Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Math 9 MOM Page 329 Lesson 22(2) Name SOLUTIONS 8. Simplify a) (6x + 2) + (3x + 4) b) (5a – 3) + (2a + 7 ) c) (8 – 4m) + (-3 – 2m) d) (-x + 4) + (7x – 2) e) (4n2 – 3n – 1) + (2n2 – 5n -3) f) (3x2 + 6x – 8) + (-5x2 – x + 4) g) (2 – 3c + c2) + (5 – 4c – 4c2) h) (8 – 2n – n2) + (-3 – n + 4n2) i) (ab + 3b – 5) + (2ab – 4b – 6) j) (mn – 5m – 2) + (-6n + 3m + 7) (6x + 2) + (3x + 4) 6x + 3x + 2 + 4 9x + 6 (-x + 4) + (7x – 2) -x + 7x + 4 – 2 6x + 2 (5a – 3) + (2a + 7) 5a + 2a – 3 + 7 7a + 4 (4n2 – 3n – 1) + (2n2 – 5n -3) 4n2 + 2n2 – 3n – 5n – 1 – 3 6n2 – 8n - 4 (8 – 4m) + (-3 – 2m) -4m – 2m + 8 – 3 -6m + 5 (3x2 + 6x – 8) + (-5x2 – x + 4) 3x2 – 5x2 + 6x – x – 8 + 4 -2x2 + 5x - 4 (2 – 3c + c2) + (5 – 4c – 4c2) c2 – 4c2 – 3c – 4c + 2 + 5 -3c2 – 7c + 7 (mn – 5m – 2) + (-6n + 3m + 7) mn – 5m + 3m – 6n – 2 + 7 mn – 2m – 6n + 5 (8 – 2n – n2) + (-3 – n + 4n2) -n2 + 4n2 – 2n – n + 8 – 3 3n2 – 3n + 5 (ab + 3b – 5) + (2ab – 4b – 6) ab + 2ab + 3b – 4b – 5 – 6 3ab – b - 11 10. Simplify a) (-2x + 3) – (3x + 2) b) (4 – 5n) – (-6n + 2) c) (8a2 + 2a – 3) – (-6a2 + 4a + 7) d) (-6x2 + 5x + 1) – (4x2 + 5 – 2x) e) (3 – 2m – n2) – (7 – 6m + n2) f) (2 + 6x2) – (7 – 3x2) g) (5 – 6t2) – (3 – t2) h) (5x2 – 3x) – (-3x + 5x2) (-2x + 3) – (3x + 2) -2x + 3 – 3x – 2 -2x – 3x + 3 – 2 -5x + 1 (-6x2 + 5x + 1) – (4x2 + 5 – 2x) -6x2 + 5x + 1 – 4x2 – 5 + 2x -6x2 – 4x2 + 5x + 2x + 1 – 5 -10x2 + 7x - 4 (5 – 6t2) – (3 – t2) (4 – 5n) – (-6n + 2) 4 – 5n + 6n – 2 -5n + 6n + 4 – 2 n+2 (3 – 2m – n2) – (7 – 6m + n2) 3 – 2m – n2 – 7 + 6m – n2 -n2 – n2 – 2m + 6m + 3 – 7 -2n2 + 4m - 4 (5x2 – 3x) – (-3x + 5x2) (8a2 + 2a – 3) – (-6a2 + 4a + 7) 8a2 + 2a – 3 + 6a2 – 4a – 7 8a2 + 6a2 + 2a – 4a – 3 – 7 14a2 – 2a - 10 (2 + 6x2) – (7 – 3x2) 2 + 6x2 – 7 + 3x2 6x2 + 3x2 + 2 – 7 9x2 - 5 5 – 6t2 – 3 + t2 -6t2 + t2 + 5 – 3 -5t2 + 2 5x2 – 3x + 3x – 5x2 5x2 – 5x2 – 3x + 3x 0 11. Simplify. a) (3x – 2) – (x – 1) b) (2a + 3) + (6a – 1) c) (5x2 – 3x) – (x2 + 2x) d) (5t – 4) + (3t – 1) e) (3 – 4x + x2) – (2x – x2) f) (3n2 – 6n + 5) – (3n2 – 2n – 1) (3x – 2) – (x – 1) 3x – 2 – x + 1 3x – x – 2 + 1 2x - 1 (5t – 4) + (3t – 1) 5t – 4 + 3t – 1 5t + 3t – 4 – 1 8t - 5 (2a + 3) + (6a – 1) 2a + 3 + 6a – 1 2a + 6a + 3 – 1 8a + 2 (3 – 4x + x2) – (2x – x2) 3 – 4x + x2 – 2x + x2 x2 + x2 – 4x – 2x + 3 2x2 – 6x + 3 (5x2 – 3x) – (x2 + 2x) 5x2 – 3x – x2 – 2x 5x2 – x2 – 3x – 2x 4x2 – 5x (3n2 – 6n + 5) – (3n2 – 2n – 1) 3n2 – 6n + 5 – 3n2 + 2n + 1 3n2 – 3n2 – 6n + 2n + 5 + 1 -4n + 6 13. a) What polynomial sum do the tiles represent? (-2x2 + 5x – 3 ) + (x2 + x + 7) -2x2 + x2 + 5x + x – 3 + 7 -x2 + 6x + 4 b) Explain how to use the algebra tiles to simplify the sum of the polynomials in part a. If you use the zero effect – meaning crossing out every one positive with one negative and then adding up what is left. Math 9 MOM Page 330 Lesson 22(2) 14. Explain why the two polynomials are not opposites. a) 5x2 – 3x – 2 and 5x2 + 