Download Limits Worksheet #2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Calculus 1 Worksheet #4
Limits involving trigonometric functions: lim
sin( )
x 0
KNOW THE FOLLOWING THREE THEOREMS:
A. lim
sin
x 0
1
B. lim
x 0
sin
1
C. lim
1  cos
x 0
0
Examples:
sin 3x
sin 3x  3 
 sin 3x 
 lim
    lim 3 
 3
x 0
x 0
x 0
x
x
3
 3x 
1  cos 7 x
1  cos 7 x  7 
1  cos 7 x 
 lim
    lim 7 
 0
2. lim
x 0
x 0
x 0
x
x
7
 7 x 
sin 2 x
tan 2 x
sin 2 x
sin 2 x  2 
lim
 lim cos 2 x  lim
 lim


x 0
x

0
x

0
x

0
x
x
x cos 2 x
x cos 2 x  2 
3.
2  sin 2 x 
2
2
lim
 lim
 lim
 2
x 0 cos 2 x  2 x 
x 0 cos 2 x
x 0 cos 2(0)


1. lim
Problems:
1
sin x
2
1. lim
x 0
x
tan x
5. lim
x 0
x
3sin x
9. lim
x 0
x
sin 2 x
13. lim
x 0
x
1  cos( 2 x)
17. lim
x 0
2x
2. lim x csc x
sin 2 x
sin x
3. lim
x 0
x 0
sin 3 x
x  0 sin 2 x
sin 3 x
10. lim
x 0
5x
sin ax
14. lim
x  0 sin bx
x2
18. lim
x  0 cos x
4. lim
x 0
sin 3 x
x 0
x
sin 4 x
11. lim
x 0
2x
sin 4 2 x
15. lim
x 0
4 x4
19. lim (tan x)
6. lim
sin x
x 0
2x
3x
12. lim
x  0 sin x
sin 5 x
16. lim
x 0
5x
1  cos x
20. lim
x  0 sin 2 x
7. lim
x
sin ax
,a  0
x
8. lim

4
Answers:
1
2
9) 3
1)
17) 0
2) 1
3) 2
4) a
5) 1
3
5
18) 2
11) 2
12) 3
13) 0
10)
19) 1
20)
6)
7) 3
3
2
14)
a
b
15) 4
1
2
16)1
8)
1
2
Revised: 6/22/2017
Related documents