Download trigonometric identities

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
COMPLEX FUNCTIONS AND TRIGONOMETRIC IDENTITIES
Revision E
By Tom Irvine
Email: [email protected]
September 14, 2006
Trigonometric Functions of Angle 
r
y

x
sin   
y
r
cos  
x
r
tan   
y
x
cot   
x
y
sec  
r
x
csc  
r
y
(1)
Trigonometric Expansion
sin x  x 
x3 x5


3! 5!
(2)
cos x  1 
x2 x4


2! 4!
(3)
1
x3 x5
sinh x  x 


3! 5!
(4)
x2 x4
cosh x  1 


2! 4!
(5)
Exponential Expansion
exp x   1  x 
x 2 x3


2! 3!
(6)
Trigonometric Identities
cos 2   
1 1
 cos2 
2 2
(7)
sin 2   
1 1
 cos2 
2 2
(8)
cos cos 
1
1
cos    cos  
2
2
(9)
1
1
sin  sin    cos    cos  
2
2
(10)
cos sin  
1
1
sin     sin   
2
2
sin  cos 
(11)
1
1
sin     sin   
2
2
(12)
sin 2    cos2    1
(13)
sec 2    tan 2    1
(14)
csc 2    cot 2    1
(15)
sin 2  2 sin cos
(16)
2
cos2   cos2    sin 2  
(17)
sin     sin cos  cossin 
(18)
cos    coscos  sin sin 
(19)
tan    tan 
1  tan   tan 
(20)
tan    
A sin t   B cost   A 2  B2  sin t   
where
 B
  arctan  
A
(21)
Euler's Equation
exp  j  cos  j sin 
(22)
sin   
exp  j   exp  j 
2j
(23)
cos  
exp  j   exp  j 
2
(24)
Hyperbolic Functions
sinh   
exp    exp   
2
(25a)
cosh   
exp    exp   
2
(25b)
3
cosh 2   sinh 2   1
(26)
Derivatives
d
sin u   cos u du
dx
dx
(27)
d
cos u    sin u du
dx
dx
(28)
d
tan u   sec 2 u du
dx
dx
(29)
d
cot u    csc u du
dx
dx
(30)
d
sec u   tan u sec u du
dx
dx
(31)
d
csc u    csc u cot u du
dx
dx
(32)
d
sinh u   cosh u du
dx
dx
(33)
d
cosh u   sinh u du
dx
dx
(34)
d
tanh u   1 2 du
dx
cosh u dx
(35)
Natural Logarithm of a Complex Number
b


ln a  j b   ln  a 2  b 2 exp  j ,   arctan  


a
4
(36)


ln a  j b   ln  a 2  b 2   ln  exp  j




ln a  j b   ln  a 2  b 2   j


(37)
(38)
b


ln a  j b   ln  a 2  b 2   j arctan  


a
(39)
APPENDIX A
The Square Root of a Complex Number.
Consider
x2  a  jb
(A-1)
Thus
x   a  jb
(A-2)
where a and b are real coefficients.
Solve for x.
Let
x1  c  jd
(A-3a)
x 2  c  jd
(A-3b)
where c and d are real coefficients.
Substitute equation (A-3a) into (A-1).
c  jd 2  a  j b
(A-4)
5
c  jdc  jd  a  j b
(A-5)
c2  d 2  j 2cd   a  j b
(A-6)
Equation (A-6) implies two equations. The first is
c2  d 2  a
(A-7)
The second implied equation is
2cd  b
(A-8)
Solve for d using equation (A-8).
d
b
2c
(A-9)
Substitute equation (A-9) into (A-8).
2
 b
2
c    a
(A-10)
2
 b
2
c a    0
(A-11)
 2c 
 2c 
Multiply through by 4c 2 .
4c4  4ac2  b 2  0
(A-12)
Apply the quadratic formula.
c2 
4a  16a 2  16b2
8
(A-13)
c2 
4a  4 a 2  b2
8
(A-14)
6
c2 
c
a  a 2  b2
2
(A-15)
a  a 2  b2
2
(A-16)
Require c to be real.
c
a  a 2  b2
2
(A-17)
Substitute equation (A-17) into (A-9).




b
d
  a  a 2  b2
2 
2
 
 








 
(A-18)




d







b




2
2
4 a  a  b 



2

(A-19)
7



d




b




2
2
2 a  a  b 

 
(A-20)
Substitute equations (A-20) and (A-17) into (A-3a).

2
2
 a a b
x1  
2










j




b




2
2
2 a  a  b 

 
(A-21a)
Substitute equations (A-20) and (A-17) into (A-3b).

2
2
 a a b
x 2  
2



 
 
  j
 
 



b




2
2
2 a  a  b 

 
(A-21b)
Note that equations (A-21a) and (A-21b) cannot be used for the special case:
a < 0 and b = 0.
For this special case, the roots are
x j a
(A-21c)
Example
x2  2  j 7
(A-22)
x   2 j7
(A-23)
8
Solve for x. Use equation (A-21a).
a2
(A-24)
b7
(A-25)
x 1  2.154  j 1.625
(A-26)
x 2  2.154  j 1.625
(A-27)
APPENDIX B
Arbitrary Root of a Complex Number
Let
x n  a  j b
(B-1a)
x  a  j b1 / n
(B-1b)
The coefficients a and b are real numbers. The denominator of the exponent n is also
real.
Take the natural logarithm.

