Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The Mathematics Department Stage : 3rd Prep Date : / / 1st Term Practice Sheet Ratio , Proportion and Continued Proportion ☻ The ratio must be between two quantities of the same kind and the same unit a c = ☻If , then a d = b c b d a c = ☻If , then the quantities a, b, c and d are proportional b d a c = ☻If the quantities a, b, c and d are proportional, then b d a c = , then a = c m and b = d m , where m is a constant 0 ☻If b d ☻If a d = b c , then each of the following proportions is true: a c a b b d c d = = i) ii) iii) iv) = = b d c d a c a b a c e ☻If = = = ........ and m1 , m2 , m3 , ……are non-zero real numbers then: b d f m1 a + m2c + m3e + ....... = one of the given ratios m1b + m2d + m3f + ......... a b = ☻a, b and c are said to be in continued proportion if b c ● b2 = a c b= ± ac ● The middle proportional between two quantities = ± the product of the twoquantities Notice that: a & c should be positive together or negative together [1] Complete each of the following: y 7 1] If 7x = 10y , then = …… ….. 10 x 3 15 = 2] 4 ...20.. 3] If a = 3b , then a = …3…… b 4] 12 : …15…. = 4 : 5 5] 3a + 5b = 0 , then a -5 =… ….. 3 b 1 6] ..6 x2.. 2k = 15x2 5k 3x + 4y x = 2 , then = …- 2….. 2x + 5y y 6x + 10y = 3x + 4y 3x = - 6y 8] Two numbers with ratio 7 : 12 one of them exceeds the other by 275 then the two numbers are …385…. , …660… 7] If 9] The number c is added to both terms of the ratio 5 : 37 to become c = …11…. [ 5+c 1 = 37 + c 3 15 + 3c = 37 + c 2c = 22 10] If 7-4 3 a a- b 7 = , then =… ….. = 7+4 11 b a+ b 4 11] If 5 5a - 7b b = zero, then = … …. 7 a 8a + 11b [5a – 7b = 0 4 a = … .. 3 b 3a = 4b (a & b ∈ R+)] 12] If 9a2 – 16b2 = 0 where a & b R+, then [(3a + 4b)(3a – 4b) = 0 a 3 a 2 13] If = and = , then a : b : c = …6... : …10.. : …21.. b 5 c 7 14] If x : y = 3 : 1 and x + y = 28, then x = …21…. and y = …7…. 15] If 2a + ..5a... a a c = , then = ..2b... + 5d b b d 16] If 8 a 3 a 3 c = and = , then = … ….. 5 b 5 c 8 b 17] If 6 x 2 , then x = … ….. = 5 3 5 18] If x , 8 , 7 , 14 2 are proportional, then x = …1… 19] The fourth proportional of 2 , 4 and 6 is ……12….. 2 1 , then 3 c = 11] 5a = 7b] 20] The fourth proportional of x , y and (x + y) is …… y (x + y) … x 21] If 3 , 4 , x and 11 are four proportional quantities , then x = … 22] If 5a , 2y , 3b and 7y are proportional , then 23] If a , b , 2 and 3 are proportional , then 33 ….. 4 6 a =… …… 35 b 3 b = … ….. 2 a 24] The middle proportional between 8 and 18 is …± 12…. 25] The third proportional of the numbers -2 and 6 is …- 18….. 26] 9x2 – 25y2 : ……1…… = (3x – 5y) (3x + 5y) 27] If 3 1 3 a b 2 a = and = , then = … = …. 6 2 c 3 b c 4 28] The third proportional of the numbers 4x + 5y , 4x – 5y and 16x2 – 25y2 is ……(4x + 5y)2…… 29] If 5 x z 5 x+z , then = … …… = = 4 y e 4 y+ e 30] If 3 a - 2c + e a c e 3 , then = … ……. = = = 5 b d f 5 b - 2d + f 31] If x- e y- x x+ y y+ e e+ x = then = = 2 ....- 2... 