Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
251solnG2 1/31/08 (Open this document in 'Page Layout' view!) 1 G. Measures of Dispersion and Asymmetry. 1. Range Downing & Clark, problem 7 above (Use data to find IQR). Review solutions and terms on page 41 (36 in 3 rd ed.) of Downing & Clark. 2. The Variance and Standard Deviation of Ungrouped Data. Text exercises 3.1b, 3.2b, 3.6, 3.37, 3.24 [3.1b, 3.2b, 3.7, 3.37, 3.23] (3.1b, 3.2b, 3.7, 3.23, 3.33) 3. The Variance and Standard Deviation of Grouped Data. Text exercises 3.28, 3.30 (3.68, 3.70) (work 3.30 in thousands), Downing & Clark pg 42 or 37, problems 6,7 (Find sample standard deviation – hint: run problem 6 in hundreds) (Note that you can use the Excel or Minitab techniques in the graded assignment to compute and sum the fx and fx 2 columns in problems 6 and 7. ), Problems G1, G2. Graded Assignment 1 4. Skewness and Kurtosis. Find the standard deviation, coefficient of variation and measures of skewness in Text problem 3.1, 3.2. Problems G3A, G4 (See 251wrksht). 5. Review a. Grouped Data. b. Ungrouped Data. Section 3 is in this document. ----------------------------------------------------------------------------------------------------------------------------. Exercise 3.28 (Formerly 3.68): The following data is given. Find a) the mean and b) the variance. Class Intervals f 0 - under 10 10 10 - under 20 20 20 - under 30 40 30 - under 40 20 40 - under 50 10 Total 100 Solution: Of course, it is unnecessary to do everything in the table below, but you should know how to do the problem using both computational and definitional formulas. class 0-10 10-20 20-30 30-40 40-50 f 10 20 40 20 10 100 x 5 15 25 35 45 fx 50 300 1000 700 450 2500 x x fx 2 250 4500 25000 24500 20250 74500 -20 -10 0 10 20 f x x -200 -200 0 200 200 0 f n 100 , fx 2500 , fx 74500 , fx 2500 25 and, using the computational formula, a) x 2 So s2 n 100 2 fx nx 2 74600 100 n 1 100 1 25 2 12000 121 .21212 . 99 f x x 4000 2000 0 2000 4000 12000 2 251solnG2 1/31/08 (Open this document in 'Page Layout' view!) f x x 2 Or using the definitional formula s 2 2 12000 121 .21212 . So 99 n 1 s 11.0096 0.4404 . s 121.21212 11.0096 and C 25 x Exercise 3.30 (Formerly 3.70): The following sample data is given. f M is frequency in March, f A in April. Find a) the means and b) the standard deviations. c) Have these statistics changed substantially between the months? Class Intervals fM fA $0 - under $2000 6 10 $2000 - under $4000 13 14 $4000 - under $5000 17 13 $5000 - under $8000 10 10 $8000 - under $10000 4 0 $10000 - under $12000 0 3 Total 50 50 Solution: Note that the intervals are not even. Only computational formulas are used below. Numbers are in thousands. class fM fA x x fM x2 f Ax2 fM x f Ax 0- 2 6 1 6.0 6.00 10 1.0 10.0 10.00 2- 4 13 3 39.0 117.00 14 3.0 42.0 126.00 4- 5 17 4.5 76.5 344.25 13 4.5 58.5 263.25 5- 8 10 6.5 65.0 422.50 10 6.5 65.0 422.50 8-10 4 9 36.0 324.00 0 9.0 0.0 0.00 10-12 0 11 0.0 0.00 3 11.0 33.0 363.00 50 222.5 1213.75 50 208.5 1184.75 f n 50 , f x 222 .5 , f x 1213 .75 , f f x 222 .5 4.45 x f x 208 .5 4.17 a) x 2 So M M M n 50 b ) Using the computational formula, f f M 208 .5 and f Ax 2 1184 .75 . A M 2 sM Ax x 2 nx M2 n 1 A 1213 .75 50 50 1 n 4.45 2 50 223 .625 4.56378 . So s M 4.56378 2.1363 . 