Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
2 Chapter Complex Numbers Chapter Outline 2.1 Introduction and Definitions 2.2 Argand Diagram 2.3 The Modulus and Argument of a Complex Numbers 2.4 The Polar Form of Complex Numbers 2.5 The Exponential Form of Complex Numbers 2.6 De Moivre’s Theorem 2.7 Finding Roots of Complex Numbers 2.8 Expansion for cos n and sin n in terms of cosines and sines of multiple of θ 2.9 Loci in the complex numbers Tutorial 2 1 2.1 INTRODUCTION AND DEFINITIONS A collection of real number system was not complete. We realize that a quadratic equation a 2 x bx c 0 , could not be solved if b2 – 4ac <0. Consider a quadratic equation x 2 1 0, a c 1, b 0 then we have x 1 and x 1 , Since we know that the square of any real number must be greater than or equal than zero, we realize that the real number system was not complete. This leads to a study of complex numbers which are useful in variety of applications. A complex number system allowed the possibility of negatives squares and had the real numbers as a subset, R. In above quadratic equation we do not have any problems in solving this equation as complex number system allowed a negative square. We introduce a symbol, j , with the property that j 2 1 and it follows j 1 . We can use this to write down the square root of any negative numbers. Then the solution of the equation are given by x = j and x = -j. 9 and 9 . Example: Write down the expression of the Solution: 9 3 9 9 1 9 1 3 1 3 j Simplify j 3 , j 4 , j 8 Definition 2.1: Complex Number If z is a complex number then we write z a bj where a, b Є R , a is a real part and b is the imaginary part. 2 Example 1 Express in the form z a bj . a) 25 c) 5 + 36 b) 20 d) 27 + 18 Solution: 25 1 = 5 j a) 25 = 25(1) = b) 20 = 4(5)( 1) = 2 5 j c) 5 + d) 36 = 5 6 j 27 + 18 = 3 3 3 2 j Definition 2.2: Equal Complex Numbers Two complex numbers z1 a bj and z2 c dj are equal if and only if a = c and b = d. Example 2 Given 2 x 3 yj 4 3 j. Find x and y. Solution: x = 2 and y = 1 Definition 2.3: Operations of complex numbers If z1 a bj and z 2 c dj then, i) z1 z2 (a c) (b d ) j ii) z1 z2 (a c) (b d ) j iii) z1z2 (a bj)(c dj ) ac adj bcj bdj 2 (ac bd ) (ad bc) j 3 Example 3 Given z1 2 3 j and z 2 1 j . Find a) z1 z2 b) z1 z2 c) z1 * z2 d) Determine the value of z 73 4 j 2 j 5 6 j Solution: a) z1 + z2 = (2 + 3j) + (1 – j)= (2 + 1) + (3 – 1)j= 3 + 2j b) z1 – z2 = (2 + 3j) - (1 – j)= (2 - 1) + (3 + 1)j= 1 + 4j c) z1 * z2 = (2+3j)(1-j) = 2 – 2j + 3j -3j2 = 5 + j d) z 7 3 4 j 2 j 5 6 j 21 28 j 10 5 j 1 j 6 j 2 21 28 j 10 6 5 12 j 21 28 j 16 7 j 21 16 