2 3 2 32] If 7 , x and 1 are in continued proportion, then x2 y = …7….. y 33] If 2 , 4 + x and 18 are proportional and x R- then x = …- 10… 2 4+x = (4 + x)2 = 36 x2 + 8x + 16 – 36 = 0 4+x 18 2 ∴ x + 8x – 20 = 0 x = - 10 & x = 2 3 2ac + bd a 1 c 7 then find the ratio = and = b 3 d 2 bc - 3ad a = m & b = 3m c = 7k & d = 2k 2 (m)(7k ) + (3m)(2k ) 2ac + bd 2mk + 6mk 8mk 8 = = = = bc - 3ad (3m)(7k ) - 3 (m)(2k ) 21mk - 6mk 15mk 15 [2] If [3] If x2 – 6xy + 9y2 = 0 then find x : y ∵ x2 – 6xy + 9y2 = 0 (x – 3y)2 = 0 ∴ x = 3y x:y=3:1 x – 3y = 0 [4] If 3x2 – 10xy + 7y2 = 0 then find x : y (3x – 7y)(x – y) = 0 3x = 7y x=y x 7 x = =1 y 3 y [5] The ratio between two positive real numbers is 4 : 7 if we subtract 16 from these two numbers then the ratio between them become 2 : 5. Find these two numbers. x 4 → x = 4m → y = 7m = y 7 x - 16 2 4m - 16 2 → → 20m – 80 = 14m - 32 = = 7m - 16 5 y - 16 5 20m – 14m = 80 – 32 6m = 48 m=8 x = 4 × 8 = 32 & y = 7 × 8 = 56 The two numbers are 32 & 56 [6] The ratio between two real numbers is 8 : 15, find these two numbers if the difference between them is 40.6 x 8 → 15x = 8y → 15x – 8y = 0 (1) = y 15 y – x = 40.6 → x – y = 40.6 (2) From (1) & (2) x = 46.4 & y = 87 a b c a + 2b 7 , prove that = = = 2x + y 3y - x 4x + 5y 4b + c 17 a + 2b 4b + c R.T.P. : = 7 17 A.R. = + 2 & A.R. = 4 + a + 2b a + 2b 4a + c a + 2b = = A.R.= (1) A.R. = (2) 2x + y + 6y - 2x 7y 12y - 4x + 4x + 5y 17y [7] Let 4 a + 2b 4b + c = 7 17 [8] If a, b, c and d are in proportional prove that: a2 - c 2 ac 5a - 2c 4a + 3c = (i) (ii) 2 = bd 5b - 2d 4b + 3d b - d2 a c → a=bm & c = dm = =m b d 5bm - 2dm m (5b - 2d) (i) L.H.S. = =m = 5b - 2d 5b - 2d 4bm + 3dm m (4b + 3d) R.H.S. = =m L.H.S. = R.H.S. = m = 4b + 3d 4b + 3d From (1) & (2) b2m2 - d2m2 m2 (b2 - d2 ) (ii) L.H.S. = = m2 = 2 2 2 2 b - d b - d R.H.S. = bm . dm = m2 bd L.H.S. = R.H.S. = m2 [9] If a, b, c, d, e and f are in proportional prove that: c 2 + e2 2ac - 5e2 4a + c - 3e = (i) = one of the ratio (ii) 2 4b + d - 3f d + f2 2bd - 5f 2 a c e → a=bm , c=mc = = =m b d f 4a + c - 3e (i) = one of the ratio 4b + d - 3f A.R. = 4 + - 3 4a + c - 3e = 4b + d - 3f c 2 + e2 2ac - 5e2 (ii) 2 = d + f2 2bd - 5f 2 d2m2 + f 2m2 m2 (d2 + f 2 ) L.H.S. = = = m2 2 2 2 2 d + f d +f 2(bm)(dm) - 5f 2m2 m2 (2bd - 5f 2 ) = = m2 2 2 2bd - 5f 2bd - 5f L.H.S. = R.H.S. = m2 R.H.S. = 5 & e=fm [10] If a, b and c are in proportional prove that: 2 æb - c ö c a b a- b ÷ = (i) (ii) çç = = ÷ a a+ b b+ c a- c èça - b ÷ ø a b → a = c m2 & b = c m = =m b c a b a- b (i) = = a+ b b+ c a- c cm2 cm2 m L.H.S. = = = 2 m+1 cm + cm cm (m + 1) cm cm m M.H.S. = = = cm + c c(m + 1) m+1 R.H.S. = m (m - 1) cm2 - cm cm(m - 1) m = = = m+1 (m + 1) (m - 1) cm2 - c c(m2 - 1) 2 æb - c ö c ÷ ç (ii) ç ÷ = çèa - b ÷ a ø 2 ö æ cm - c ÷ ö2 æ c (m 1) 1 ÷ ÷ ÷ L.H.S. = ççç 2 = ççç = 2 ÷ ÷ çècm - cm ÷ çè c m (m - 1) ÷ m ø ø c 1 1 R.H.S. = L.H.S. = R.H.S. = 2 = 2 2 cm m m [11] If a, b, c and d are in continued proportional prove that: a2 + b2 + c 2 b a b+ d = (i) 3 = (ii) 2 2 2 2 2 d c d(c + d ) b + c + d a b c → a = f m3 & b = f m2 & c = fm = = =m b c f a b+ d (i) 3 = c d(c 2 + d2 ) L.H.S. = dm3 1 = d3m3 d2 R.H.S. = dm2 + d d(m2 + 1) 1 = = d(d2m2 + d2 ) d3 (m2 + 1) d2 a2 + b2 + c 2 b = (ii) 2 d b + c 2 + d2 L.H.S. = d2m6 + d2m4 + d2m2 d2m2 (m4 + m2 + 1) = = m2 2 4 2 2 2 2 4 2 dm + dm + d d (m + m + 1) 6 b dm2 R.H.S. = = = m2 d d 7