A ( 5 , 5 ) , B ( 3 , 4 ) , C ( 4 , 3 ) are vertices of ABC , then the length of its perimeter = ........... 49 [2] Choose: 1) The slope of a straight line which makes an angle of measure 45 with the positive direction of 1 X - axis = ......... 1 , , 3 , otherwise 2 2) 4 cos 30 tan 45 ......... 12 , 3 , 6 , 2 3 3) 4 cos 30 tan 60 ......... 12 , 3 , 4 , 6 4) The straight line whose equation 4 y = 5 x + 12 cuts from y – axis a part of length = ............... units. ( 3 , 12 , 5 , otherwise ) 5) If A ( 2 , 0 ) , B ( 2 , 5 ) , C ( 1 , 4 ) , D ( 1 , 9 ) are four points in the same co – ordinate plane , then ......... ( AB = CD , AB < CD , AB > CD , A , B , C and D are collinear ) Solution: Model (1) [1] Complete each of the following: 1 3 2 4 1) , 2, 3 2 2 2) y = m x + b where m = 0 then y = 3 3) x + 2 x = 90 x = 30 , y = 60 1 1 sin x + cos y = sin 30 +cos 60 = + =1 2 2 50 4) 6 4 0 0 2 2 10 unit length 12 5) 3 a 4 0 12 0 3 a 12 a 4 3 2 6) 3 [2] Choose: 1) 2 x = 60 x = 60 2 = 30 2 2 2) = 3 3 3) 5 0 12 0 13 4) 1 5) sin A + cos C = sin A + sin A = 2 sin A 1 1 6) tan 45 sin 30 1 2 2 2 2 [3] sin C = AB 3 AC 2 A 2 1 , cos C = 2 C , tan C = 3 3 1 [4] ym x+b,m= 2 2y 2 x+b 1 51 3 1 B At 2 , 1 1 2 2 b b 1 4 5 y 2 x5 [5] L.H.S. cos 60 1 2 2 2 3 1 1 , R.H.S.= cos 2 30 sin 2 30 2 2 2 L.H.S. R.H.S. [6] 3 1 1 6 Let D ( x , y ) then E , 2, 2.5 2 2 x6 2 x6 y 2 2 5 , , 2 1 2 2 1 2 y2 5 x 6 4 x 4 6 2 , y25 2 2 y 5 2 3 D 2 , 5 [7] L.H.S.= tan 60 3 2 1 1 2 R.H.S. 2 tan 30 1 tan 30 2 1 3 3 1 2 2 3 L.H.S. R.H.S. 3 3 52 [8] x y 3x+2y 1 1 3 x + 2 y 6 2 3 6 6 3 3 3 2 y 6 3 x y = x 3 x m ,b 3 2 2 2 2 Model (2) [1] Complete each of the following: 2 3 1) m 1 m 2 1 1 b 1 6 1 b6 b 1 2) m X 30 3) 5 0 0 12 13 2 2 3 3 30 2 2 k 6 5) m 1 m 2 3 k 12 2 3 12 k 4 3 1 6 1 6 6) m1 1 m2 24 5 4) [2] Choose: 1 3 3 1) 2 = sin 60 2 2 2 53 2) AB 3 0 0 3 18 2 2 2 BC 0 3 3 0 18 2 2 2 CA 3 3 0 0 36 CA AB BC , AB = BC 2 2 2 2 2 2 The triangle is right angled triangle and isosceles 3) y = - 3 1 a 4) m1 m 2 1 1 3 3 a 1 a 9 9 1 x 1 y 5) 0x1, 4 2 2 A 1 y 8 y 8 1 9 x , y 1 , 9 5 3 4 4 16 6) 5 5 25 C 4 B [3] 1 3 2 4 M , 2 , 3 2 2 6 3 m The slope 9 y m x + c 1 2 At 1 , 6 6 9 1 c c 6 9 15 y 9 x + 15 [4] 3 1 1 L.H .S sin 3 30 2 8 54 3 9 1 1 R.H.S 9 cos 3 60 tan 2 45 9 12 1 8 8 2 L .H .S R.H.S [5] AB 1 1 4 2 40 AC 1 2 4 3 50 BC 1 2 2 3 10 CA AB BC 2 2 2 2 2 2 2 2 2 2 2 2 The triangle is right angled triangle at B 1 1 Area = 40 10 400 10 squared units 2 2 [6] In the opposite figure: AD 152 92 12 cm BD 132 122 5 cm A tan CAD tan BAD tan CAD tan BAD 15 cm 13 cm 9 5 14 195 7 15 13 9 5 195 4 2 B D C 9 cm 15 13 [7] 5 5 1 2 m1 , m2 2 2 m1 5 2 6 26 At 3 , 4 4 3c c 4 5 5 5 55 y 2 26 x 5 5 [8] ABCD is a trapezium in which AD // BC , m B 90 if AB = 3 cm , AD = 6 cm , BC = 10 cm , prove that : cos DCB tan ACB 1 2 Construction: Draw DF BC Solution: AD // BF , AB BC , DF BC ABFD is a rectangle BF AD 6 cm , FC 10 6 4 cm In DFC DC 3 2 4 2 5 cm FC 4 cos(DCF) DC 5 In ABC tan( ACB) 6 cm D A 3 cm 4 cm F C AB 3 BC 10 