Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
1 SUPPLEMENTARY MATERIAL 1 H NMR study of the hetero-association of unsaturated alcohols with pyridine John S. Lomasa* CONTENTS Figure 1 Error plots for the chemical shifts of CH protons in 2-propyn-1-ol, 2a, with parameters calculated from Eqns (2) and (3b) Table S1. Chemical shifts of acetylene derivatives in neat pyridine, calculated by Eqn (2) or Eqns (3): Comparison with experimental values at 298 K Table S2. Hetero-association constants (molar scale, standard state 1 M) and chemical shifts for association of some monohydric alkynols and alkynes with pyridine in benzene at 298 K: Eqn (2) Table S3. Comparison of terms in Equations (4 ) and (5) Table S4. Taft's polar substituent constants and association constants for correlations in Figure 1 Table S5. Dissociation constants of carboxylic acids in water and pyridine association constants of alcohols in benzene, both at 298 K, for correlations in Figure 2 2 Supp. Mat. Figure S1. Error plots for the chemical shifts of CH protons in 2-propyn-1-ol, 2a, with parameters calculated from Eqns (2) (filled circles) and (3b) (open circles) 0,02 Eqn (2) Shift Error/ppm 0,01 Eqn (3b) 0,00 -0,01 -0,02 0,0 0,5 1,0 1,5 2,0 Pyridine concentration/M 2,5 3,0 3 Supp. Mat. Table S1. Chemical shifts of acetylene derivatives in neat pyridine, calculated by Eqn (2) or Eqns (3): Comparison with experimental values at 298 K Cpd. Group Eqn (2) Eqns (3) /ppm /ppm Exptl. /ppm 2a: 2-Propyn-1-ol OH 7.010 7.277 7.188 2a: 2-Propyn-1-ol CH 2.816 3.385 3.272 2b: 3-Butyn-2-ol OH 7.142 7.318 7.275 2b: 3-Butyn-2-ol CH 2.909 3.162 3.273 2c: 2-Methyl-3-butyn-2-ol OH 7.136 7.256 7.228 2c: 2-Methyl-3-butyn-2-ol CH 2.974 3.127 3.249 4d: 3-Butyn-1-ol OH 6.478 6.621 6.579 4d: 3-Butyn-1-ol CH 2.572 2.618 2.786 4e: 4-Pentyn-1-ol OH 5.986 6.122 6.089 4e: 4-Pentyn-1-ol CH 2.584 2.522 2.711 4f: 5-Hexyn-1-ol OH 5.832 5.976 5.922 4f: 5-Hexyn-1-ol CH 2.666 2.565 2.715 5g: Phenylacetylene CH 4.135 - 4.093 5h: 1-Hexyne CH 2.736 - 2.699 5i: 1-Octyne CH 2.755 - 2.723 4 Supp. Mat. Table S2. Hetero-association constants (molar scale, standard state 1 M) and chemical shifts for association of some monohydric alkynols and alkynes with pyridine in benzene at 298 K: Eqn (2) Cpd. K3 M/ppm mono /ppm Mpy/ppm 2a: 2-Propyn-1-ol (OH) 3.94±0.03 0.598±0.013 0.600 7.14±0.01 2a: 2-Propyn-1-ol (CH2) 3.92±0.06 3.701±0.003 3.699 4.43±0.01 2a: 2-Propyn-1-ol (≡CH) 0.26±0.04 2.001±0.005 1.978 3.07±0.10 2b: 3-Butyn-2-ol (OH) 2.92±0.02 1.019±0.012 1.018 7.31±0.01 2b: 3-Butyn-2-ol (CH3) 3.38±0.05 1.151±0.001 1.155 1.592±0.001 2b: 3-Butyn-2-ol (CH) 3.00±0.03 4.088±0.002 4.090 4.77±0.01 2b: 3-Butyn-2-ol (≡CH) 0.21±0.03 2.020±0.005 1.998 3.25±0.12 2c: 2-Methyl-3-butyn-2-ol (OH) 2.32±0.01 1.303±0.008 1.277 7.33±0.01 2c: 2-Methyl-3-butyn-2-ol (CH3) 2.76±0.06 1.293±0.002 1.296 2.76±0.06 2c: 