28 7 j 5 35 j Definition 2.4: Complex Conjugate If z a bj, its complex conjugate, denoted by z , is z a bj * Show that z z a 2 b2 Example 4 Find the complex conjugate of: a) z = 4 + 5j b) z = 4 - 5j c) z j d) z = j 4 Solution: a) z = 4 - 5j b) z = 4 + 5j c) z = j d) z = -j Properties of conjugate complex number: a) z z b) z1 z 2 z1 z 2 c) z1 z 2 z1 z 2 d) z1 z 2 z1 z 2 z z e) 1 1 z2 z2 f) 1 1 z z i) zz Im( z ) 2 h) zz Re( z ) 2 g) z n z Definition 2.5: Division of complex numbers If z1 a b and z 2 c d then z1 a bj z 2 c dj a bj c dj c dj c dj ac bd (bc ad ) j c2 d 2 Example 5: Determine the value of: a) 2 j 1 j b) 1 j 3 j c) z 7 1 j2 3 j 3 4 j 5 n : n integer Solution: a) 2 j 2 1 j 1 1 j 1 b) 3 j 3 c) z j 1 j 1 j 2 2 j j j2 1 3 j j 1 j2 2 2 j 3 j 3 j 3 j 3 j j2 1 2 j j 9 j2 5 5 7 1 j2 3 j 3 4 j 1 j 23 4 j 73 j 3 j 3 j 3 4 j 3 4 j 21 7 j 3 j 6 4 j 8 j 2 9 j3 3 j j 9 12 j j12 16 j 2 2 21 7 j 3 8 j10 9 1 9 16 2.1 j (0.7) 0.2 j (0.4) 2.3 1.1 j 2.2 ARGAND DIAGRAM The complex number z a bj is plotted as a point with coordinates (a,b). Such a diagram is called an Argand diagram. Figure 1 6 Example 6 Plot the following complex numbers on an Argand diagram. a) 3j b) 5 + 2j c) -4 d) -1 – 2j Solution: y 3 ● (0,3) 2 ● (5,2) 1 (0,-4) ● -4 -3 -2 -1 0 1 2 3 4 5 6 -1 (-1,-2) ●-2 Example 7 Given that z1 1 3 j and z2 3 j . Plot z1 z2 in an Argand diagram. Solution: y 4 (4,4) 3 (1, 3) z1 z2 2 1 (3,1) 0 1 2 3 4 x 5 7 x 2.3 THE MODULUS AND ARGUMENT OF A COMPLEX NUMBERS Consider an Argand diagram in Figure 2, the distance of the point (a,b) imaginary axis and real axis. Figure 2 Definition 2.6: Modulus of complex numbers The modulus of a complex number z = a + bj written as z is r= z = a 2 b2 Example 8 Find the modulus of the following complex numbers. a) 3 – 4j b) 5 + 2j c) -1 – j d) 7j Solution: a) |3 – 4j| = 3 2 (4) 2 = b) |5 + 2j| = 52 2 2 = 25 = 5 29 c) |-1 – j| = 2 d) |7j| = 7 8 Properties of Modulus a) | z || z | b) zz | z |2 z1 | z1 | , z2 0. z2 | z2 | c) | z1 z2 || z1 || z2 | d) e) | z n || z |n f) | z1 z2 || z1 | | z2 | g) | z1 z2 || z1 | | z2 | Definition 2.7: Arguments of complex numbers The argument of the complex number, z = a + bj often given the symbol θ is define as b a tan 1 . Figure 3 Example 9 Find the arguments of the following complex numbers; a) 3 – 4j b) 5 + 2j c) -1 – j d) 1 + 7j Solution: If θ is the argument of the following complex numbers, therefore, 4 a) θ = tan-1 = -53.13o = 306.87o 3 9 2 b) θ = tan-1 = 21.80o 5 1 c) θ = tan-1 = 225o 1 7 d) θ = tan-1 = 81.87o 1 2.4 THE POLAR FORM OF COMPLEX NUMBERS Figure 4 Using trigonometry we can write, sin b ; b r sin r cos a ; a r cos r tan b b ; tan 1 a a and; |z| = r = a 2 b2 Therefore, we can then write z = a + bj in polar form as: z = r cos θ + j r sin θ = r (cos θ + j sin θ) or = (r, θ) 10 Example 10 State the complex numbers of z when b) z = 3 – 4j a) z = 1 + j Solution: a) r = 12 12 = 2 and θ = tan 1 1 = 45o Hence, z = b) r = 2 (cos 45o + j sin 45o) or z = ( 2 ,45o) 4 3 2 (4) 2 = 5 and θ = tan 1 = - 53.13o @ 306.87o 3 Hence, z = 5(cos 306.87o + j sin 306.87o) or z = (5, 306.87o) Exercise 11 State the following complex numbers into the form of z = a + bj. a) z = 4(cos 30o + j sin 30o) b) z = 3 (cos 135o + j sin 135o) Solution: a) r = 4 dan θ = 30o 3 = 2 3 a = r cos θ = 4 cos 30o = 4 2 1 b = r sin θ = 4 sin 30o = 4 = 2 2 Hence, z = 4(cos 30o + j sin 30o) = 2 3 2 j b) r = 3 dan θ = 135o a = r cos θ = 3 cos 135o = b = r sin θ = 3 sin 135o = Hence, z = 3 1 3 = 2 2 1 3 = 2 3 2 3 (cos 135o + j sin 135o) = 11 3 3 j 2 2 Definition 2.8: If z1 and z2 are two complex numbers in polar z1 r1 (cos 1 j sin 1 ) and z2 r2 (cos 2 j sin 2 ) therefore form i) z1z 2 = r1r2 [cos(1 2 ) j sin( 1 2 )] r z ii) 1 = 1 [cos(1 2 ) j sin( 1 2 )] r2 z2 Example 12 Given that z1 = 4(cos 30o + j sin 30o) and z 2 = 2(cos 60o + j sin 60o). Find z a) z1z 2 b) 1 z2 Solution: a) z1z 2 = 4.2 [cos (30o + 60o) + j sin (30o + 60o)] = 8 (cos 90o + j sin 90o) =8j z 4 b) 1 = [cos (30o - 60o) + j sin (30o - 60o)] z2 2 = 2 [cos (-30o) + j sin (-30o)] 3 1 j = 2 2 2 = 3 j 2.5 THE EXPONENTIAL FORM OF COMPLEX NUMBERS Definition 2.9: Complex number z = r(cos θ + j sin θ) can also be written in exponential or Euler form as z = reθj where θ is measured in radians and eθj = cos θ + j sin θ. 12 where Example 13 State the following angles θ in radians. a) 45o b) 120o c) 270o Solution: a) 450 450. 180 b) 120 0 120 0. 0 180 c) 270 0 270 0. 4 0 2 3 0 3 2 180 Example 14 Express the complex number z = 1 + j in exponential form. Solution: From Example 10 (a), we know that z = 1 + j = r = 2 dan θ = 45o. Then we have 450 Hence, z = 1 + j = 2e 4 . 2 (cos 45o + j sin 45o) j 4 Definition 2.10: If z1 r1e1 j and z2 r2 e2 j , then i) z1z 2 = r1r2 e (1 2 ) j z r e (1 2 ) j ii) 1 = 1 , z2 0 r2 z2 13 2 (cos 45o + j sin 45o) which Example 15 j j If z1 8e 2 and z2 2e 3 , find a) z1 z 2 z1 z2 b) Solution: a) z1 z 2 8.2e j 2 3 j 2 3 z1 8e b) z2 2 16e 4e 6 5 j 6 j 2.6 DE MOIVRE’S THEOREM Definition 2.11: If z = r(cos θ + j sin θ) is a complex number in polar form to any power n, then zn = rn(cos nθ + j sin nθ) with any value n. Example 16 If z = cos 30o + j sin 30o, find z3 and z5. Solution: a) z3 = (cos 30o + j sin 30o)3 = cos 