Download Module Outline - Midlands State University

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Midlands State University
Department of Mathematics
HMT101 Calculus I
Lecturer: W D Govere
Dept of Applied Education
AEM102 Calculus
Module Outline
a)
b)
c)
d)
e)
f)
g)
h)
i)
Number Systems: natural, integral, rational and irrational numbers
Mathematical induction
The real number system: decimal and geometric representation
Inequalities and their solutions
Sequences
Functions: exponential, logarithmic, trigonometric and hyperbolic and
their inverses
Limits and continuity
Differentiation: derivatives of a single variable
Integration: definite and indefinite integrals, techniques of integration:
method of substitution, integration by parts and reduction formulae,
fundamental theorem of calculus
Recommended reading
L Hostetler- Calculus
E L Swokowski- Calculus
Spiegel- Advanced Calculus
L M Mudehwe- Calculus 1 (ZOU Module)
Any other text on Calculus
1
Tutorial Worksheet 1 Number Systems / Induction / Inequalities
1. Prove that (i)3, (ii) 5, cannot be rational.
2. Show that 2+3 cannot be rational.
3. Show that 7-3 is irrational.
4. Assuming that 5 is irrational show that (2+5) is irrational.
m
r
5. Assuming that 2 is irrational, show that if
and are rational numbers with
n
s
r
m
r
 0 then
 2 is irrational.
s
n
s
6. Prove that between any two rational numbers there is a rational number.
p
7. Express 0.mnmnmn... where m and n are distinct integers, in the form
where p
q
and q are integers.
8. Does the decimal 0.123456789101112131415161718… whose digits are natural
numbers strung end-to-end represent a rational or irrational number. Give a reason for
your answer.
9 Write down the following terminating decimals as recurring decimals: 0.23, 0.325,
0.108
10 Express the following recurring decimals as terminating decimals:
.
.
.
0.74 9,  8.003 9, 316.319
Prove the following by PMI:
n
n(n  1)
n(n  1)( 2n  1)
11. (a)  r 
(b)  r 2 
6
2
r 1
r 1
12. (1  x) n  1  nx , n  2,3,... x  1, x  0
n
 n(n  1) 
(c)  r  

 2 
r 1
n
2
3
13. n  2 n  n  N . Hint: Note that 2k = k + k.
14. 4 n  3n 2  1  n  2
15. n! n 2  n  4
16 a  ar  ar 2  ...  ar n 1 
a(r n  1)
, r 1
r 1
d 2n
17 Deduce a formula for
(sin x) in terms of sin x and prove your formula for all
dx 2 n
n using PMI.
n
n(n  1)( n  2)
18 Using the results in 11(a) & (b) show that  r (r  1) 
and prove
3
r 1
this result by PMI.
1
1
1
19. Deduce a formula for the sum
and prove it by PMI.

 ... 
1 2 2  3
n(n  1)
Solve the following inequalities:
20. x 2  3x  2  10  2 x
21. | x  1 |  2 x  1
2
22. | 3x  5 |  9
23. | x  1 |  3 | x  2 |
| x | 2
4
24.
x2
25 Solve the inequality
5x  9
 2 x  3 and indicate your solution on the real number
x 1
line.
26 Show that x, y, z  R, x 2  y 2  z 2  xy  yz  xz
3
Tutorial Worksheet 2 Sequences
1.Write down the 1st five of each of the following sequences
1
 1  n 


 n 1
 (1) n 1 
 cos n 
n
(a) 
(e) 1    (f) (1  n) n 
 (b) n (c) 
 (d) 
2 
 n  
 (n  1) 
 n! 
 n 1 


(g) S1  1 , S n1  3S n  1
2. Write down the 6th and 7th terms of each of the following sequences and give a
formula for the nth term.
 
1 3 5
7 9
,  , ,  , , ...
5 8 11 14 17
(b) 1,0,1,0,1,…
1
1
1
(c) , 0, , 0, , ...
2
3
4
(d) 5,5,5,5,5,…
2 3
4
(e) , 0, , 0, , ...
3 4
5
3. Consider the following sequences {S n } , where
(a)
1
2n  3
2n
2n 2  1
(b) S n 
(c) S n 
(d) S n 
2
4n
3n  2
n 1
n
For each of the above sequences,
(i)
find the number l to which the sequence converges
(ii)
Generally, if  > 0, provide an expression for N in terms of  such that
| S n  l |   whenever n  N
(iii)
find the range of values for the index n such that | S n  l |  0.01
(a) S n  3 
4. State whether each of the following sequences {S n } tends to a limit, and if so, what
the limit is. Use the definition in terms of  and N to prove your answers correct.
(a) S n  n
(f) S n 
1
(b) S n  2
n 1
2
2n  1
 1
(d) S n    (e) S n 
2n
 2 
n
(c) S n  (1)
n
n
n 1
5. For {S n } given by the following formulae, establish either the convergence or
divergence of {S n } .
 n(1) n 
 n2 
 2n 2  3 
 nn 
1  (1) n 
(a) 
(e) 
 (b) 
 (c)  2
 (d) 

n 1 
n
 n 1 
 n 1
 n 1 
 (n  1) 