2-Methyl-3-butyn-2-ol (≡CH) 0.17±0.02 2.027±0.005 2.007 3.42±0.11 4d: 3-Butyn-1-ol (OH) 1.59±0.01 0.947±0.008 0.926 6.75±0.01 4d: 3-Butyn-1-ol (HOCH2) 1.78±0.01 3.261±0.001 3.263 3.98±0.01 4d: 3-Butyn-1-ol (≡CHCH2) 1.62±0.02 1.986±0.001 1.984 2.56±0.01 4d: 3-Butyn-1-ol (≡CH) 0.14±0.02 1.685±0.004 1.669 3.08±0.10 4e: 4-Pentyn-1-ol (OH) 1.55±0.01 0.474±0.003 0.456 6.27±0.01 4e: 4-Pentyn-1-ol (HOCH2) 1.56±0.12 3.309±0.009 3.290 3.925±0.011 4e: 4-Pentyn-1-ol (HOCH2CH2) 1.63±0.02 1.400±0.001 1.400 1.892±0.001 4e: 4-Pentyn-1-ol (≡CHCH2) 1.39±0.05 2.005±0.002 2.001 2.425±0.003 4e: 4-Pentyn-1-ol (≡CH) 0.082±0.008 1.722±0.002 1.715 3.424±0.121 5g: Phenylacetylene (≡CH) 0.059±0.002 2.712±0.001 - 6.06±0.08 5h: 1-Hexyne (≡CH) 0.035±0.002 1.767±0.001 - 4.93±0.19 5i: 1-Octyne (≡CH) 0.037±0.001 1.783±0.001 - 4.88±0.06 5 Supp. Mat. Table S3. Comparison of terms in Equations (4 ) and (5) (M)' + (M)" (AA)' + (AA)" mono K3' + K3" K7 + K8 K3'K3" K7K9 2a 2.60 2.55 2.58 4.20 4.14 1.02 0.13 2b 3.04 2.99 3.02 3.13 3.14 0.61 0.20 2c 3.33 3.29 3.28 2.49 2.47 0.39 0.18 4d 2.63 2.60 2.60 1.73 1.82 0.22 0.17 4e 2.20 2.17 2.17 1.63 1.81 0.13 0.19 4f 2.14 2.12 2.12 1.38 1.55 0.07 0.14 Cpd. Cpd. K3'K3"Mpy K7K9AApy2 K3"[(M)' + (Mpy)"]+ K3'[(M)" + (Mpy)'] K8[(AA1)' + (AApy)"]+ K7[(AA1)" + (AApy)'] 2a 10.5 1.9 37.0 37.9 2b 6.5 2.5 28.1 28.9 2c 4.2 2.1 22.5 22.8 4d 2.2 1.8 14.0 14.6 4e 1.2 1.9 12.7 13.5 4f 0.7 1.4 10.7 11.4 6 Supp. Mat. Table S4. Taft's polar substituent constants and association constants for correlations in Figure 1 Compound σ* Ref. log K3 Ref. Methanol 0.00 (a) 0.188 (g) Ethanol -0.10 (a) 0.086 (g) Propan-1-ol -0.115 (a) 0.117 (h) Propan-2-ol -0.19 (a) 0.009 (g) Butan-1-ol -0.13 (a) 0.107 (h) Butan-2-ol -0.21 (a) -0.051 (j) 2-Methylpropan-1-ol -0.125 (a) 0.127 (g) 2-Methylpropan-2-ol -0.30 (a) -0.104 (g) 2,2-Dimethylpropan-1-ol -0.165 (a) 0.155 (g) Pentan-3-ol -0.225 (a) -0.199 (g) 3,3-Dimethylbutan-2-ol -0.28 (a) -0.056 (j) (tert-Butyl)2CHOH -0.332 (b) -0.058 (b) (tert-Butyl)2MeCOH -0.431 (b) -0.264 (b) (tert-Butyl)2EtCOH -0.444 (b) -0.492 (b) (tert-Butyl)2iPrCOH -0.457 (b) -0.506 (b) (tert-Butyl)3COH -0.498 (b) -0.398 (b) (tert-Butyl)2NeopCOH -0.450 (b) -0.547 (b) Benzyl alcohol 0.215 (a) 0.387 (g) 2-Propyn-1-ol 0.5 (c) 0.601 (i) 3-Butyn-1-ol 0.15 (d) 0.200 (i) 4-Pentyn-1-ol 0.01 (d) 0.190 (i) -0.07 (d) 0.124 (i) 2-Propen-1-ol 0.13 (e) 0.255 (i) 3-Buten-1-ol 0.04 (d) 0.083 (i) 5-Hexyn-1-ol 7 4-Penten-1-ol -0.08 (d) 0.114 (i) 2,2,2-Trifluoroethan-1-ol 0.92 (a) 1.161 (i) 2-Cyanoethan-1-ol 0.48 (f) 0.731 (i) 2-Chloroethan-1-ol 0.385 (a) 0.38 (i) (a) R. W. Taft, in Steric Effects in Organic Chemistry, (Ed. M. S. Newman), John Wiley and Sons Inc., New York, 1956, Chapter 13, pp. 556-675. (b) J. S. Lomas, J. Phys. Org. Chem. 2005, 18, 1001-1012. (c) PhC≡C is given as 1.35. Reducing this by a damping factor of 2.7 gives 0.50 for