Download The Mathematics Department Stage : 3rd Prep Date : / / [1] Complete

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The Mathematics Department
Stage : 3rd Prep
Date : / /
1st Term
Practice Sheet
Ratio , Proportion and Continued Proportion
☻ The ratio must be between two quantities of the same kind and the same unit
a
c
=
☻If
, then a  d = b  c
b
d
a
c
=
☻If
, then the quantities a, b, c and d are proportional
b
d
a
c
=
☻If the quantities a, b, c and d are proportional, then
b
d
a
c
= , then a = c m and b = d m , where m is a constant  0
☻If
b
d
☻If a d = b c , then each of the following proportions is true:
a
c
a
b
b
d
c
d
=
=
i)
ii)
iii)
iv)
=
=
b
d
c
d
a
c
a
b
a
c
e
☻If
=
=
= ........ and m1 , m2 , m3 , ……are non-zero real numbers then:
b
d
f
m1 a + m2c + m3e + .......
= one of the given ratios
m1b + m2d + m3f + .........
a
b
=
☻a, b and c are said to be in continued proportion if
b
c
● b2 = a c
b= ±
ac
● The middle proportional between two quantities
= ± the product of the twoquantities
Notice that: a & c should be positive together or negative together
[1] Complete each of the following:
y
7
1] If 7x = 10y , then = ……
…..
10
x
3
15
=
2]
4
...20..
3] If a = 3b , then
a
= …3……
b
4] 12 : …15…. = 4 : 5
5] 3a + 5b = 0 , then
a
-5
=…
…..
3
b
1
6]
..6 x2..
2k
=
15x2
5k
3x + 4y
x
= 2 , then = …- 2…..
2x + 5y
y
6x + 10y = 3x + 4y
3x = - 6y
8] Two numbers with ratio 7 : 12 one of them exceeds the other by 275 then the
two numbers are …385…. , …660…
7] If
9] The number c is added to both terms of the ratio 5 : 37 to become
c = …11….
[
5+c
1
=
37 + c
3
15 + 3c = 37 + c 2c = 22
10] If
7-4
3
a
a- b
7
= , then
=…
…..
=
7+4
11
b
a+ b
4
11] If
5
5a - 7b
b
= zero, then = … ….
7
a
8a + 11b
[5a – 7b = 0
4
a
= … ..
3
b
3a = 4b (a & b ∈ R+)]
12] If 9a2 – 16b2 = 0 where a & b  R+, then
[(3a + 4b)(3a – 4b) = 0
a
3
a 2
13] If = and = , then a : b : c = …6... : …10.. : …21..
b
5
c
7
14] If x : y = 3 : 1 and x + y = 28, then x = …21…. and y = …7….
15] If
2a + ..5a...
a
a c
=
, then
=
..2b... + 5d
b
b
d
16] If
8
a
3
a 3
c
= and =
, then = … …..
5
b
5
c
8
b
17] If
6
x
2
, then x = … …..
=
5
3 5
18] If x ,
8 , 7 , 14 2 are proportional, then x = …1…
19] The fourth proportional of 2 , 4 and 6 is ……12…..
2
1
, then
3
c = 11]
5a = 7b]
20] The fourth proportional of x , y and (x + y) is ……
y (x + y)
…
x
21] If 3 , 4 , x and 11 are four proportional quantities , then x = …
22] If 5a , 2y , 3b and 7y are proportional , then
23] If a , b , 2 and 3 are proportional , then
33
…..
4
6
a
=…
……
35
b
3
b
= … …..
2
a
24] The middle proportional between 8 and 18 is …± 12….
25] The third proportional of the numbers -2 and 6 is …- 18…..
26] 9x2 – 25y2 : ……1…… = (3x – 5y) (3x + 5y)
27] If
3
1
3
a
b
2
a
=
and =
, then = … =
….
6
2
c
3
b
c
4
28] The third proportional of the numbers 4x + 5y , 4x – 5y and 16x2 – 25y2 is
……(4x + 5y)2……
29] If
5
x
z
5
x+z
, then
= … ……
= =
4
y
e 4
y+ e
30] If
3
a - 2c + e
a c
e 3
, then
= … …….
= = =
5
b d
f
5
b - 2d + f
31] If
x- e
y- x
x+ y
y+ e e+ x
=
then
=
=
2
....- 2...
2
3
2
32] If 7 , x and
1
are in continued proportion, then x2 y = …7…..
y
33] If 2 , 4 + x and 18 are proportional and x  R- then x = …- 10…
2
4+x
=
(4 + x)2 = 36
x2 + 8x + 16 – 36 = 0
4+x
18
2
∴ x + 8x – 20 = 0
x = - 10 & x = 2
3
2ac + bd
a
1
c
7
then find the ratio
= and =
b 3
d 2
bc - 3ad
a = m & b = 3m
c = 7k & d = 2k
2 (m)(7k ) + (3m)(2k )
2ac + bd
2mk + 6mk
8mk
8
=
=
=
=
bc - 3ad
(3m)(7k ) - 3 (m)(2k ) 21mk - 6mk 15mk 15
[2] If
[3] If x2 – 6xy + 9y2 = 0 then find x : y
∵ x2 – 6xy + 9y2 = 0
(x – 3y)2 = 0
∴ x = 3y
x:y=3:1
x – 3y = 0
[4] If 3x2 – 10xy + 7y2 = 0 then find x : y
(3x – 7y)(x – y) = 0
3x = 7y
x=y
x
7
x
=
=1
y
3
y
[5] The ratio between two positive real numbers is 4 : 7 if we subtract 16 from these
two numbers then the ratio between them become 2 : 5. Find these two numbers.
x
4
→
x = 4m
→
y = 7m
=
y
7
x - 16
2
4m - 16
2
→
→
20m – 80 = 14m - 32
=
=
7m - 16
5
y - 16
5
20m – 14m = 80 – 32
6m = 48
m=8
x = 4 × 8 = 32
&
y = 7 × 8 = 56
The two numbers are 32 & 56
[6] The ratio between two real numbers is 8 : 15, find these two numbers if the
difference between them is 40.6
x
8
→
15x = 8y
→
15x – 8y = 0
(1)
=
y
15
y – x = 40.6 →
x – y = 40.6
(2)
From (1) & (2) x = 46.4 & y = 87
a
b
c
a + 2b
7
, prove that
=
=
=
2x + y 3y - x
4x + 5y
4b + c 17



