Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MATHEMATICS 1. If (1-x + x2)n = a0+ a1x + a2x2+ ...... +a2nx2n then a0 + a2 + a4+.... +a2nequals 1/2 (1) 3n- (2) 3n+1/2 (3) 3n+1/2 (4) 3n -1/2 2. The fourth, seventh and tenth terms of a G.P. are p, q and r respectively then (1) p2 = q2 + r2 (2) p2 = q2 (3) q2 = pr2 (4) r2 = p2 + q2 3. cos 10cos 20cos 30 ........... cos 1790 = (1) 1/2 (2) 1 (3) 0 (4) 2 4. The sum of the slopes of the lines represented by 4x2 + 2 hxy - 7y2 = 0 is equal to the product of the slopes. Then h is (1) -4 (2) 4 (3) -6 (4) -2 5. If f(9) = 9 and (9) = 4 then (1) 3 (2) 4 (3) 1/2 (4) 2 6. The value of sin2 50 + sin2 100+ sin2 150 +.........+ sin2 850 + sin 900 = (1) 7 (2) 8 (3) 9 (4) 9 1/2 7. If the equation x2 + y2 + 2gx + 2fy + 1 =0 represents a pair of lines then (1) f2 -g2 =1 (2) f2 + g2 =1 (3) g2 -f2 =1 (4) f2 + g2 =1/2 8. ABC is right angled at C, then tan A + tan B = (2) a2/bc (1) a + b2 (c) c2/ab (4) b2/ac 9. If the sum of the distances of a point from two perpendicular lines in a plane is I then its locus is (1) Circle (2) square (3) straight line (4) intersecting lines 10. The value of cot 540/tan 360 + tan 200/ cot 700 = (1) 1 (2) 0 (3) 2 (4) 3 11. The Vectors form a triangle which is (1) Equilateral (2) Isosceles (3) Right angled (4) Obtuse angled 12. (1) (2) (3) (4) 13. (1) (2) (3) (4) 14. If is the angle between the vectors (1) cot (2) - cot (3) tan (4) -tan 15. If A and B are square matrices of order n x n then (A-B)2 is equal to (1) A2 - 2AB + B2 (2) A2 - B2 (3) A2 - 2BA + B2 (4) A2 - AB- BA + B2 16. Choose the correct answer an identity matrix (1) Every scalar matrix is (2) Every identity matrix is a scalar matrix (3) Every diagonal matrix is an identity matrix (4) A square matrix whose each element is 1 is an identity matrix 17. If f(a) = 2: f' (a) = 1, g(a) =- g'(a) = 2 then (1) -5 (2) 1/5 (3) 5 (4) 0 18. The function f(x) = loge (1 + ax) - log ( 1-bx)/x is undefined at x = 0. The value which should be assigned to f at x = 0 so that it is continuous at x = 0 is b (1) a - (2) a + b/2 (3) a + b (4) loge(ab) 19. If f(x) = cos (log x) then f(x) -1/2 [f(y/x) + f(xy)] has the value: (1) 0 (2) 1 (3) 1/2 (4) -2 20. The area of a circle centred at (1,2) and passing through (4, 6) is 5sq. units (1) (2) 15sq. units (3) 25sq. units (4) 30sq. units 21. The eccentricity of the hyperbola 1999/3 ( x2 + y2) = 1 is (1) 2 (2) 22 (3) 3 (4) 2 22. In the coaxial system of circles x2 + y2 + 2gx + C = 0 when g is a parameter, if C > 0 then the circles are of. (1) non - intersecting type (2) touching type (3) intersecting type (4) orthogonal 23. If the set A has p electrons, B has q elements, then the number of elements in A x B is (1) pq (2) p2 (3) p + q (4) P + q + 1 24. If is the nth root of unity then I + n-1 is (1) 0 (2) 1 (3) -1 (4) 2 25. The contrapositive of (p v q) r is (1) p(q v r) (2) r(p v q) (3) r(p v p) (4) r(p q) 26. For the circuits shown below. (1) (p q) v ( p q) (2) (p q) v ( p v q) (3) (p q) ( q p) (4) p q) ( q p) 27. (1) X (2) Y (3) (4) 1 28. if Z = 1 + i then the multiplicative inverse of Z2 is (1) 1 - i (2) i/2 (3) -i/2 (4) 2i 29. (1) loge3 (2) loge2 (3) 0 (4) loge4 30. Let f(x) = 0x t sin t dt then f' (x) = (1) sin x + cos x (2) x sin x (3) x cos x (4) x2/2 31. The value of0 2sinx/2sin x+2cosx dx is (2) (3) (1) 2 (4) /2 32. (1) 2 (2) loge2 (3) loge2/2 (4) 2 loge2 33. If f(x) = cos-1 [1 - (log x)2/1 + (log x)2 ] then f' (e) = (1) 2/e (2) 1/e (3) 1 (1) /4 - log 2 (4) does not exist 34. (2) /2 + log 2 (3) /2 - log 2 (4) /4 + log 2 35. (1) /ab (2) /2ab (3) ab (4) 2ab 36. If x + iy = a + ib/ c + id then ( x2 + y2)2 = (1) a2 - b2/ c2 - d2 (2) a2 + b2/ c2 + d2 (3) a2 + b2/ c2 + d2 (4) c2 + d2/ a2 + b2 37. The matrix is known as (1) Symmetric matrix (2) Diagonal matrix (3) Upper triangular matrix (4) Skew symmetric matrix 38. The number of improper subgroups of G = { I, -I, i, i} w.r.t. multiplication is (1) 1 (2) 2 (3) 3 (4) 4 39. In the group G = { 0, 1, 2, 3, 4, 5 } under addition modulo 6, the value of {3 x 5-1}-1 is (2) 5 (3) 4 (1) 3 (4) 2 40. An ellipse has its centre at (1, -1) and semi major axis = 8, which passes through the point (1, 3) Then the equation of the ellipse is I)2/16 =1 (1) (x + I)2/64 + (y + (2) (x - I)2/64 + (y + I)2/ 16 =1 (3) (x - I)2/16 + (y + I)2/ 64 =1 (4) (x + I)2/64 + (y - I)2/ 16 =1 41. In the multiplicative group of 2 x 2 matrices of the form a and a R the inverse is (1) (2) (3) (4) does not exist 42. The circle x2 + y2 - 8x + 4y + 4 = 0 touches (1) x - axis (2) y- axis (3) both x and y axes (4) does not touch the axes 43. Focus of the parabola (y- 2)2 = 20 ( x + 3 ) is (2, 2) (1) (2) (-3, 2) (3) (3, -2) (4) (2, -3) 44. The locus of the centre of a circle which touches externally the given two circles is (1) Circle (2) Parabola (3) Ellipse (4) Hyperbola 45. The line p = x cos α + y sin α becomes tangent to x2/a2 - y2/b2 =1 if (1) p = a cos α -b sin α (2) p2 = a2 cos α -b2 sin α (3) p2 = a2 cos α + b2 sin2 α (4) p2 = a2 cos2 α -b2 sin2 α 46. Equation of the normal to the hyperbola x2/a2 - y2/b2 =1 at the point (a sec ) is (1) ax/ sec by/tan = a2- b2 (2) ax/ sec by/tan = a2+ b2 (3) ax/ sec by/tan = a2- b2 (4) ax/ sec by/tan = a- b 47. If tan-1 (x) + 2 cot-1 (x) = 2/3 then x = (1) 3 (2) 2 (3) 3 -1/ 3 + 1 (4) 3 48. The angle between the curve y2 = 4x and x2 + y2= 5 at (1, 2) is (1) /2 (2) /4 (3) tan-1 (3) (4) tan-1 (2) 49. For the curve yn = an-1 x the subnormal at the point is constant. The value of n must be (1) 0 (2) 1 (3) 2 (4) 3 50. The maximum value of the function f(x) = x1/x is (1) e (2) e1/e (3) 1/e (4) 2/e 51. /sin x + cos x dx is (1) 1/2 log (x/2 +/8) +C (2) log tan (x/2 +/8) +C (3) 1/2 log tan ( x/2 +/8) +C (4) 1/2 log tan (x +/4) +C 52. ex (I + tan x + tan2 x) dx = (1) ex tan x + c (2) ex sec x + c (3) ex sin x + c (4) ex cos x + c 53. a sin x + b cos x/ sin x + cos x dx = (1) /4 (2) (a + b)/2 (3) (a + b) (4) (a + b)/4 54. log (tan x) dx = (1) /4 (2) /2 (3) 0 (4) 1 55. The area enclosed between the parabolas y2 = 4x and x2 = 4y is sq. units (1) 1/16 (2) 16/3 sq. units (3) 14/3 sq. units (4) 3/4 sq. units 56. Solution of the differential equation tan y sec2 x dx + tan x sec2 y dy =0 is (1) tan x + tan y = k (2) tan x - tan y = k (3) tan x /tan y = k (4) tan x tan y = k 57. The area bounded by the curve y = loge x, the X axis, and the straight line x = e is (1) e. sq. units (2) 1. sq. unit (3) 1- 1/e. sq. units (4) 1+ 1/e. sq. units 58. Let f be a polynomial. Then the second derivative of f(ex) is (1) f" (ex) ex.f'(ex) (2) f"(ex) e2x + f"(ex)ex (3) f"(ex) (4) f" (ex) e2x + f'(ex)ex 59. If m and n are the order and degree of the differential equation (1) m = 3 , n = 3 (2) m = 3 , n = 2 (3) m = 3 , n = 5 (4) m = 3 , n = 1 60. The value of is (1) 0 (2) a + b + c (3) 4 abc (4) abc