Download TopicName Test - thepioneersofoz

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trigonometry Test REVISION
Name: ___________________________
Section A Multiple Choice
1
Given sin  = 0.4, then cos  =
A 0.7
B 0.9
C 0.6
D 0.4
E 0.5
B
2
cos 1322′53″ correct to four decimal
places is:
A 0.2311
B 0.2312
C 0.9734
D 0.9735
E 0.9729
E
tan 13cos 82 =
A 0.37
B 0.44
C 1.4
D 0.032
E 0.97
D
3
4
The size of the angle, a, in the figure
below is:
5
A
B
C
D
E
6
C
4244′25″
4215′13″
4744′47″
3355′3″
4755′33″
MathsQUEST Chapter 4 (A,B,C,D,E,F,G) - Trigonometry Test REVISION
C
50.3
25.4
28.5
50.1
113
The size of the angle, d, in the figure
below is:
A
B
C
D
E
A
98.3
63.4
181.5
63.5
89.3
The length of the side, c, in the figure
below is:
A
B
C
D
E
7
A
B
C
D
E
The length of the side, b, in the figure
below is:
2618′42″
6341′18″
4152′23″
487′37″
6814′15″
B
8
The size of the angle, e, in the figure
below is:
A
B
C
D
E
B
12
A hiker travels for 9.8 km on a bearing
082T. The distance the hiker is north
of the starting point is:
A 7.9 km
B 9.7 km
C 1.4 km
D 4.9 km
E 9.4 km
432'
4658'
5541'
3418'
469'
9
A tree 34 m high casts a shadow 12 m
A
long. The angle of inclination of the sun
is closest to:
A 70
B 21
C 69
D 19
E 79
10
A chord of a circle subtends an angle of E
15 at the centre. If the chord is 13 cm
long, then the radius of the circle is
closest to:
A 100 cm
B 104 cm
C 39 cm
D 52 cm
E 50 cm
11
The true bearing of N75W is:
A 075T
B 255T
C 105T
D 285T
E 345T
D
MathsQUEST Chapter 4 (A,B,C,D,E,F,G) - Trigonometry Test REVISION
C
Trigonometry Test REVISION
Name: ___________________________
Section B Short/Extended answer
1
Find the angle for each of the following in
degrees, minutes and seconds.
(a) cos  = 0.8
(b)
2
tan  = 10.6732
Find the length of the side, f, in the figure
below.
4
(a)
cos = 0.8
  cos 1 0.8
  365212
(b)
tan  = 10.6732
  tan 1 10.6732
  843851
A
H
f
cos 30 
17.2
f  17.2  cos 30
cos  
3
f  14.9
3
Find the length of the side, g, in the figure
below.
O
H
2.14
sin 166' 
g
2.14
g
sin 166'
sin  
3
g  7.72
4
Find the size of the angle, h, in the figure
below, correct to the nearest minute.
O
A
15.1
tan h 
14.7
tan  
15.1
14.7
h  4546'
h  tan 1
MathsQUEST Chapter 4 (A,B,C,D,E,F,G) - Trigonometry Test REVISION
3
5
Find the length of the side, i, in the figure
below.
sin  
3
O
H
i
27.12
i  27.12  sin 2712'
sin 2712' 
i  12.40
6
Find the length of the side, j, in the figure
below.
A
H
1046
cos 2417' 
j
1046
j
cos 2417'
cos  
3
j  1148
7
Find the length of the side, k, in the figure
below.
O
A
k
tan 571' 
2.36
k  2.36  tan 571'
tan  
3
k  3.64
8
From the top of a building, 202 m high, the
angle of depression to another building, 120 m
away, is 25. How high is this second building?
4
O
A
x
tan 25 
120
x  120  tan 25
tan  
x  55.96
Height of 2nd building  h
h  202  55.96
h  146.04
h  146 m
MathsQUEST Chapter 4 (A,B,C,D,E,F,G) - Trigonometry Test REVISION
9
The diameter of a vertical cone is 7.5 cm and
its semi-vertical angle is 27. Calculate the
length of the slant edge of the cone.
4
Right-angled triangle constructed by halving
diameter.
O
sin  
H
3.75
sin 27 
l
3.75
l
sin 27
l  8.26 cm
10
Change the following true bearings to compass
bearings:
(a) 193T
(a)
(b)
272T
(b)
4
180 + 13 = 193
193T = S13W
360 – 272 = 88
272T = N88W
MathsQUEST Chapter 4 (A,B,C,D,E,F,G) - Trigonometry Test REVISION
11
A plane flies for 195 km on a bearing of
10211'T and then for 104 km on a bearing
21322'T How far south of the starting point is
the plane?
5
First leg of journey.
opposite
sin  
hypotenuse
s
sin 1211'  1
195
s1  195  sin 1211'
s1  41.15
Second leg of journey.
adjacent
cos 
hypotenuse
s
cos 3322'  2
104
s 2  104  cos 3322'
s 2  86.86
Distance south of starting point
 s1  s 2
 41.15  86.86
 128 .01
 128 km
MathsQUEST Chapter 4 (A,B,C,D,E,F,G) - Trigonometry Test REVISION
12
13
14
If sin  = 0.0305:
(a) What is the angle  (to the nearest
minute)?
(a)
sin  = 0.0305
  sin 1 0.0305
  145'
(b)
What is the value of cos  ?
(b)
cos  cos145'
cos145'  0.9995
(c)
Calculate tan  .
(c)
tan   tan 145'
tan 145'  0.0306
(d)
Show this information on a well labelled
diagram.
(d)
State in which quadrant each of the following
angles lies.
(a) 192
(a)
192 is in 3rd quadrant
as 180  192  270
(b)
(b)
172 is in 2nd quadrant
as 90  172  180
172
6
2
Calculate sin 65 and compare this answer with sin 65 = 0.9063
each of the following. What can you conclude?
(a) sin 115
(a) sin 115= 0.9063
Therefore sin 115 = sin 65
(b)
sin 245
(b)
sin 245 = 0.9063
Therefore sin 245 = –sin 65
(c)
sin 295
(c)
sin 295 =  0.9063
Therefore sin 295 = sin 65
MathsQUEST Chapter 4 (A,B,C,D,E,F,G) - Trigonometry Test REVISION
4
15
Complete the table of values for the rule
y = sin x
and use the range of x values given to sketch
the graph.
x
0°
30°
60°
90° 120° 150° 180°
y
x
210° 240° 270° 300° 330° 360° 390°
y
16
(a)
Convert 120º to radian measure,
expressing the answer in terms of π.
5
Convert the radian measurement
to
6
degrees.
4
x
0°
30°
60°
y
0
0.5
0.9
1
0.9
0.5
0
x
210° 240° 270° 300° 330° 360° 390°
y
–0.5 –0.9
(a)
120º =
(b)
5
6
c
(b)
90° 120° 150° 180°
MathsQUEST Chapter 4 (A,B,C,D,E,F,G) - Trigonometry Test REVISION
c
–1

–0.9 –0.5
 120
180
c
2
=
3
180 5

=

6
= 150º
0
0.5
4
Related documents