3(30o)+ j sin 3(30o) = cos 90o + j sin 90o =j b) z5 = (cos 30o + j sin 30o)5 = cos 5(30o) + j sin 5(30o) = cos 150o + j sin 150o = 3 1 j 2 2 14 Example 17 If z = 2(cos 25o + j sin 25o). Calculate 2 a) z5 b) z-3 c) z 3 Solution: a) z5 = [2(cos 25o + j sin 25o)]5 = 25[cos 5(25o) + j sin 5(25o)] = 32(cos 125o + j sin 125o) = 32(-0.5736 + 0.8192j) = -18.355 + 26.214j b) z-3 = 2-3(cos -75o + j sin -75o) = 1 (0.2588 – 0.9659j) 8 = 0.0324 – 0.1207j 2 2 c) z 3 = 2 3 [cos 2 2 (25o) + j sin (25o)] 3 3 = 1.587( cos 16.67o + j sin 16.67o) = 1.52 + 0.455j 2.7 FINDING ROOTS OF COMPLEX NUMBERS Definition 2.12: If z = r(cos θ + j sin θ) then, the n root of z is 1 n 1 z = r n (kos 360o k 360o k j sin ) if θ in degrees n n or 1 n 1 z = r n ( kos 2k 2k j sin ) if θ in radians n n for k = 0, 1, 2, ...., n – 1. 15 Example 18 Find the cube roots of z = 8j. Solution: z = 8j or in polar form z = 8(cos 90o + j sin 90o) then 90o 360o k 90o 360o k j sin ) for k = 0, 1, 2. z = 8 (cos 3 3 1 3 1 3 when k = 0 1 z 3 = 2(cos 30o + j sin 30o) = 3 j when k = 1 1 3 z = 2(cos 150o + j sin 150o) = 3 j when k = 2 1 z 3 = 2(cos 270o + j sin 270o) = -2j Therefore the roots of z = 8j are 3 j , 3 j and -2j. 2.8 EXPANSIONS FOR COSn AND SINn IN TERMS OF COSINES AND SINES OF MULTIPLES OF θ Definition 2.13: If z = cos θ + j sin θ then i) z n 1 = 2cos nθ zn ii) z n 1 = 2j sin nθ zn 16 Definition 2.14: Binomial Theorem If n N , then ( a b) n a n nC1a n 1b nC2 a n 2 b 2 ... nC r a n r b r ... nCn 1ab n 1 nCn b n n with Cr n! . r!( n r )! Example 19 State sin5 θ in terms of sines Solution: Using theorem 4, z = cos θ + j sin θ , then 1 z = 2j sin θ z 1 (2j sin θ)5 = [ z ]5 . z By using Binomial expansion, then 2 3 4 1 1 1 1 1 1 [ z ]5 = z5 – 5z4 + 10z3 - 10z2 + 5z - z z z z z z 1 1 1 = z 5 5 - 5 z 3 3 +10 z z z z Thus, 32 j sin5 θ = 2j sin 5θ – 5(2j sin 3θ) + 10(2j sin θ) sin5 θ = 1 5 5 sin 5θ sin 3θ + sin θ 16 16 8 17 5 2.9 LOCI IN THE COMPLEX NUMBERS Definition 2.15: A locus in a complex plane is the set of points that have a specified property. A locus of a point in a complex plane could be a straight line, cirle, ellipse and etc. Example 20 If z = a + bj, find the equation of the locus defined by: i) z2j 1 z 1 ii) z (2 3 j ) 2 Solution: i) z2j a bj 2 j 1 z 1 a bj 1 a bj 2 j a bj 1 a (b 2) j a 1 bj a 2 (b 2) 2 ( a 1) 2 b 2 a 2 b 2 4b 4 a 2 2a 1 b 2 2a 4b 3 0 The locus is a straight line with slope 1 . 2 ii) z (2 3 j ) a bj 2 3 j ) 2 a 2 (b 3) j 2 ( a 2) 2 (b 3) 2 2 (a 2) 2 (b 3) 2 2 2 The locus is a circle of radius 2 and centre (2,3). 