PhC≡CCH2, which we take as a fair approximation to HC≡CCH2. (d) See below. (e) CH3CH=CHCH2 is given as 0.13; we take this as a fair approximation to H2C=CHCH2. (f) NCCH2 is given as 1.35, to which we apply a damping factor of 2.7. (g) J. S. Lomas, F. Maurel, J. Phys. Org. Chem. 2008, 21, 464-471. (h) J. S. Lomas, J. Phys. Org. Chem. 2011, 24, 129-139. (i) This work. (j) J. S. Lomas, F. Maurel, A. Adenier, J. Phys. Org. Chem. DOI 10.1002/poc.1831 Note. It is not easy to estimate Taft's constants for substituents with methylene chains longer than those given in his work. For several electronattracting groups, going from RCH2 to R(CH2)2 divides the Taft constant by a factor of about 2.7, whereas going from H-CH2 to H-(CH2)2 reduces the constant from 0.00 to –0.10, further methylenes reducing the value to –0.115 (n-propyl) and –0.13 (n-butyl); there are no more data. This means that in the case of electron-attractors we cannot blindly apply a factor of 2.7 to the addition of a methylene group, as this would result in zero values for any R connected by a long chain to the functional group. A long chain with an electron-attractor (or electron-donor) at the end is expected to resemble a long chain with a hydrogen at the end, which implies a value of –0.13 or slightly lower. We have tried to take account of these contrary effects by introducing an increment for chain lengthening (–0.1, –0.115, –0.13) and a factor of 0.5 for each methylene group. This procedure works relatively well for the CF3(CH2)n series (n = 1, 2, 3) but we do not claim that is gives more than a rough idea of the polar constants for the unsaturated substituents. 8 Supp. Mat. Table S5. Dissociation constants of carboxylic acids in water and pyridine association constants of alcohols in benzene, both at 298 K, for correlations in Figure 2 Acid pKa Alcohol CH3CO2H 4.757 Methanol 0.185 CH3CH2CO2H 4.876 Ethanol 0.086 CH3(CH2)2CO2H 4.821 Propan-1-ol 0.117 (CH3)2CHCO2H 4.860 Propan-2-ol 0.009 CH3(CH2)3CO2H 4.842 Butan-1-ol 0.107 (CH3CH2)CH3CHCO2H 4.807 Butan-2-ol -0.051 (CH3)3CCO2H 5.033 2-Methylpropan-2-ol -0.102 CH3CH2(CH3)2CCO2H 5.032 2-Methylbutan-2-ol -0.155 C6H11CO2H 4.900 Cyclohexanol -0.041 PhCH2CO2H 4.312 Benzyl alcohol 0.391 HC≡CCH2CO2H 3.32 2-Propyn-1-ol 0.602 HC≡C(CH2)2CO2H 4.21 3-Butyn-1-ol 0.201 HC≡C(CH2)3CO2H 4.60 4-Pentyn-1-ol 0.190 HC≡C(CH2)4CO2H 4.61 5-Hexyn-1-ol 0.124 H2C=CHCH2CO2H 4.349 2-Propen-1-ol 0.251 H2C=CH(CH2)2CO2H 4.676 3-Buten-1-ol 0.083 H2C=CH(CH2)3CO2H 4.72 4-Penten-1-ol 0.114 Trifluoroethanol 1.155 F3CCH2CO2H 3 log K3 NC(CH2)2CO2H 4.00 Cyanoethanol 0.380 Cl(CH2)2CO2H 4.00 Chloroethanol 0.736 9 Dissociation constants of acids taken from: (a) G. Körtum, W. Vogel, K. Adrussow, Dissociation Constants of Organic Acids in Aqueous Solution, Butterworths, London, 1961. (b) G.H. Mansfield, M. C. Whiting, J. Chem. Soc. 1956, 4761-4764.