Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chemistry Semester Exam Review Complete all problems on notebook paper. Transfer your final answers to the answer sheet. Measurements and Calculations Significant Figures – adding, subtracting, multiplying, dividing Scientific Notation - adding, subtracting, multiplying, dividing Metric Conversions Dimensional Analysis Temperature Conversions Density – D=m/V, V=LWH, V=r2h, V=Vf - Vi Determine the number of significant figures in the following numbers. a. 1 SF b. 2 SF c. 4 SF d. 6 SF e. 10 SF 1. 0.0000787690 g d 2. 900000 km a 3. 0.009001 mm c 4. 9.100 cg c Record your answer with the correct number of significant figures and units. 5. 45.6 g + 3.59 g a. 49.19 g b. 49.0 g c. 49.2 g d. 49.20 g 6. 0.00134 mL - 0.00023 mL a. 0.00111 mL b. 11 mL c. 0.0011 mL 7. (56.2 cm)(1.234 cm) a. 69.3 cm2 b. 69.4 cm2 c. 69.3508 cm2 d. 69.35 cm2 8. (3.20 km2)/(4.0 km) a. 13 km b. 8 km c. 0.80 km d. 0.00157 mL d. 2.56 km Convert the following numbers from scientific notation to ordinary notation. 9. 3.02 x 10-3 g a. .302 x 10-3 g b. 3.02 g c. 0.00302 g d. 3020 g 10. 5.791 x 105 m a. 579100 m b. 5.791 m c. 0.00005791 m d. 57910 m Convert the following numbers from ordinary notation to scientific notation. 11. 4560 cm a. 456 x 103 cm b. 4.56 x 103 cm c. 4.56 x 10-3 cm d. 4.56 cm 12. 0.0076 g a. 7.6 x 10-3 g b. 7.6 x 103 g c. 76 x 10-3 g d. 0.0076 x 10-3 g Perform the following calculations. 13. How many kilograms are in 234 mg? a. 234000 kg b. 234 kg c. 0.000234 kg 14. How many micrometers are in 0.000325 km? a. 325 μm b. 325000 μm c. 0.325 μm d. 0.234 kg d. 0.000325 μm 15. The Density of Mercury is 13.0 g/mL. If you have 24.3 mL of Mercury, how much does it weigh? a. 316 g b. 315.9 g c. 0.535 g d. 1.87 g 16. A cube of wood that weighs 16.5 g measures 24.21 cm by 1.45 cm by 7.34 cm. What is the density of the wood? a. 7.25 g/cm3 b. 0.0640 g/cm3 c. 258 g/cm3 d. 4250 g/cm3 Matter Chemical vs. Physical Properties Chemical vs. Physical Changes Elements and Compounds Mixtures and Solutions Classify the following as a) chemical property or b) physical property. 17. Color b) physical property 18. Flammability a) chemical property 19. Solubility b) physical property Classify the following as a) chemical change or b) physical change. 20. tearing paper b) physical change 21. burning wood a) chemical change 22. boiling water b) physical change Classify the following as an a) element or a b) compound. 23. Phosphorus a) element 24. carbon dioxide b) compound 25. water b) compound Classify the following as a) mixture or b) pure substance. 26. a multivitamin tablet a) mixture 27. distilled water b) pure substance 28. tap water a) mixture Classify the following as a) homogeneous mixture or b) heterogeneous mixture. 