Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
COMPLEX FUNCTIONS AND TRIGONOMETRIC IDENTITIES Revision E By Tom Irvine Email: [email protected] September 14, 2006 Trigonometric Functions of Angle r y x sin y r cos x r tan y x cot x y sec r x csc r y (1) Trigonometric Expansion sin x x x3 x5 3! 5! (2) cos x 1 x2 x4 2! 4! (3) 1 x3 x5 sinh x x 3! 5! (4) x2 x4 cosh x 1 2! 4! (5) Exponential Expansion exp x 1 x x 2 x3 2! 3! (6) Trigonometric Identities cos 2 1 1 cos2 2 2 (7) sin 2 1 1 cos2 2 2 (8) cos cos 1 1 cos cos 2 2 (9) 1 1 sin sin cos cos 2 2 (10) cos sin 1 1 sin sin 2 2 sin cos (11) 1 1 sin sin 2 2 (12) sin 2 cos2 1 (13) sec 2 tan 2 1 (14) csc 2 cot 2 1 (15) sin 2 2 sin cos (16) 2 cos2 cos2 sin 2 (17) sin sin cos cossin (18) cos coscos sin sin (19) tan tan 1 tan tan (20) tan A sin t B cost A 2 B2 sin t where B arctan A (21) Euler's Equation exp j cos j sin (22) sin exp j exp j 2j (23) cos exp j exp j 2 (24) Hyperbolic Functions sinh exp exp 2 (25a) cosh exp exp 2 (25b) 3 cosh 2 sinh 2 1 (26) Derivatives d sin u cos u du dx dx (27) d cos u sin u du dx dx (28) d tan u sec 2 u du dx dx (29) d cot u csc u du dx dx (30) d sec u tan u sec u du dx dx (31) d csc u csc u cot u du dx dx (32) d sinh u cosh u du dx dx (33) d cosh u sinh u du dx dx (34) d tanh u 1 2 du dx cosh u dx (35) Natural Logarithm of a Complex Number b ln a j b ln a 2 b 2 exp j , arctan a 4 (36) ln a j b ln a 2 b 2 ln exp j ln a j b ln a 2 b 2 j (37) (38) b ln a j b ln a 2 b 2 j arctan a (39) APPENDIX A The Square Root of a Complex Number. Consider x2 a jb (A-1) Thus x a jb (A-2) where a and b are real coefficients. Solve for x. Let x1 c jd (A-3a) x 2 c jd (A-3b) where c and d are real coefficients. Substitute equation (A-3a) into (A-1). c jd 2 a j b (A-4) 5 c jdc jd a j b (A-5) c2 d 2 j 2cd a j b (A-6) Equation (A-6) implies two equations. The first is c2 d 2 a (A-7) The second implied equation is 2cd b (A-8) Solve for d using equation (A-8). d b 2c (A-9) Substitute equation (A-9) into (A-8). 2 b 2 c a (A-10) 2 b 2 c a 0 (A-11) 2c 2c Multiply through by 4c 2 . 4c4 4ac2 b 2 0 (A-12) Apply the quadratic formula. c2 4a 16a 2 16b2 8 (A-13) c2 4a 4 a 2 b2 8 (A-14) 6 c2 c a a 2 b2 2 (A-15) a a 2 b2 2 (A-16) Require c to be real. c a a 2 b2 2 (A-17) Substitute equation (A-17) into (A-9). b d a a 2 b2 2 2 (A-18) d b 2 2 4 a a b 2 (A-19) 7 d b 2 2 2 a a b (A-20) Substitute equations (A-20) and (A-17) into (A-3a). 2 2 a a b x1 2 j b 2 2 2 a a b (A-21a) Substitute equations (A-20) and (A-17) into (A-3b). 2 2 a a b x 2 2 j b 2 2 2 a a b (A-21b) Note that equations (A-21a) and (A-21b) cannot be used for the special case: a < 0 and b = 0. For this special case, the roots are x j a (A-21c) Example x2 2 j 7 (A-22) x 2 j7 (A-23) 8 Solve for x. Use equation (A-21a). a2 (A-24) b7 (A-25) x 1 2.154 j 1.625 (A-26) x 2 2.154 j 1.625 (A-27) APPENDIX B Arbitrary Root of a Complex Number Let x n a j b (B-1a) x a j b1 / n (B-1b) The coefficients a and b are