Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Ecosystems 1. Energy Flow 2. Chemical cycles water, carbon, nitrogen 3. Human effects on cycles eutrophication, acid rain • Ecosystem = community plus abiotic factors - Conditions (temp, light) Resources (water, nutrients) • Energy flows from the sun, through plants, animals, and decomposers, and is lost as heat • Chemicals are recycled between air, water, soil, and organisms Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings • A terrarium ecosystem / Biosphere II Chemical cycling (C, N, etc.) Light energy Chemical energy Heat energy Figure 36.8 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Chemicals are recycled between organic matter and abiotic reservoirs – Water cycle - Carbon cycle – Nitrogen cycle Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Solar heat Water vapor over the sea Precipitation over the sea (283) Net movement of water vapor by wind (36) Evaporation from the sea (319) Water vapor over the land Evaporation and transpiration (59) Precipitation over the land (95) Oceans Flow of water from land to sea (36) Surface water and groundwater Figure 36.14 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings salt water = 97.5% freshwater = 2.5% oceans ice caps and glaciers 1.97% ground- lakes, atmosphere rivers, 0.001% water 0.5% and soil 0.03% Carbon cycle • Carbon is taken from the atmosphere by photosynthesis – used to make organic molecules returned to the atmosphere by cellular respiration, decomposers Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings CO2 in atmosphere Plants, algae, cyanobacteria Cellular respiration Burning Higher-level consumers Photosynthesis Primary consumers Wood and fossil fuels Decomposition Detritivores (soil microbes and others) Detritus Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 36.15 The nitrogen cycle relies heavily on bacteria • Nitrogen is plentiful in the atmosphere as N2 – But plants and animals cannot use N2 • Some bacteria in soil and legume root nodules convert N2 to compounds that plants can use: ammonium (NH4+) and nitrate (NO3–) Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Legumes and certain other plants house nitrogenfixing bacteria • Legumes and certain other plants have nodules in their roots that contain nitrogen-fixing bacteria Shoot Nodules Roots Figure 32.14A Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings ATMOSPHERE N2 Amino acids Nitrogen-fixing bacteria N2 NH4+ NH4+ (ammonium) Soil Ammonifying bacteria Organic material Nitrifying bacteria NO3– (nitrate) Root Figure 32.13 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Nitrogen (N2) in atmosphere Assimilation by plants Amino acids and proteins in plants and animals Nitrogen fixation Denitrifying bacteria Detritus Nitrates (NO3–) Nitrogen-fixing bacteria in root nodules of legumes Detritivores Nitrogen-fixing bacteria in soil Nitrogen fixation Decomposition Nitrifying bacteria Ammonium (NH4+) Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Human impact on chemical cycles 76% naturally occurring 24% humancaused Atmospheric CO2 concentration 24% naturally occurring 58% humancaused Terrestrial nitrogen fixation 46% available 54% used Accessible surface water • Environmental changes caused by humans can unbalance nutrient cycling over the long term – Example: acid rain – Sulfur dioxide, nitrogen oxides create strong acids when dissolved in rain water. – Low pH kills aquatic life, leaches nutrients from soil – Calcium deficiency affects everything in food chain: plants, insects, birds. Weak egg shells. Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings eutrophication • Algal bloom can cause a lake to lose its species diversity – Human-caused eutrophication wiped out fisheries in Lake Erie in the 1950s and 1960s – classic experiments on eutrophication led to the ban on phosphates in detergents Figure 36.19B Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings What are the limits to human alteration of chemical cycles and habitats? • What should the limits be? • How do we set priorities for what we value in the natural world? Aesthetic, economic, conservation, humans Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings