Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
-1- Geometry Rules! Chapter 4 Notes Notes #22: Section 4.1 (Congruent Triangles) and Section 4.4 (Isosceles Triangles) Congruent Figures Corresponding Sides Corresponding Angles ***_________________ parts of_______________ triangles are _____________ *** Practice: 1.) If ∆CAT ∆DOG, then complete: (draw a picture first) mC _____ TCA _____ GD _____ O _____ TA = _____ ODG _____ 2.) ZAK JOE a) Name three pairs of corresponding angles: b) Name three pairs of corresponding sides: -2- 3.) The two triangles shown are congruent; complete. (It will help to rotate the triangles first, to get them in corresponding positions) a) RAV _____ b) R _____ c) EV = _____ d) mA _____ e) NV _____ f) VRA _______ E N V R A Isosceles Triangles Isosceles Triangle Theorem ( ) If two sides of a triangle are congruent, then the angles opposite them are ___________. Converse of the Isosceles Triangle Theorem ( ) If two angles of a triangle are congruent, then the __________ opposite them are _________. -3- Equilateral Triangles Practice: Solve for x and y 4.) 5.) x x 7y - 5 3y + 7 40 y 6.) 7.) 64 x y 3x - 2 9 y 58 100 12 5x - 10 40 8.) In equilateral ∆XYZ, mX a b and mY 2a b . Find a and b. 10.) What can you conclude from the picture? 9.) In equiangular ∆ABC, AB = 2x + y, BC = 6x – 2y, and AC = 10. Solve for x and y. -4F 10 cm A 10 cm E 10 cm G 10 cm C B B 11.) Given: C is the midpoint of BD 1 2 Prove: A 2 1 AB CD D Reasons Statements 1.) 1.) 2.) 2.) Definition of Midpoint 3.) C AB BC 3.) 4.) 4.) 12.) B Given: 1 4 Prove: AB BC A 1 2 3 4 Reasons Statements 1.) 1.) 2.) 2.) C -5- 3.) 3.) Substitution 4.) 4.) -6- Notes #23: Sections 4.2 and 4.5 (Methods of Proving Triangles Congruent) Q: How can we prove that two triangles are congruent to each other? A: Five ways: SSS, SAS, ASA, AAS, HL SSS: _______-________-________ Postulate SAS: _______-________-________ Postulate ASA: _______-________-________ Postulate AAS: _______-________-________ Postulate HL: _____________-______________-(_______________) Postulate -7- Are the triangles congruent? If so, write the congruence and name the postulate used. Redraw your triangles so they line up You need three congruent pairs of sides/angles to follow: SSS, SAS, ASA, AAS, or HL Look for “hidden” pieces in: - vertical angles - overlapping sides - congruent angles formed by parallel lines - bisected angles - ITT/Converse of ITT - midpoints 2.) 1.) V Q R P O W X U S T ______ ______ by ________ ______ ______ by ________ 3.) 4.) Z S B 80 5 in 7 in A X Y A B 5 in 7 in 80 C C R T ______ ______ by ________ ______ ______ by ________ 5.) 6.) E E G G F F D D H ______ ______ by ________ H F is the midpoint of DG and EH ______ ______ by ________ -8- 7.) 8.) V A T M H U MT bisects AMH and ATH W X ______ ______ by ________ 9.) ______ ______ by ________ 10.) V A B D U C ______ ______ by ________ W X ______ ______ by ________ 11.) X Y Given: WX YZ , XY ZW Prove: WXY YZW Z W Reasons Statements 1.) 1.) 2.) 2.) 3.) 3.) -9- 12.) X Y Given: WX YZ , WX YZ Prove: WXY YZW Z W Reasons Statements 1.) 1.) 2.) 2.) Reflexive 3.) XWY ZYW 3.) 4.) 4.) Notes #24: More Proofs and Section 4.3 (Using Congruent Triangles) Are the triangles congruent? If so, write the congruence and name the postulate used. 1.) 2.) X X Y Z W Y Z W WX YZ , WX YZ WX YZ , XY ZW 3.) 4.) X W X Y Z W WX YZ , XY ZW WX YZ , XY ZW Y Z - 10 - 5.) Complete: B a) ∆ABC __________ because _______ b) AB = ____ because ___________ E C A c) AC = EC because ___________. Then C is the midpoint of _________ by _______________________________. D d) A _____ because _________. Then AB ED because _______________________. Complete the proofs: follow these key steps 1. Re-draw and label your picture; mark congruencies 2. Find and list 3 congruencies: shared sides (reflexive) vertical angles alternate interior/corresponding angles (only when lines are ) angle bisectors midpoints ITT 3. State ∆ ∆ by SSS, SAS, ASA, AAS, or HL 4. State part part by CPCTC 6.) Given: WX YZ , XY ZW X Y Prove: X Z Z W Statements Reasons 1.) 1.) 2.) 2.) 3.) _______ _______ 3.) - 11 - 4.) 7.) Given: WX YZ , YX WZ 4.) X Y Prove: XY ZW Z W Reasons Statements 1.) 1.) 2.) 