(f) ln n  ln( n  1)
6. Find the limit of each of the following sequences
 en 
 cos 2 n 
 5n 
 cos n 
(a)  2 n 
(b)  4 
(c) e  n ln n (d)  n  (e) 

e 
 n 
 3 
n 
2

 3n  5n  4 

(f) 

2
n

7




4
7 Draw a graph for each of the following sequences and describe whether the
sequence is monotone, convergent or divergent, etc.
1 1 1 1 1
(a) ,  , ,  , , ...
3 5 7 9 11
1
(b) {S n } defined recursively by S1  2 , S n 1  2 
Sn
n
(1) n
(d) S n  1 
n 1
n
8 Evaluate
(c) S n 
 n 3
(i) lim 

n  n  5


2 n 5
 n 1 
(iv) lim 

n  n  2


 2n 2   

(ii) lim  2
n  2n  5 


3n  2
 2n  4 
(v) lim 

n  2 n  3


3n 2 5
 n8
(iii) lim 

n  n  2


2n
n 2  n 1
n
1
 1
9. (a) Show that lim 1   
n 
e
 n
(b) Investigate the behaviour (by sketching a graph) of the following sequence
 n
 n  1 when n is odd
sn  
1  1 when n is even
 n
10. Find the limits of the following sequences
2
n
n
 (1) n 
 n  1
1  
1  

 1  

(a)  2    (b) 1    (c) 
(d)
(e)
1








2
n  

 n  
 n  
n n 
n2
11. (a) Suppose {s n } is a sequence converging to 0, and {t n } another sequence such
that 0  t n  s n n . Show that {t n } converges to 0.
1
(b) Investigate the behaviour of the sequence {n 2 n } , i.e find out whether it is
monotone increasing / decreasing, bounded below / above, convergent / divergent. [A
graph may be useful].

12. Show that lim 2 n  3n
n 

1
n
3
5
Tutorial Worksheet 3 Functions, Limits & Continuity
Q1 Sketch the graphs of the functions (i) tan x (ii) cot x (iii) sec x (iv) csc x .
Q2 Sketch the graphs of the functions (i) cos 1 x (ii) tan 1 x (iii) sec 1 x (iv) csc 1 x .
Q3 Sketch the graphs of the functions (i) tanh x (ii) coth x (iii) sec hx (iv) cos echx .
Q4 Sketch the graphs of the functions (i) tanh 1 x (ii) coth 1 x (iii) sec h 1 x (iv)
cos ech 1 x .
Q5 Verify each of the following identities
1  cosh 2 x
(a) cosh 2 x  cosh 2 x  sinh 2 x (b) cosh 2 x 
(c) tanh 2 x  sec h 2 x  1
2
Q6 Show that


(a) cosh 1 x  ln x  x 2  1 , x  [1, )
1 1 x 
(b) tanh 1 x  ln 
 , 1  x  1
2 1 x 
1 1 x2 
 , 0  x 1
(c) sec h 1 x  ln 


x


Q7 Find the domain of each of the following functions of real numbers.
(3x  5)( x  4)
(a) f ( x) 
(b) f ( x)  4  x ln( x  3) (c) f ( x)  sin 5 x
x 3  16 x
Q8 Find the range of each of the following functions
1
(a) f ( x)  x 2  9 (b) f ( x)  x  | x | (c) f ( x) 
(d) f ( x)  ln( x  3)
( x  3) 2
Q9 Use the definition of a limit to prove that
(a) lim (2 x  3)  5 (b) lim (5 x  7)  2 (c) lim (3 x  7)  10
x 1
x  1
x  1
(d) lim (3x  7 x  1)  49
2
x3
(e) lim ( x  6)  5 (f) lim (2 x 2  5x  6)  4
3
x1
x2
 2 , x 1
Q10 Let f ( x)  
2
1  x , x  1
(a) Draw the graph of f
(b) Determine lim f ( x) and lim f ( x)
x 1
x 1
(c) Does lim f ( x ) exist? Give a reason for your answer.
x1
Q11 Suppose that lim f ( x)  l1 and lim g ( x)  l 2 , then prove that
x  x0
(a) lim ( f ( x)  g ( x))  l1  l 2
x x0
x  x0
(b) lim cf ( x)  cl1
x x0
Q12 Determine the following limits
2 x  2 x
x3  1
(a) lim
(b) lim
x 0
x 1  x 2  x  2
x
x 1
3x  1
(d) lim
(e) lim
2
x  | 2  x |
x 1
x  24 x  5
3
5x  2
x 1
(g) lim 2
(h) lim
x  8 x  3
x 0 x  1
x4 1
(c) lim
x  1 x  1
|x|
(f) lim
x   | x | 1
(i) lim
x 
x
x 1
2
6
(j) lim
x 