ln x  ln a  j b1 / n

(B-2)
ln x 
1
ln a  j b
n
(B-3)
ln x 
1  2
b 

ln  a  b2 exp  j arctan 
n 
a 

(B-4)
ln x 
1  2
b 
 1  
ln  a  b2   ln exp  j arctan 
n 
a 
 n  
9
(B-5)
1 

1
b
2
2

2
ln x  ln a  b n   j arctan


n
a




(B-6)
1 
 

1
b
  2

2
exp ln x  exp ln a  b 2n   j arctan 


n
a
 





(B-7)
1 
 
b
  2

 1
2
x  exp ln a  b 2n   exp  j arctan 

a
 n
 
 




(B-8)
1
b
 1
2
2
x  a  b 2n exp  j arctan 



 n
(B-9)
a
1
 1
b
b 
1
2
2
x  a  b 2n cos arctan   j sin  arctan 

n
a
n
a 
(B-10)
Note that equation (B-10) could be used for the special case of a square root.
APPENDIX C
Cube Root of a Complex Number
Consider
x3  a  j b
(C-1)
x  a  j b1 / 3
(C-2)
Equation (C-1) has three roots. The method in Appendix B yields the following formula
for one of the cube roots.
10
1
 1
b
b 
1
x 1 a 2  b 2 6 cos arctan   j sin  arctan 



3
a
3
a 
(C-3)
Rearrange equation (C-1).
x3  a  j b  0
(C-4)
Devise an equation for finding the other two roots.
x 3  a  j b  x  x1 x  x 2 x  x 3 
(C-5)
Expand the right-hand-side.


x 3  a  j b  x 2  x1  x 2 x  x1x 2 x  x 3 

 

x 3  a  j b  x 3  x1  x 2 x 2  x1x 2 x  x 3x 2  x 3 x1  x 2 x  x1x 2 x 3 
x 3  a  j b  x 3  x1  x 2 x 2  x1x 2 x   x 3x 2  x 3 x1  x 2 x  x1x 2 x 3 
x 3  a  j b  x 3  x1  x 2  x 3 x 2  x1x 2  x1x 3  x 2 x 3 x  x1x 2 x 3 
x 3  a  j b  x 2  x1  x 2 x  x1x 2 x   x 2  x1  x 2 x  x1x 2  x 3 
(C-6)
(C-7)
(C-8)
(C-9)
(C-10)
Equation (C-10) implies three separate equations.
x1  x 2  x3   0
(C-11)
x1x 2  x1x3  x 2x3   0
(C-12)
 x1x 2x3  a  j b
(C-13)
Continue with equation (C-11).
x 2   x1  x3
(C-14)
11
Substitute equation (C-14) into (C-12).
x1 x1  x3   x1x3   x1  x3 x3   0
(C-15)
 x12  x1x 3  x1x 3  x1x 3  x 32  0
(C-16)
 x12  x1x 3  x 32  0
(C-17)
x 32  x1x 3  x12  0
(C-18)
Use the quadratic formula.
x3 
 x1  x12  4x12
(C-19)
2
x3 
 x1   3x12
x3 
(C-20)
2
 x1  x1  3
2
(C-21)
1 j 3 
x 3  x1 

2


(C-22)
1 j 3 
x 3  x1 

2


(C-23)
Choose
Recall equation (C-14).
x 2   x1  x3
(C-24)
1 j 3 
x 2   x1  x1 

2


(C-25)
12

  1  j 3 


x 2  x11  

2





(C-26)

1  j 3  


x 2  x11  


 2 


(C-27)
 2 1 j 3 
x 2  x1 

2 
 2
(C-28)
1 j 3 
x 2  x1 

2


(C-29)
The roots x2 and x3 thus form a complex conjugate pair.
Summarize the roots.
1
 1
b
b 
1
2
2
x 1 a  b 6 cos arctan   j sin  arctan 



3
a
3
a 
(C-30)
1 j 3 
x 2  x1 

2


(C-31)
1 j 3 
x 3  x1 

2


(C-32)
Example
Solve for x.
x3  2  j7
(C-33)
x  2  j 71 / 3
(C-34)
a2
(C-35)
13
b7
(C-36)
n=3
(C-37)
There are three roots. The first root is
1
 1
b
b 
1
2
2
x 1 a  b 6 cos arctan   j sin  arctan 



3
a
3
a 
(C-38)
x1  1.938 0.909  j 418
(C-39)
x1  1.761  j 0.809
(C-40)
The second root is a coordinate transformation of the first root.
1 j 3 
x 2  x1 

2


(C-41)
1 j 3 
x 2  1.762  j 0.809 

2


(C-42)
x 2   1.581  j1.120
(C-43)
1 j 3 
x 3  x1 

2


(C-44)
1 j 3 
x 3  1.761  j 0.809

2


(C-45)
x3  0.180  j1.930
(C-46)
14
In summary, the cube roots of (2 + j 7) are
x1  1.761  j 0.809
(C-47)
x 2   1.581  j1.120
(C-48)
x3  0.180  j1.930
(C-49)
APPENDIX D
Derivation of the Quadratic Formula
ax 2  bx  c  0
(D-1)
x 2  b / a x  c / a   0
(D-2)
b 2 b2 c

x

 0

 
2
2a 
a

4a
(D-3)
b 2
b2 c

x





2
2a 
a

4a
(D-4)
b  2 b 2  4ac

x   
2a 

4a 2
(D-5)
b 
b 2  4ac

x    
2a 

4a 2
(D-6)
15
b   b 2  4ac

x   
2a 
2a

(D-7)
b 2  4ac
2a
(D-8)
 b  b 2  4ac
2a
(D-9)
b
x 

2a
x
16
Related documents