real numbers. The denominator of the exponent n is also real. Take the natural logarithm. ln x ln a j b1 / n (B-2) ln x 1 ln a j b n (B-3) ln x 1 2 b ln a b2 exp j arctan n a (B-4) ln x 1 2 b 1 ln a b2 ln exp j arctan n a n 9 (B-5) 1 1 b 2 2 2 ln x ln a b n j arctan n a (B-6) 1 1 b 2 2 exp ln x exp ln a b 2n j arctan n a (B-7) 1 b 2 1 2 x exp ln a b 2n exp j arctan a n (B-8) 1 b 1 2 2 x a b 2n exp j arctan n (B-9) a 1 1 b b 1 2 2 x a b 2n cos arctan j sin arctan n a n a (B-10) Note that equation (B-10) could be used for the special case of a square root. APPENDIX C Cube Root of a Complex Number Consider x3 a j b (C-1) x a j b1 / 3 (C-2) Equation (C-1) has three roots. The method in Appendix B yields the following formula for one of the cube roots. 10 1 1 b b 1 x 1 a 2 b 2 6 cos arctan j sin arctan 3 a 3 a (C-3) Rearrange equation (C-1). x3 a j b 0 (C-4) Devise an equation for finding the other two roots. x 3 a j b x x1 x x 2 x x 3 (C-5) Expand the right-hand-side. x 3 a j b x 2 x1 x 2 x x1x 2 x x 3 x 3 a j b x 3 x1 x 2 x 2 x1x 2 x x 3x 2 x 3 x1 x 2 x x1x 2 x 3 x 3 a j b x 3 x1 x 2 x 2 x1x 2 x x 3x 2 x 3 x1 x 2 x x1x 2 x 3 x 3 a j b x 3 x1 x 2 x 3 x 2 x1x 2 x1x 3 x 2 x 3 x x1x 2 x 3 x 3 a j b x 2 x1 x 2 x x1x 2 x x 2 x1 x 2 x x1x 2 x 3 (C-6) (C-7) (C-8) (C-9) (C-10) Equation (C-10) implies three separate equations. x1 x 2 x3 0 (C-11) x1x 2 x1x3 x 2x3 0 (C-12) x1x 2x3 a j b (C-13) Continue with equation (C-11). x 2 x1 x3 (C-14) 11 Substitute equation (C-14) into (C-12). x1 x1 x3 x1x3 x1 x3 x3 0 (C-15) x12 x1x 3 x1x 3 x1x 3 x 32 0 (C-16) x12 x1x 3 x 32 0 (C-17) x 32 x1x 3 x12 0 (C-18) Use the quadratic formula. x3 x1 x12 4x12 (C-19) 2 x3 x1 3x12 x3 (C-20) 2 x1 x1 3 2 (C-21) 1 j 3 x 3 x1 2 (C-22) 1 j 3 x 3 x1 2 (C-23) Choose Recall equation (C-14). x 2 x1 x3 (C-24) 1 j 3 x 2 x1 x1 2 (C-25) 12 1 j 3 x 2 x11 2 (C-26) 1 j 3 x 2 x11 2 (C-27) 2 1 j 3 x 2 x1 2 2 (C-28) 1 j 3 x 2 x1 2 (C-29) The roots x2 and x3 thus form a complex conjugate pair. Summarize the roots. 1 1 b b 1 2 2 x 1 a b 6 cos arctan j sin arctan 3 a 3 a (C-30) 1 j 3 x 2 x1 2 (C-31) 1 j 3 x 3 x1 2 (C-32) Example Solve for x. x3 2 j7 (C-33) x 2 j 71 / 3 (C-34) a2 (C-35) 13 b7 (C-36) n=3 (C-37) There are three roots. The first root is 1 1 b b 1 2 2 x 1 a b 6 cos arctan j sin arctan 3 a 3 a (C-38) x1 1.938 0.909 j 418 (C-39) x1 1.761 j 0.809 (C-40) The second root is a coordinate transformation of the first root. 1 j 3 x 2 x1 2 (C-41) 1 j 3 x 2 1.762 j 0.809 2 (C-42) x 2 1.581 j1.120 (C-43) 1 j 3 x 3 x1 2 (C-44) 1 j 3 x 3 1.761 j 0.809 2 (C-45) x3 0.180 j1.930 (C-46) 14 In summary, the cube roots of (2 + j 7) are x1 1.761 j 0.809 (C-47) x 2 1.581 j1.120 (C-48) x3 0.180 j1.930 (C-49) APPENDIX D Derivation of the Quadratic Formula ax 2 bx c 0 (D-1) x 2 b / a x c / a 0 (D-2) b 2 b2 c x 0 2 2a a 4a (D-3) b 2 b2 c x 2 2a a 4a (D-4) b 2 b 2 4ac x 2a 4a 2 (D-5) b b 2 4ac x 2a 4a 2 (D-6) 15 b b 2 4ac x 2a 2a (D-7) b 2 4ac 2a (D-8) b b 2 4ac 2a (D-9) b x 2a x 16