(m) lim

x 1  x

3x 4  8 x 3  16
x 2 x 3  3 x 2  4
(k) lim
1  cos 2 x
(n) lim

x 
x
2
1  cos x
(p) lim
x 0
x2
x

x4 x

(l) lim
x 
x
(o) lim
x 0
2
x 2  3x  2  x
sin 3 x
x
2
(q) lim (1  cot x)
x
Q13 Find lim f ( x) if
x 
tan x
(r) lim (cos x) x

2
x 0
2
2x 2
2x 2  5
.

f
(
x
)

x2 1
x2
Q14 Use the squeeze theorem to determine lim
x  
sin x
.
x
Q15 Evaluate each of the following limits
 x8
(a) lim 

x  x  2


(e) lim (1  3x)
x 0
2x
2
x
 2x  1 
(b) lim 

x  2 x  3


(f) lim (1  2 x)
x
3
x
x 0
 x 1 
(c) lim 

x  x  2


3x2
 x  2
(d) lim 

x  x  1


3x2
 2x 2   
ln( 1  x)

(g) lim
(h) lim  2
x  2 x  5 
x 0
x


3 x 2 5
4  x 2 , x  1
Q16 Let f ( x)   2
3 x
, x 1
(a)Draw the graph of f
(b)Determine lim f ( x) and lim f ( x)
x 1
x 1
(c) What value, if any, must be assigned to f (1) to make f continuous at x =1?
Give a reason for your answer.
 x 2  2 x  15
, x3

Q17 Let g ( x)  
x3

k
, x3

What value, if any, must k be so that g is continuous at x = 3? Give a reason for
your answer.
Q18 The function f : R  R is defined by
1

 x sin , x  0
f ( x)  
x
 0 , x  0
Prove that f is continuous at x = 0.
7
Tutorial Worksheet 4 Differentiation, Integration
Q1 Show that
 2 1
 x sin   , x  0
(a) f ( x)  
is differentiable at x = 0.
 x
 0
, x0


1
 x sin   , x  0
(b) f ( x)  
is not differentiable at x = 0.
 x
 0
, x0

Q2 (a) Use the definitions of cosh x and sinh x to show that
d
d
cosh x  sinh x and
sinh x  cosh x
(i)
(ii)
dx
dx
(b) Use the results in (a) to show that
d
d
tanh x  sec h 2 x
coth x   cos ech 2 x
(i)
(ii)
dx
dx
d
d
sec hx   sec hx tanh x (iv)
cos echx   cos echx coth x
(iii)
dx
dx
Q3 Compute the derivative of each of the following functions
1
( x  1) 2
(a) x 3 sin x
(b)
(c)
(d) sin 3 (6 x)
2
5
2
(3x  2 x  1)
3x
(e) x 6 ln( 3x 2  5 x  7)
(f) ln( x  1  x 2 )
Q4 Compute the derivative of each of the following functions
(a) sin 1 x
(b) sinh 1 x (c) tan 1 x
(d) tanh 1 x (e) cos ech 1 x
(f) x sin x
(g) x cos x
dy
1 x 
Q5 If y  cos 1 
.
 , find
dx
1 x 
d
1
Q6 Let cosh 1 x  ln( x  x 2  1) . Show that
.
cosh 1 x 
2
dx
x 1
Q7 Evaluate the following integrals
3
2x  3
6 x 3  13x 2  7 x  10
dx (ii) 
(i)  2
(iii) x 2 e ( x 6) dx
dx
2
x  4x  5
3x  2 x  5
1 1
x
dx
dx
(iv)  ( x 2  2 x  2) cos( x 3  3x 2  6 x  7)dx (v) 
(vi)  2
2
x (ln x)
x 1
(vii)
1 1
 x (ln x) dx
(viii)
cos x  sin x
 cos x  sin x dx (ix)
tan 1 x
 1  x 2 dx (x)
 2x
7  4x
dx
 7x  5
2
3x 3  11x 2  3x  2
dx
(xi) 
x( x  1) 3
Q8 Evaluate (i)  ln xdx
(ii)  tan 1 xdx
(iii)  sin 1 xdx
Q9 Find the reduction formula for S n   sin n xdx
8

 
Q10 If I n   2 x n sin xdx prove that I n  n 
0
2
evaluate I 4 .
n 1
 n(n  1) I n  2 . Hence or otherwise

Q11 Let I n   e  x sin n xdx . Show that (1  n 2 ) I n  n(n  1) I n 2 n  2 . Hence or
0
otherwise evaluate I 4 .
9
Related documents