cos(DCF) tan( ACB) 4 3 5 1 5 10 10 2 Model (3) [1] Complete each of the following : 56 3 cm 6 cm B 2 1 1) cos 45 + tan 60 sin 30 = 2 2 2 2 5 1 3 2 2) AB = 2 2 3 1 3 2 5 unit length 1 k 1 3 1 m2 2 3 1 k=2 3=6 3) m1 1 1 3 3 4) sin 30 cos 60 cos 30 sin 60 1 2 2 2 2 5) X = 2 1 1 1 6) 1 2 2 2 [2] Choose: 1) y = x 1 20 1 = 1 = m1 1 0 2 60 3) 3 x = 60 x = = 20 3 2) m 2 = 4) OA = 8 0 1 0 3 r The point is 2 8 ,1 2 AC BC AC BC + = >1 AB AB AB 3 6) x = 30 sin 2 x = sin 60 = 2 5) sin B + cos B = 57 [3] XY 2 2 0 4 6.8 4 7.84 11.84 2 2 YZ 2 2 5 4 1 49 25 74 2 2 XZ 2 0 5 6.8 1 25 60.84 85.84 XZ 2 XY 2 YZ 2 The triangle is right angled triangle A [4] 2 2 AD = 102 62 = 8 cm 8 6 1) sin B + cos C = + = 1.4 10 10 2 2 2) sin C + cos C 2 2 8 6 = 1 10 10 [5] 10 cm B 10 cm 6 cm D cos 2 60 cos 2 30 tan 2 45 sin 60 tan 60 sin 30 2 2 2 1 3 1 3 1 1 2 2 4 4 21 2 3 1 3 1 3 2 2 2 2 [6] BC 3 1 4 1 5 unit length AB 2 1 3 1 5 unit length CD 6 3 4 0 5 unit length 2 2 2 2 2 2 58 6 cm C 3 0 5 unit length 31 4 The slope of AB m 1 21 3 4 1 3 The slope of BC m 2 31 4 4 3 m1 m 2 1 AB BC 3 4 ABCD is a square , its area = 5 5 = 25 squared unit AD 6 2 2 2 [7] 2 sin x sin x x 60 1 1 1 3 2 3 =1 2 2 2 4 3 3 3 3 3 sin x 2 4 4 2 2 [8] y 1 x+2 2 0 , 2 Model (4) [1] Complete each of the following: 11 1 35 1 1 1 2) m 2 ,y= x m1 2 2 1) 59 3) sin 60 cos 30 cos 60 sin 30 3 3 1 1 1 2 2 2 2 2 45 4) 3 x 45 x = =15 3 1 3 4 5) m 2 1 m1 4 3 x 6) 30 x = 3 30 = 90 3 [2] Choose: 2 2 3 1 1 1) sin 2 60 cos 2 60 2 2 2 2) OA = 2 0 2 50 2 3r The point is ( -2 , 5) 3) 0 a 4) 1a 1 1 5) 3 + 2 = 5 1 6) cos m 60 2 [3] x 8 y 11 Let A ( x , y ) then , = ( 5 , 7 ) 2 2 60 x8 5 x 8 10 x 10 8 2 2 y 11 7 y 11 14 y 14 11 3 2 2 2 then A 2 , 3 , r = MB = 8 5 11 7 5 unit length 11 7 4 m1 The slope of MB 85 3 The slope of the perpendicular straight 1 3 = m2 line to AB from the point B m1 4 3 y m 2 x c At B ( 8 , 11 ) 11 8 c 4 3 c 11 6 17 y x 17 4 [4] sin x = 3 3 1 1 1 = x = 30 2 2 2 2 2 [5] AC 102 82 6 cm sin A cos B + cos A sin B 8 8 6 6 = 1 10 10 10 10 [6] m 32 1 ,y=mx+c 2 3 5 61 A 10 cm B 8 cm C At 2 , 3 3 = 1 2 13 2 + c c = 3 5 5 5 1 13 y x 5 5 [7] 1 1 3 3 1 cos 60 sin 30 sin 60 cos 30 2 2 2 2 2 [8] 1 7 0 8 The mid po int of AC , 4 , 4 2 2 1 9 4 4 The mid po int of BD , 4 , 4 2 2 2 2 AC 1 7 0 8 10 unit length BD 1 9 2 4 4 10 unit length 2 Model (5) [1] Complete each of the following: 1) y + 7 = 30 y 30 7 23 2) y = 2 3) 3 0 4 0 5 unit length 4) 1 2 2 1 3 3 5) 2 sin 30 cos 30 2 sin 60 2 2 2 1 6) 6 = 4 + c c 6 2 4 2 62 [2] Choose: 2 k 4 = k 3 2 3 3 5 5 1 2) , = 4 , 2 2 2 1) 3) sin 60 cos 30 tan 60 3 3 32 3 2 2 a 0 0 1 1 a 2 1 1 a 0 y4 5) tan 45 1 y 4 2 y 4 2 2 1 3 24 7 31 6) sin X + sin Y = + = 25 25 25 2 4) 2 [3] 2 3 3 3 9 = b = = 3 b 2 2 2 3 2 1 1 2 2) m1 m2 1 1 b 2 3 b b 1 1 1) m1 =m2 3) 2 1 3 3 a 0 2 9 a 0 7a 0a 7 A [4] 30 4 sin 60 AC 1 AC 1 4 sin 60 4m 5m 60 C 63 B [5] L.H.S.= sin 60 3 2 1 3 3 R.H.S. 2 sin 30 cos 30 2 L.H.S. 2 2 2 [6] ABCD is a parallelogram , A ( x , 2 ) , B ( 3 , 8 ) , C ( 9 , 10 ) and D ( 7 , 4 ) , find x 64