3x + 2 b) x2 + 7x – 9 and –x3 – 7x + 9 c) -4y + y2 + 11 and 4y – y2 + 11 d) x3 – 4x2 + 9 and –x3 + 4x2 – x Because 5x2 should be -5x2 Because –x3 should be –x2 Because + 11 should be -11 Because –x should be + 9 16. Simplify. a) (3x2 – 2x + 4) + (x2 + 3) b) (3x2 – 2x + 4) – (x2 + 3) c) (5m – 2m2) + (m2 – 6) d) (5m – 2m2) – (m2 – 6) (3x2 – 2x + 4) + (x2 + 3) 3x2 – 2x + 4 + x2 + 3 3x2 + x2 – 2x + 4 + 3 4x2 – 2x + 7 (5m – 2m2) + (m2 – 6) 5m – 2m2 + m2 – 6 -2m2 + m2 + 5m - 6 (3x2 – 2x + 4) – (x2 + 3) 3x2 – 2x + 4 – x2 – 3 3x2 – x2 – 2x + 4 – 3 2x2 – 2x + 1 (5m – 2m2) – (m2 – 6) 17. Simplify. Find the value of the polynomial when : i) x = 1, ii) x = -2. a) (1 – 2x2 – x) + (2x – 3x2 – 7) (1 – 2x2 – x) + (2x – 3x2 – 7) 1 – 2x2 – x + 2x – 3x2 – 7 -2x2 – 3x2 – x + 2x + 1 – 7 -5x2 + x – 6 -5(1)2 + (1) – 6 -5 + 1 – 6 -10 -5x2 + x – 6 -5(-2)2 + (-2) – 6 -5(4) – 2 – 6 -20 – 8 -28 b) (3 – 2x2 – x) – (2x – 3x2 – 7) (3 – 2x2 – x) – (2x – 3x2 – 7) 3 – 2x2 – x – 2x + 3x2 + 7 -2x2 + 3x2 – x – 2x + 3 + 7 x2 – 3x + 10 (1)2 – 3(1) + 10 1 – 3 + 10 8 x2 – 3x + 10 (-2)2 – 3(-2) + 10 4 + 6 + 10 20 19. Simplify. a) (3x2 – 7x + 4) + (5x – 7x2 + 6) b) (6 – 3x + x2) + (9 – x) c) (1 – 7x2 + 2x) + (x3 – 3x2 + 7) d) (5x – x2) + (3x + x2 – 7) (3x2 – 7x + 4) + (5x – 7x2 + 6) 3x2 – 7x + 4 + 5x – 7x2 + 6 3x2 – 7x2 – 7x + 5x + 4 + 6 -4x2 – 2x + 10 (1 – 7x2 + 2x) + (x3 – 3x2 + 7) 1 – 7x2 + 2x + x3 – 3x2 + 7 x3 – 7x2 – 3x2 + 2x + 1 + 7 x3 – 10x2 + 2x + 8 (6 – 3x + x2) + (9 – x) 6 – 3x + x2 + 9 – x x2 – 3x – x + 6 + 9 x2 – 4x + 15 (5x – x2) + (3x + x2 – 7) 5x – x2 + 3x + x2 – 7 -x2 + x2 + 5x + 3x – 7 8x - 7 20. Simplify. a) (5x2 + 7x + 9) – (3x2 + 4x + 2) b) (11m2 – 5m + 8) – (7m2 + m – 3) c) (4a2 – 3a3 – 7) – (a2 – 2a3 – 13) d) (-6x2 + 17x – 4) – (3x2 + 12x + 8) (5x2 + 7x + 9) – (3x2 + 4x + 2) 5x2 + 7x + 9 – 3x2 – 4x – 2 5x2 – 3x2 + 7x – 4x + 9 – 2 2x2 + 3x + 7 (4a2 – 3a3 – 7) – (a2 – 2a3 – 13) 4a2 – 3a3 – 7 –a2 + 2a3 + 13 -3a3 + 2a3 + 4a2 – a2 – 7 + 13 -a3 + 3a2 + 6 (11m2 – 5m + 8) – (7m2 + m – 3) 11m2 – 5m + 8 – 7m2 – m + 3 11m2 – 7m2 -5m – m + 8 + 3 4m2 – 6m + 11 (-6x2 + 17x – 4) – (3x2 + 12x + 8) -6x2 + 17x – 4 – 3x2 – 12x – 8 -6x2 – 3x2 + 17x – 12x – 4 – 8 -9x2 + 5x - 12 21. a) Simplify. i) ii) (5 – 2m – m2) – (7m + 4 – 5m2) (x2 – 4x + x3) – (3x + 5 – x3) c) Find the value of each polynomial in part a when m = -2. (5 – 2m – m2) – (7m + 4 – 5m2) 5 – 2m – m2 – 7m – 4 + 5m2 -m2 + 5m2 -2m – 7m + 5 – 4 4m2 – 9m + 1 4(-2)2 – 9(-2) + 1 4(4) + 18 + 1 16 + 19 35 (x2 – 4x + x3) – (3x + 5 – x3) x2 – 4x + x3 – 3x – 5 + x3 x3 + x3 + x2 – 4x – 3x – 5 2x3 + x2 – 7x – 5 2(-2)3 + (-2)2 – 7(-2) – 5 2(-8) + 4 + 14 – 5 -16 + 18 – 5 -3 22. Simplify. i) ii) (y2 – 2y) – (5 – 2y) (8y – 5) – (y – 4) + (3y + 1) b) Find the value of each polynomial in part a when y = 4. (y2 – 2y) – (5 – 2y) y2 – 2y – 5 + 2y y2 – 2y + 2y – 5 y2 – 5 (4)2 – 5 16 – 5 11 (8y – 5) – (y – 4) + (3y + 1) 8y – 5 – y + 4 + 3y + 1 8y – y + 3y – 5 + 4 + 1 10y 10(4) 40