29. chunky peanut butter b) heterogeneous mixture 30. a solution of copper (II) sulfate a) homogeneous mixture 31. a bag of trail mix b) heterogeneous mixture Chemical Foundations: Elements, Atoms, and Ions Dalton’s Atomic Theory Subatomic Particles – Protons, Neutrons, Electrons History of the Atom Isotopes Atomic Numbers and Mass Numbers Cation vs. Anion Ratio of Atoms Nuclear chemistry Give the symbols for the following elements a. B b. Be c. H 32. Beryllium b. Be 33. Boron a. B 34. Helium d. He 35. Hydrogen c. H d. He Write the formula for the compound containing 36. a two to three ratio of iron to oxygen a. Fe2O3 b. I2O3 c. Fe3O2 d. I3O2 37. six carbon, twelve hydrogen and six oxygen a. CH2O b. C6H12O6 c. C6H6O6 Name the scientist responsible for the following. Put in order (c, b, a) a. Gold Foil Experiment b. Plum Pudding Model c. Atomic Theory 38. John Dalton c. Atomic Theory (Solid Sphere Model) 39. Ernest Rutherford a. Gold Foil Experiment 40. JJ Thomson b. plum pudding model Determine the number of protons, neutrons, and electrons in the following. 41. 41Ca a. 41p, 41n, 41e b. 20p, 20n, 20e c. 20p, 41n, 20e d. 20p, 21n, 20e 42. 60Co+3 a. 27p, 60n, 27e b. 27p, 33n, 24e c. 24p, 41n, 27e 43. 6Li+1 a. 6p, 6n, 7e b. 3p, 3n, 3e c. 3p, 3n, 2e 44. 31P-3 a. 15p, 31n, 15e b. 15p, 16n, 15e c. 15p, 16n, 18e d. 27p, 33n, 30e d. 6p, 2n, 3e d. 31p, 15n, 17e Complete the following nuclear equations by supplying the missing particle. Classify the type of decay 4 a. 2 He , alpha decay b. 4 2 He , beta decay c. 0 1 e , alpha decay d. 45. 226 88 Ra 222 86 Rn + _?_ a. 2 He , alpha decay 46. 222 86 Rn 218 84 Po + _?_ a. 2 He , alpha decay 47. 39 17 48. 23 10 4 d. Ne d. Na + _?_ e , beta decay 4 Cl 39 18 Ar + _?_ 23 11 0 1 0 1 e , beta decay 0 1 e , beta decay Average Atomic Mass Average Atomic Mass - the weighted average of the masses of the isotopes of the element. Average Atomic Mass = [(isotope mass)(percent abundance)] To solve for percent abundance assign the first isotope x and the second isotope equal to 100% - x. 49. There are two naturally occurring isotopes of rubidium: 85Rb, which has a mass of 84.91 amu and 87Rb, which has a mass of 86.92 amu. The atomic mass of rubidium is 85.47 amu. What is the percent abundance of each of the isotopes? 85 a. Rb = 72.1 %, 87Rb = 27.9% c. 85Rb = 27.9%, 87Rb = 72.1% b. 85Rb = 85%, 87Rb = 15% d. 85Rb = 97.7%, 87Rb = 2.3% 85.47 amu * 100% = (84.91 amu * x) + [86.92 amu * (100% - x)] 8547 amu% = 84.91amu*x + 8692 amu% - 86.92amu*x -145 amu% = -2.01amu*x x = 72.1% 85Rb 100 – 72.1% = 27.9% 87Rb 50. If element X consists of 78.8% of atoms with a mass of 24.0 amu, 10.1% of atoms with a mass of 25.0 amu, and 11.2% of the atoms with a mass of 26.0 amu, what is the atomic mass of element X? a. 25.0 amu b. 24.3 amu c. 33.3 amu d. 2434 amu x * 100% = (24.0amu*78.8%) + (25.0amu*10.1%) + (26.0amu*11.2%) x*100% = 1890 amu% + 253 amu% + 291 amu% x*100% = 2430 amu% x = 24.3 amu Semester Exam Review Part 2 Complete all problems on notebook paper. Transfer your final answers to the answer sheet. Nomenclature Periodic Table Naming Compounds Ionic, Molecular, Acids Writing Formulas for Compounds Ionic, Molecular, Acids 51. Write the name for the following compounds. a. AuBr3 gold (III) bromide g. Ag2SO4 silver sulfate b. Co(CN)3 cobalt (III) cyanide h. H2S hydrosulfuric acid c. HNO2 nitrous acid i. Be(OH)2 beryllium hydoxide d. Mg3(PO4)2 magnesium