2.) If two parallel lines are cut by a transversal, then ____________________ angles are congruent. 3.) 3.) 4.) _______ _______ 4.) 5.) 5.) 8.) Given: C is the midpoint of AD and BE D B C Prove: A D A Statements E Reasons 1.) 1.) 2.) 2.) Definition of Midpoint 3.) 3.) 4.) _______ _______ 4.) - 12 - 5.) 5.) 9.) Given: CT bisects ACS and ATS A Prove: A S C T Statements S Reasons 1.) 1.) 2.) 2.) Definition of __________ ___________ 3.) 3.) 4.) 4.) 5.) 5.) 10.) Given: 1 2, X is the midpoint of WY Y Prove: WX YZ X Statements 1 2 Z W Reasons 1.) 1.) 2.) 2.) Definition of ______________ 3.) 3.) 4.) 4.) - 13 - Notes #25: Algebra and Proof Review: y 1.) Graph the points and name the quadrant in which each point is found: 10 9 8 7 6 A(-3, 2) 5 B(0, -7) 4 3 2 C(4, -1) D(6, 0) 1 x -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 -1 1 2 3 4 5 6 7 8 9 10 -2 -3 2.) Evaluate for a = -2 and b = 3 -4 -5 -6 -a – b(ab – 3) -7 2 -8 -9 -10 4.) In equilateral ABC , mA 2 x 4 y and mB x 5 y . Solve for x and y. 3.) Simplify: -32 – 4(22 – 1) – (-3) 5.) Solve for x and y y 80 x 6.) Solve for x and y 3x + 5 8 120 y 50 12 7x - 3 30 7.) What does CPCTC stand for? 8.) KIM BEN Complete: a) IK _____ b) I _____ c) ENB _____ d) IK _____ - 14 Complete each proof by filling in the blanks. A 1. B Given: AB || DE AB DE 3. Given: E is the mdpt of TP and MR C Prove: ∆ABC ∆EDC D T M 1. 2. 2. ll lines cut by a _____________ 2. 4. ∆ A D B 1. 1. 2. 2. Reflexive 3. 3. ll lines cut by a trans form alt. int. ’s 4. 4. 3. ∆ 4. 5. 4. Prove: ∆ADB ∆CBD 2. 3. trans form alt. int. 3. Given: AB CD AB || CD TE PE ____________ ’s 3. 1. Given 2. 1. Given P Prove: TM PR E 1. R E C 5. Given: 1 4; 2 3 M is the mdpt. of AB Prove: AC BD A C 1 2 1. 2. AM BM 3. 3. ∆ 3. 4. 3 M 1. ∆ D 4. 4 B 15 5. Given: AD || ME MD || BE M is the mdpt. of AB Prove: MD BE 2 M 3 2. S 1 2 3 T 4 1. 1. Given 2. 3. ITT 3. 3 1 4 2 2. 4. 4. 3. ∆ 4. 5. 5. Given: WO ZO XO YO Prove: W Z G W Z X 1. 1. 2. 2. 4. E R Given: RS RT Prove: 3 4 1. 3. 3. ∆ 7. D B 2. 2 4 6. 1 4 1. 4. ∆ A ∆ 3. 4. O 8. Y 1 Given: M is the mdpt of JK 1 2 Prove: JG MK 2 M K 1. 1. 2. KM JM 2. 3. JM JG 3. 4. 4. J 16 Notes #26: Section 4.7 (Special Segments in Triangles) and Proof Review Median: connects a ___________ to the __________ of the opposite side ________ and _________ are medians of __________ B C A _____is the _____________ of AC _____ is the _____________ of BC ______ = ______ B ______ ______ C A ____ is equidistant from ___ and ___ ____ is equidistant from ___ and ___ Altitude: a ________________ segment from a vertex to an opposite side ________ and _______ are ______________ of ∆ABC B C A B A C ____ _____ ____ _____ m _________ 90 m _________ 90 17 Perpendicular Bisector: a _______________________ segment to the ________________of the opposite side ______ and ______ are _________________ _________________ of ∆ABC B _____is the _____________ of AC C A _____is the _____________ of BC ____ _____ ____ = _____ B C A ____ _____ ____ _____ If X is on the perpendicular bisector to AC then X is equidistant from ______ and _______. Angle Bisector: cuts a ___________ ____________ into two equal ____________ AND is ________________________ from the sides of the angles. __________ are _____________________ of ∆ABC B m _______ m _________ C A _______ _________ _____ is equidistant from _____ and ______. B _____ is equidistant from ______ and ______. A C 18 Practice: 1.) XZ is a median to WY . WZ 5x 3 and ZY 22 . Solve for x. X W Y Z 2.) BD is a perpendicular bisector to AC . mBDA 3x 15 , AD 2 y 6 and DC 4 y 14 . Solve for x and y. B A C D 3.) Name an angle bisector, a median, and an altitude of ABC C Angle bisector: _________ X Median: _________ Y Altitude: _________ A Z B 19 Proof Review C 1.) Given: X is the mdpt. of CB CD AB D X A B Prove: AB DC 1. 2. _____ ____ 1. ___________ 2. _____ 3. 3. 4. 4. 5. 5. 2. 1. Given Prove: JM LK J LM JK; LM || JK 1. 2. L M Given: LM JK LM || JK K Given 2. If parallel lines are cut by a transversal, then alternate interior angles are congruent. 3. 4. 3. _____________ 5. 4. 5. 3.) Given: WX ZY , WY ZX W X 3 4 Prove: WX ZY 1 Y 2 Z 1.__________________________ 1._________________________ 2.__________________________ 2._________________________ 3.