49 4.17 2 315 .305 6.43480 . So s 4.56378 2.5367 11184 .75 50 A n 1 50 1 49 Though the mean has fallen somewhat (6%), there are more items in both the largest and smallest categories, making the standard deviation larger (by 19%). s A2 Ax 2 nx A2 251solnG2 1/31/08 (Open this document in 'Page Layout' view!) 3 Downing and Clark, pg. 37, Application 6: Find sample standard deviation of the data below– hint: run problem 6 in hundreds). The given data is group number, (group), frequency: 1, ( 0-1000), 12; 2, (10002000), 15; 3, (2000-3000), 19; 4, (3000-4000), 22; 5, (4000-5000), 30; 6, (5000-6000), 56; 7, (6000-7000), 48; 8, (7000-8000), 40; 9, (8000-9000), 30; 10, (9000-10000), 16; 11, (10000-11000), 4; 12, (1100012000), 2. Solution: To use the computational method, construct the following table. Note that we have converted the data into hundreds so that the group (2000-3000) is treated as (20-30). This means that the fx column is in hundreds, the fx 2 column is in 100 2 ten thousands and the fx 3 column is in 100 3 millions. fx 2 fx 3 1 300 1500 2 3375 50625 3 11875 296875 4 26950 943250 5 60750 2733750 6 169400 9317000 7 202800 13182000 8 225000 16875000 9 216750 18423750 10 144400 13718000 11 44100 4630500 12 26450 30417500 1132150 fx 16800 fx 16800 , f n 294 , fx 2 1132150 , x 57 .142857 (in hundreds So n 294 – so actually 5714.2857) and, using the computational formula to find the sample variance , fx 2 nx 2 1132150 294 57 .142857 2 172150 s2 587 .54266 (in 100 2 ten thousands). So n 1 294 1 293 s s 587.54266 24.2393 (in hundreds – so actually 2423.93) and C 24.2393 0.4242 . x 57.142857 Downing and Clark, pg. 37, Application 7: Find sample standard deviation of the data given in the first three columns below. Row group x fx fx 2 fx 3 f 1 0-10 122 5 610 3050 15250 2 10-20 180 15 2700 40500 607500 3 20-30 256 25 6400 160000 4000000 4 30-40 350 35 12250 428750 15006250 5 40-50 311 45 13995 629775 28339876 6 50-60 278 55 15290 840950 46252248 7 60-70 250 65 16250 1056250 68656248 8 70-80 211 75 15825 1186875 89015624 9 80-90 180 85 15300 1300500 110542496 10 90-100 175 95 16625 1579375 150040624 11 100-110 143 105 15015 1576575 165540368 12 110-120 120 115 13800 1587000 182504992 13 120-130 106 125 13250 1656250 207031248 14 130-140 99 135 13365 1804275 243577120 15 140-150 97 145 14065 2039425 295716640 16 150-160 75 155 11625 1801875 279290624 Total 2953 196365 17691424 1886137088 f n 2953 , fx 2 17691424 . This means fx 196365 and So Row group 0-1000 1000-2000 2000-3000 3000-4000 4000-5000 5000-6000 6000-7000 7000-8000 8000-9000 9000-10000 10000-11000 11000-12000 f 12 15 19 22 30 56 48 40 30 16 4 2 294 x 5 15 25 35 45 55 65 75 85 95 105 115 fx 60 225 475 770 1350 3080 3120 3000 2550 1520 420 230 16800 fx 196365 66.496783 x n 2953 and, using the computational formula to find the sample variance , 251solnG2 1/31/08 (Open this document in 'Page Layout' view!) s2 fx 2 nx 2 n 1 17691424 2953 66 .496783 2 4633783 .2 1569 .7098 . So 2953 1 2952 s 1569.7098 39.6196 . Problem G1: If the mean return for an industry is 10% with a standard deviation of 6%, out of 100 firms how many do you expect to have returns above 22%? 1 Solution: Use Chebyshef's Rule. For any number k greater than 1, at least 1 2 of the points will fall k 1 within k standard deviations of the mean (i. e. in the interval k ) and no more than 2 of the points k will fall beyond k standard deviations of the mean . Note that 22% is above the mean by a number of 12 12 standard deviations. Since x 22 10 12 and 2 , k 2. If the proportion in the tails is no 6 1 1 1 1 more than 2 , we can compute 2 2 and conclude that at most one quarter of the points are 4 k k 2 above 22%. This would be 25 firms. Problem G2: If the mean is 5 and the standard deviation is 2, find an interval that must contain at least the central two-thirds of the observations. Solution: Again use Chebyshef's Rule. If we want a central interval with no less than 1/3 of the 1 1 observations, then the tails must contain at most 1/3. So we can say that 2 . So k 2 3 , which means 3 k that k 3 1.732 . We know that 5 and 2 , so that our interval is k 5 1.732 2 5 3.464 , or 1.536 to 8.464. 4