phosphate j. SF6 sulfur hexafluoride e. HCN hydrocyanic acid k. CuO copper (II) oxide f. B2H6 diboron hexahydride 52. Write the formula for the following compounds. a. barium peroxide BaO2 g. tricarbon hexahydride C3H6 b. tetraphosphorus decoxide P4O10 h. hydronitric acid H3N c. cesium sulfite Cs2SO3 i. zinc nitrate Zn(NO3)2 d. manganese (II) acetate Mn(C2H3O2)2 j. cobalt (III) hydroxide Co(OH)3 e. sodium hypochlorite NaClO k. pentanitrogen octoxide N5O8 f. nitric acid HNO3 Modern Atomic Theory atomic theory electron configuration orbital diagram periodic table trends Ionization energy Electron affinity Atomic radius electronegativity 53. Name the element that corresponds to each of the following electron configurations. a. 1s22s22p2 carbon b. 1s22s22p63s23p4 sulfur c. 1s22s22p63s23p64s23d5 Mn d. 1s22s22p6 Ne 54. Write the electron configurations for the following elements. a. Potassium 1s22s22p63s23p64s1 b. Barium 1s22s22p63s23p64s23d104p65s24d105p66s2 55. Write the orbital diagram for the following elements. a. Bromine 1s 2s 2p 3s 3p 4s 3d 4p b. iron 1s 2s 2p 3s 3p 4s 3d 56. Arrange the following elements in order of increasing atomic radius. a. Cl, Mg, P, Na, Al Cl, P, Al, Mg, Na b. Rb, Na, Cs, Li, K Li, Na, K, Rb, Cs 57. Arrange the following elements in order of increasing ionization energy. a. Cl, Mg, P, Na, Al Na, Mg, Al, P, Cl b. Rb, Na, Cs, Li, K Cs, Rb, K, Na, Li 58. Arrange the following elements in order of increasing electron affinity. a. Cl, Mg, P, Na, Al Na, Mg, Al, P, Cl b. Rb, Na, Cs, Li, K Cs, Rb, K, Na, Li 59. Arrange the following elements in order of increasing electronegativity a. Cl, Mg, P, Na, Al Na, Mg, Al, P, Cl b. Rb, Na, Cs, Li, K Cs, Rb, K, Na, Li Chemical Bonding Lewis structures VSEPR Linear Bent Trigonal planar Trigonal pyramid tetrahedral polarity 60. Draw Lewis structures for the following: Si a. b. Silicon Potassium phosphide -3 K +K + K + P 3 K+ P c. Nitrogen triiodide I N I I 61. Predict the shape and polarity of the following molecules a. SiS2 linear, non-polar b. OBr2 bent, polar c. COCl2 trigonal planar, polar (because of O) d. PH3 trigonal pyramid, polar e. CF4 tetrahedral, non-polar Chemical Composition Moles Avogadro’s Number Molar Mass Percent Composition Empirical Formula Molecular Formula 62. Calculate the molar mass of magnesium phosphate. Mg3(PO4)2 24.3 (3) + 31.0 (2) + 16.0 (8) = 262.9 g/mol 63. How many moles are in 7.23 grams of strontium oxide? SrO 7.23gSrO x 1 mol SrO = 0.0698 mol SrO 103.6g SrO 64. How many moles are in 3.02 x 1023 atoms of zinc? 3.02E23 atoms Zn x 1 mol Zn = 0.502 mol Zn 6.02E23 atoms Zn 65. How many grams are in 7.2 x 1046 molecules of copper (II) sulfate? 7.2E46 molec CuSO4 x 1 mol CuSO4 x 159.6g CuSO4 = 1.9x1025g CuSO4 6.02E23 molec 1 mol CuSO4 66. How many grams are in 1.00 moles of sodium oxalate? 1.00 mol Na2C2O4 x 134.0g Na2C2O4 = 134 g Na2C2O4 1 mol Na2C2O4 67. How many particles are in 3.45 grams of silver acetate? 3.45g AgC2H3O2 x 1 mol AgC2H3O2 x 6.02E23 part AgC2H3O2 = 1.24x1022 part AgC2H3O2 166.9 g AgC2H3O2 1 mol AgC2H3O2 68. How many molecules are in 1.26 x 1018 amu of LiCl? 1.26E18 amu LiCl x 1.66E-24g LiCl x 1 mol LiCl x 6.02E23 molec LiCl =2.97x1016molec LiCl 1 amu LiCl 42.4g LiCl 1 mol LiCl 69. Calculate the percent composition for each element in ammonium phosphate. NH4+ PO4 -3 (NH4)3PO4 14.0(3) + 1.0 (12) + 31.0 + 16.0(4) = 149.0 g/mol %N = 14.0(3) / 149.0 * 100 = 28.2 %N %H = 1.0(12) / 149.0 * 100 = 8.1 %H %P = 31.0 / 149.0 * 100 = 20.8 %P %O = 16.0(4) / 149.0 * 100 = 43.0 %O 70. Calculate the empirical formula for the compound that is 49.48 % carbon, 28.87 % nitrogen, 16.49 % oxygen, and 5.15 % hydrogen. 49.38gC x 1 mol C = 4.12 mol C / 1.03 mol = 4 12.0 g C 28.87gN x 1 mol N = 2.06 mol N / 1.03 mol = 2 14.0 g N 16.49gOx 1 mol O = 1.03 mol O / 1.03 mol = 1 16.0 g O 5.15gH x 1mol H = 5.15 mol H / 1.03 mol = 5 1.0 g H C4N2OH5 71. Calculate the molecular formula for the compound that is 71.65 % chlorine, 24.27 % carbon, and 4.07 % hydrogen. The molar mass is 247.5 g/mol. 71.65gCl x 1 mol Cl = 2.02 mol Cl / 2.02 mol = 1 35.5 g Cl 24.27gC x 1 mol C = 2.02 mol C / 2.02 mol = 1 12.0 g C 4.07gHx 1 mol H = 4.07 mol H / 2.02 mol = 2 1.0 g H ClCH2 247.5 g/mol = 5 49.5 g/mol Cl5C5H10 Chemical Reactions Reactants and Products Symbols in Equations Balancing Equations – Use of Coefficients 72. Balance a. b. c. the following equations. ___ C2H5OH + _3_ O2 _2_ CO2 + _3_ H2O ___ CaC2 + _2_ H2O ___ Ca(OH)2 + ___ C2H2 ___ Cl2 + _2_ KI _2_ KCl + ___ I2 d. _4_ NH3 + _3_ Cl2 _3_ NH4Cl + ___ NCl3 e. ___ PbCl2 + ___ K2SO4 ___ PbSO4 + _2_ KCl 73. Write and balance the following equations include state symbols. a. Solid iron (III) oxide is heated strongly in carbon monoxide gas, it produces elemental iron and carbon dioxide gas. Fe2O3 (s) + 3 CO (g) 2 Fe (s) + 3 CO2 (g) b. Acetylene gas (C2H2) is burned in air to produce carbon dioxide gas and water vapor. 2 C2H2 (g) + 5 O2 (g) 4 CO2 (g) + 2 H2O (g) 74. Write word equations for the following reactions. a. 2Ag (s) + H2S (g) Ag2S (s) + H2 (g) Solid silver reacts with hydrosulfuric acid to produce solid silver sulfide and hydrogen gas. b. 2FeO (s) + C (s) 2Fe (l) + CO2 (g) Solid iron (II) oxide reacts with solid carbon to produce molten (liquid) iron and carbon dioxide gas. Reactions in Aqueous Solutions Solubility Rules Activity Series Writing Molecular, Complete Ionic, and Net Ionic Equations Single Displacement Reactions Double Displacement Reactions Combustion Reactions – Complete and Incomplete Decomposition Reactions Synthesis Reactions 75. Determine whether the following compounds are soluble or insoluble. a. sodium acetate soluble b. silver hydroxide insoluble c. lithium sulfide soluble d. colbalt (II) sulfate soluble 76. Predict the products and balance the following equations. Include physical state symbols. a. 2 C4H10 (g) + 13 O2 (g) 8 CO2 (g) + 10 H2O (g) combustion b. SO2 (g) + H2O (l) H2SO3 (aq) synthesis c. Ca (s) + H2O (l) CaO (s) + H2 (g) single displacement, redox d. MgSO3 (aq) MgO (s) + SO2 (g) decomposition e. AgC2H3O2 (aq) + KBr (aq) AgBr (s) + KC2H3O2 (aq) Double displacement, precipitation 77. Classify 76a-e classify the reactions in as many ways as possible.