__________________________ 3._________________________ 4.__________________________ 4._________________________ 5.__________________________ 5._________________________ 20 O 4.) Given: 1 3 Prove: ON OP N 1 2 P 3 1.__________________________ 1.__________________________ 2.__________________________ 2.__________________________ 3.__________________________ 3.__________________________ 4.__________________________ 4.__________________________ Are the triangles congruent? If so, write the congruence and name the postulate used. 5.) 6.) E E G G F F D D H H ______ ______ by ________ 7.) F is the midpoint of DG and EH ______ ______ by ________ 8.) V A T M H U MT bisects AMH and ATH W X ______ ______ by ________ 9.) ______ ______ by ________ 10.) V A B D C ______ ______ by ________ U X W ______ ______ by ________ 21 Notes #27: Test and Algebra Review 1.) Solve: 2.) Get y alone: 3 x 1 x 3 5 3.) Add: 2x 5 y 8 4.) Subtract: 6x 2 4 x 3 2 x 2 3x 1 5.) Simplify: 6x 7.) Evaluate: if a = -2 and b = 4 -2xy(4x2 + 6y - 3) 8.) Evaluate: if x = -1 and y = 3 -2a2 – 3ab(a + 2b) 11.) FOIL: 4 x 3 2 x 2 3x 1 6.) Distribute: 2 x(4 x 2 x) 5x 2 ( x 7 x) 9.) FOIL: 2 ( x 3)( x 4) (5 x 2)(2 x 1) -y2 – xy(y – x) 10.) FOIL: 12.) FOIL: (3x 1)(2 x 4) 3 x( x 4)( x 1) 22 Chapter 4 Study Guide: 1. Given: WX ZY , XY WZ X Y 3 4 Prove: X Z 2 1 W Z Statements 1. _________________________ 2. _________________________ _________________________ 3. _________________________ 4. _________________________ 5. _________________________ Reasons 1. ________________________ 2. ________________________ ________________________ 3. ________________________ 4. ________________________ 5. ________________________ X Y 3 2. Given: WX ZY , XY WZ 4 2 Prove: XY WZ W 1 Z Statements 1. _________________________ 2. _________________________ 3. _________________________ 4. _________________________ 5. _________________________ Reasons 1. ________________________ 2. ________________________ 3. ________________________ 4. ______ CPCTC__________ 5. ________________________ B D 3. Given: AB DE , C is the midpoint of BE C Prove: AC CD A Statements 1. _________________________ 2. _________________________ 3. _________________________ 4. _________________________ 5. _________________________ 6. _________________________ E Reasons 1. ________________________ 2. ________________________ 3. ________________________ 4. ________________________ 5. ________________________ 6. ________________________ N P 4. Given: NO PO, MO QO O Prove: M Q Statements 1. _________________________ 2. _________________________ 3. _________________________ 4. _________________________ M Q Reasons 1. ________________________ 2. ________________________ 3. ________________________ 4. ________________________ 23 5. Name each of the special segments: (a) median C B (b) altitude D (c) angle bisector E A 6. Complete: (a) F is equidistant from _____ and _____. Therefore, _____ ________ F (b) Any point on AD is equidistant from ______ and _______. ABC is equilateral. If mA 2 x y and mB 4 x y , solve for x and y. 7. 8. In XYZ , XY YZ . If mX 5x 10 and mZ 2x 44 solve for mX 9. Are the pairs of triangles congruent? If so, name the congruence and the postulate used. a) b) c) d) 10. a) Solve for x: b) Solve for y: B B 3y - 6 30 2x + 17 2y + 8 A 12 64 58 6x - 7 C C A 24 11.) Solve each system… a) Using Elimination x + 2y = 2 3x – 3y = -12 b) Using Substitution 12.) The sum of twice an angle’s complement and it supplement is 249 degrees. Find the angle, its complement, and its supplement. 13.) The difference of twice a number and eight is four more than three times the number. Find the number. 14.) QX bisects PQR , mPQX 4 x 11 , mXQR 2 x 5 . What kind of angle is PQR ? 15.) The measure of one angle of a triangle is ten more than twice the smaller angle. The third angle of the triangle is ten less than six times the smallest angle. Find the measure of all three angles and then classify the triangle. (Hint: let x = the smallest angle) 16.) Evaluate a) (p – px) + (a + p) for a = -3, p = 2, x = -4 x – 3y = -4 2x + 2y = 4 b) -32 – 2[2(5 – 3) – (2 – 3)] 17.) If AH is the perpendicular bisector of MT , solve for x and y. mMHA 4x 18 MH 5 y 3 HT 4 y 15 A M H T 25