18 Tutorial 2 1. Simplify the following (addition and subtraction): a) (3 j ) (1 2 j ) c) (2 3 j ) (1 2 j ) b) (5 3 j ) (4 3 j ) d) (1 j ) (1 j ) 2. Simplify the following (multiplication): a) (2 3 j )(4 5 j ) e) (u vj)(u vj) , b) (2 j )(3 2 j ) f) (x 2 yj )(2x yj ) c) (1 j )(1 j ) g) j( 2 p 3 pj) d) (3 4 j )(3 4 j ) h) (p 2qj )(p - 2qj ) 3. Simplify the following (division): a) 1- j 1 j e) 1 x yj b) 1 2-3 j f) 1 x-yj c) 3 j-2 1 2 j g) 1 1 23j 23j d) 5 4 j 5-4 j 4. Simplify the following: 1 , (1 j ) 3 a) (4 5 j ) 2 c) b) (1 j ) 3 d) (cos j sin )(cos j sin ) 19 5. Find the value of a and b. a) if (a b) j (a - b) (2 5 j ) 2 j (2 3 j ) b) Given that, (a b) j (a - b) (1 j ) 2 j (2 j ) 6. Evaluate the following a) (2 3 j )(6 7 j ) b) (2 3 j )( 2 3 j ) c) 43j 2 j 7. Write in the simplest form: a) (5 4 j )(3 7 j )( 2 3 j ) b) (2 3 j )(3 2 j ) (4 3 j ) 8. State the following in the form of a bj . a) 23j 2 j (4 5 j ) j b) 1 1 2 3 j 1 2 j 9. If z 2 j 1 , state z in complex number. z 1 j 10. Find the complex number which satisfies the equation: 3z z 2( z z ) 39 12 j 11. Label the following complex numbers on Argand Diagram. a) 2 j c) 3 j b) 1 2 j 20 12. Find the modulus and argument of the following complex numbers: a) 3 4 j d) 5 12 j , b) 4 j e) 1 2 j , c) 2 5 j 13. State the following in polar form: a) 5 5 j c) (4 7 j )( 2 3 j ) b) 6 3 j d) 43j 2 j 14. State the following in exponential form: a) 1 j b) 1 3 j c) 4(cos 30 j sin 30 ) Answers 1. a) (4 3 j ) b) 9 c) (1 5 j ) d) 2 j 2. a) - 7 22j e) u 2 v 2 , b) 8 j f) 2(x 2 y 2 ) 5xyj , c) 2 g) 3 p 2 pj , d) 25 h) p 2 4q 2 21 3. a) j 4. e) x y 2 j 2 x y x y2 2 b) 2 3 j 13 13 f) x y 2 j 2 x y x y2 c) 4 7 j 5 5 g) 4 13 d) 9 40 j 41 41 2 a) - 9 - 40j b) - 2 - 2j c) 1 j 4 d) 1 b) a a 2; b 20 5. a) 6. a) 9 32 j b) 13 c) 1 2 j 7. a) 115 133 j b) 63 16 j 25 25 8. a) 22 75 j 41 41 b) 23 11 j 65 65 9. 7 9 j 10 10 10. x 2; y 3 22 3 5 ;b 2 2 11. a) (2,1) b) (1,2) c) (0,3) 12. a) z 5, tan 1 43 b) z 4, tan 1 () 2 c) z 3, tan 1 5 2 d) z 13, tan 1 512 e) z 5 , tan 1 2 , 13. a) z 5 2 (cos 45 0 j sin 45 0 ) b) z 3 5 (cos 153.4 0 j sin 153.4 0 ) , c) z 31(cos 356 o j sin 356 o ) d) z 5 (cos 63o j sin 63o ) , 5 14. a) z 2e 4 5 b) z 2e 2 j j j c) z 4e 6 S. Asma, A. M. Fadzilah, M. Ibrahim. (2012). College Mathematics. Shah Alam, Selangor: IPTA Publication Sdn. Bhd. H. A. Abdull, K. J. Ahmad, S. Elyana, Z. Haslina, A. M. K. Khairul, S. Shakila, M. Z. Shazalina, R. G. A. Siti, N. M. A. Wan. (2010). Teaching Module: Intermediate Mathematics. Perlis: Penerbit UNIMAP. C2. Yang, C. F. Wong, S. Jay. (2009). College Matriculation Mathematics QS026 Semester II. Shah Alam, Selangor: SAP Publications (M) Sdn. Bhd. 23