Download document 91398

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MHF 4U1
1.
NAME:_______________________________
Solve the following systems of equations by ELIMINATION.
a)
7a  b  2
3a  2b  3
b)
3x  4  4 y
7 x  6 y  11
c)
x

2
x

3
y
4
8
y
 2
2
d)
3
f 
4
2.
3
Given f ( x)  2 x  5x  3 , evaluate
3.
Write the domain and the range of each function. Graph each function.
a) f ( x)  4 x  2
b) f ( x)  2( x  1) 2  4
c) f ( x)  x 3
d) f ( x ) 
4.
x
5
2

x3 x
b)
1
x

x  2 x 1
c)
x 2  3x  18
9  x2
Solve for x, then formally check your solution. No decimals!
a)
6.
e) f  x  
b)
f (2)
Simplify each expression.
a)
5.
1
x4
a)
0.4 x  0.2 y  0.5
x  0.5 y  0.1
3(2 x  1)  3  2( x  6)
b)
3x  1 x  1

5
4
c)
Solve for x by factoring. No decimals (and no quadratic formula)!
a) 4 x 2  x  3  0
b) 9 x 2  15  48 x c) 21x 2  1  10 x
d) x 2  4 x  32  0
e) x 2  6 x  5  0
f) 2 x 2  9 x  0
x  3 2x  5

 3
2
5
g) 6 x 2  31x  5  0
7.
Determine both the x and y-intercepts for each of the following functions.
Express your answers in exact form.
a) 9 x  5 y  18  0
b) y  2 x 2  8 x  1 c) y  5 x 2  2 x  8 d) y   x 2  2 x  7
8.
Use the quadratic formula to solve. Round to 1 decimal place.
a) 2 x 2  7 x  4  0
b) 7 x  20  6 x 2
c)
2 x 2  5 x  12  0
9.
Determine an equation for the quadratic function, with the given zeros, and that passes
through the given point.
a)
zeros: -4 and 1; point (-1, 2)
b)
zeros: -3 and 4; point (3, 24)
c)
zeros: 5 and -1; point (4, -10)
d)
zeros: 3/2 and -1/2; point (0, 9)
10.
For each of the following functions, write in vertex form and sketch. Label vertex, axis of
symmetry, and two symmetrical points.
a)
b)
y  2 x 2  20 x  44
y  3x 2  6 x  2
Answers
1
15
,b  
11
11
1.
a) a 
2.
a) -3
3.
a) x  Ry  R
1
2
b) x  2, y 
b)

3x  6
x( x  3)
b)
5.
a) x  3
b)
6.
a)  1,
3
4
b)



x 2  3x  1
( x  2)( x  1)
x
c)
9
7
c)
c)
1 1
,
7 3
g) -5, 
d) 8, -4
1
6
8.
a) x  0.7 or x  2.8
b) x  1.3 or x  2.5
9.
a) y   ( x  4)( x  1)
1
3
c) y  2( x  1)( x  5)
b) y  4( x  3)( x  4)
10.
a)
b)

x  Ry  R
x  5
c) no x-intercepts ; y  8
a) x  2, y  
c)
 ( x  6)
x3
 4  14
, y 1
2
d) x  1  2 2 , y  7
7.
no solution
e) x  R x  0 y  R y  0
1
,5
3
9
f) 0,
2
e) -5, -1

b) x  R y  R y  4

a)
d)
x  6, y  8
3
32
d) x  R, x  4 y  R y  0
4.
c)
18
5
b) x 
d) y  3(2 x  1)( 2 x  3)
y  2( x  5) 2  6 ; vertex (5,6) ; axis of symmetry x  5 ; points (4, 4) & (6, 4)
y  3( x  1) 2  1 ; vertex (-1, 1) ; axis of symmetry x  1 ; points (-2, -2) & (0, -2)
a)
b)
10
10
8
8
6
6
4
4
2
2
-10 -8 -6 -4 -2
2
-2
-4
-6
-8
-10
4
6
8 10
-10 -8 -6 -4 -2
2
-2
-4
-6
-8
-10
4
6
8 10
Related documents