a + 2b 4b + c
R.T.P. :
=
7
17
A.R. =  + 2 
&
A.R. = 4 + 
a + 2b
a + 2b
4a + c
a + 2b
=
=
A.R.=
(1)
A.R. =
(2)
2x + y + 6y - 2x
7y
12y - 4x + 4x + 5y
17y
[7] Let
4
a + 2b 4b + c
=
7
17
[8] If a, b, c and d are in proportional prove that:
a2 - c 2
ac
5a - 2c
4a + 3c
=
(i)
(ii) 2
=
bd
5b - 2d
4b + 3d
b - d2
a
c
→
a=bm
&
c = dm
=
=m
b
d
5bm - 2dm m (5b - 2d)
(i) L.H.S. =
=m
=
5b - 2d
5b - 2d
4bm + 3dm
m (4b + 3d)
R.H.S. =
=m
L.H.S. = R.H.S. = m
=
4b + 3d
4b + 3d
From (1) & (2)
b2m2 - d2m2
m2 (b2 - d2 )
(ii) L.H.S. =
= m2
=
2
2
2
2
b - d
b - d
R.H.S. =
bm . dm
= m2
bd
L.H.S. = R.H.S. = m2
[9] If a, b, c, d, e and f are in proportional prove that:
c 2 + e2
2ac - 5e2
4a + c - 3e
=
(i)
= one of the ratio
(ii) 2
4b + d - 3f
d + f2
2bd - 5f 2
a
c
e
→
a=bm
,
c=mc
=
=
=m
b
d
f

 
4a + c - 3e
(i)
= one of the ratio
4b + d - 3f
A.R. = 4 +  - 3
4a + c - 3e
=
4b + d - 3f
c 2 + e2
2ac - 5e2
(ii) 2
=
d + f2
2bd - 5f 2
d2m2 + f 2m2
m2 (d2 + f 2 )
L.H.S. =
=
= m2
2
2
2
2
d + f
d +f
2(bm)(dm) - 5f 2m2
m2 (2bd - 5f 2 )
=
= m2
2
2
2bd - 5f
2bd - 5f
L.H.S. = R.H.S. = m2
R.H.S. =
5
&
e=fm
[10] If a, b and c are in proportional prove that:
2
æb - c ö
c
a
b
a- b
÷
=
(i)
(ii) çç
=
=
÷
a
a+ b b+ c a- c
èça - b ÷
ø
a
b
→
a = c m2 & b = c m
=
=m
b
c
a
b
a- b
(i)
=
=
a+ b b+ c a- c
cm2
cm2
m
L.H.S. =
=
=
2
m+1
cm + cm cm (m + 1)
cm
cm
m
M.H.S. =
=
=
cm + c c(m + 1)
m+1
R.H.S. =
m (m - 1)
cm2 - cm
cm(m - 1)
m
=
=
=
m+1
(m + 1) (m - 1)
cm2 - c
c(m2 - 1)
2
æb - c ö
c
÷
ç
(ii) ç
÷ =
çèa - b ÷
a
ø
2
ö
æ cm - c ÷
ö2 æ
c
(m
1)
1
÷
÷
÷
L.H.S. = ççç 2
= ççç
= 2
÷
÷
çècm - cm ÷
çè c m (m - 1) ÷
m
ø
ø
c
1
1
R.H.S. =
L.H.S. = R.H.S. = 2
= 2
2
cm
m
m
[11] If a, b, c and d are in continued proportional prove that:
a2 + b2 + c 2
b
a
b+ d
=
(i) 3 =
(ii) 2
2
2
2
2
d
c
d(c + d )
b + c + d
a
b
c
→
a = f m3 & b = f m2 & c = fm
=
=
=m
b
c
f
a
b+ d
(i) 3 =
c
d(c 2 + d2 )
L.H.S. =
dm3
1
=
d3m3
d2
R.H.S. =
dm2 + d
d(m2 + 1)
1
=
=
d(d2m2 + d2 )
d3 (m2 + 1)
d2
a2 + b2 + c 2
b
=
(ii) 2
d
b + c 2 + d2
L.H.S. =
d2m6 + d2m4 + d2m2
d2m2 (m4 + m2 + 1)
=
= m2
2 4
2 2
2
2
4
2
dm + dm + d
d (m + m + 1)
6
b
dm2
R.H.S. = =
= m2
d
d
7
Related documents