Download 1) (5x4y-3z6)3

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Name
Alg1 Q3 Quarter Exam
Test: 3/26/14
PRACTICE PROBLEMS
Q1 Test 1 Review
Sections 1 and 2 can be done on sheet.
Sections 3,4, and 5 MUST be done in NB
Section 1: Sets of Numbers
1) Which number is a rational number but not an integer?
a) – 6
b) 0
c) ⅝
d) none
C
2) Which number is an integer but not a natural number?
a) π
b) -¾
c) 0
d) none
C
3) Which number is an integer, but not rational?
a) π
b) 4
c) -.25
d) none
D
4) Which number is whole, but not natural?
a) 0
b) 4
c) .75
d) none
A
5) Which number is natural, but not whole?
a) ¼
b) 4
c) 0
d) none
D
6) Give an example of a number that is rational, but not an integer.
acceptable
answers
½ (many
7) Give an example of a number that is an integer, but not a whole number. -4 (many
acceptable
answers
8) Give an example of a number that is a whole number, but not a natural number.0(only
answer)
9) Give an example of a number that is a whole number, but not an integer. None
10) Give an example of a number that is rational, but not a whole number. ½ (many
acceptable
answers
Section 2: Properties
A. Complete the Matching Column (put the corresponding letter next to the number
A1)
J2)
H3)
D4)
B5)
F6)
6-9=6-9
4(5 + 2) = 4(5) + 4(2)
17 · 8 = 8 · 17
a) Reflexive
b) Additive Identity
c) Multiplicative identity
6 · (2 · 12) = (6 · 2) · 12
d) Associative Property of Mult.
32 + 0 = 32
e) Transitive
11 + (3 + 18) = (11 +3) + 18
f) Associative Property of Add.
Name
Alg1 Q3 Quarter Exam
E7)
I8)
G9)
C10)
Test: 3/26/14
PRACTICE PROBLEMS
If 40 + 4 = 44 and 44 = 4 · 11, then 40 + 4 = 4 · 11
g) Symmetric
22 · 0 = 0
h) Commutative Property of Mult.
If 30 = 5 · 6, then 5 · 6 = 30
i) Multiplicative property of zero
26 · 1 = 26
j) Distributive
Section 3: Order of Operations:
1) 256 – 13 ÷ ⅓ + 11= 228
5) Substitute and Evaluate:
3y3 - 2y2 ÷ 10 + 379 = -1
y = -5
2) 24 ÷ (6 – 3 · 4) · 13 = -52
6) Substitute and Evaluate:
2
3) (-7)2 - 122 · ¼ + (6)(-2) = 1
b = 7 and c = -
bc2 ÷ (42 – 4b) – 11c = 24
7) Evaluate when a = -8, b = -3, and c = 9
4b3 + ac – ab + 1
c2 – 16b ÷ a + 8a + 2b
numerator: -95
FINAL ANSWER = -19
denominator: 5
Section 4: Simplifying:
1) (6x - 5) + (7x + 7)
3)
13x+ 2
2) (6x2 – 5x + 7) + (9x2 – 4x + 8)
15x2 – 9x + 15
3) 4(3x – 5) + 6(4x +
36x – 2
4) 5(6x – 9) – 7(4x – 8)
2x + 11
5)8(3x2 – 4x + 9) + 6(4x2 + 5x – 12)
48x2 – 2x
6) 9(4x2 + 3x – 8) – 7(6x2 – 4x + 10)
-6x2 + 55x – 142
7) 6(2x – 5) + 3(3x + 2)
21x – 24
8) 4(8x + 5) – 10(5x + 2)
-18x
9) 6(4x2 – x + 7) + 8(3x2 – 2x – 6)
48x2 -22x – 6
10) 10(3x2 – 5x + 3) + 6(5x2 – 4)
12)
60x2 – 50x + 6
11) 12(3x2 – 6x + 9) – 9(4x2 – 8x +
0
Section 5: Solving Equations:
1) ½ x + 39 = 31
-16
7) 42 - ¾ x = 21
28
2) 8x – 5 = 3x + 50
11
8) (5x – 2) + (7x + 5) = -81
3) 12x – 14 = -74
-5
9) 100- 9x = -154
254/9
-7
Name
Alg1 Q3 Quarter Exam
Test: 3/26/14
PRACTICE PROBLEMS
4) 7(4x – 5) + 6(2x + 1) = 171
5) 8(3x – 10) = 10(2x – 6)
5
6) 6(4x -7) – 5(3x – 5) = 55 8
5
10) 10(6x – 4) – 7(8x – 3) = -17
½
11) 7(4x – 10) = 6(8x – 10)
-½
12) 9(2x + 3) – 4 = 5(3x – 2)
-11
Name
Alg1 Q3 Quarter Exam
Test: 3/26/14
PRACTICE PROBLEMS
Q1 Test 2 Review
Solving Equations:
1) (6x - 5) - (10x - 11) = 34
2) 4(3x – 7) + 6(3x + 4) = -49
3) 6(5x – 4) – 4(7x – 9) = 36
4) 6(4x – 5) - 5(7x - 6) = -110
5) 5(3x – 2) = 4(6x + 11)
6) 8(5x – 3) = 6(5x + 1)
7) 4(6x - 4) - 3 .
11
=7
8) 4(3x + 3) .
6
+ 8 = -8
9) 6(4x - 3) + 3 .
7
= 15
10) 5(2x - 6) .
12
- 15 = -10
11) 8(6x – 7) .
5
+ 40 = 72
12) 2(8x - 5) + 2 .
-5
13) 5(6x + 3) .
9
+ 3 = -22
14) 7(5x + 4) + 22 .
11
= -8
= -5
Solving and Graphing Simple Inequalities:
1) 8x – 17 > -5
2) 50 – ¾ x < 68
3) 12x - 2 > 17x + 18
4) 8(5x – 4) – 6(7x + 4) < -64
5) 38 < 26 - ⅜ x
6) 6(4x -1) > 7(4x - 2)
7) 9(4x + 4) > 4(4x - 1)
8) -4 > 5(4x + 6) + 6(4x – 2)
Name
Alg1 Q3 Quarter Exam
Test: 3/26/14
PRACTICE PROBLEMS
Absolute Value Equations
1) 3|7x + 35|_ + 22 = 64
2
2) 6|4x - 24| -10
-5
3) 3|15x + 30| - 112 = 113
4) -½ | 8x – 24 | + 12 = -4
5) ¾ |5x + 1| - 39 = -12
6) 7|4x -12| + 129 = 17
7) 6| 7x – 21 | + 25 = 319
8) 7|5x – 10| - 11 = 59
9)
5 | 12x – 8 | - 8 .
4
= 33
11) ¾ |12x – 12| + 20 = -16
= -22
10) 3|4x – 5| - 14 = -11
7
12) -3 |40 - ⅔x| = -114
Absolute Value Inequalities
1) 4| 9x – 18 | - 32 > 76
2) ⅔ | 6x – 12 | + 5 < 13
3) 3 | 5x – 15 | + 6 .
4
4) 3| 4x + 12 |
8
5)
5 | 4x + 2 | .
-6
<9
– 3 < -18
7) 3| 5x – 20 | - 7 > 23
+ 14 > 23
6) 3| 6x – 18 | + 5 .
11
<7
8) ¾ | 9x – 27 | - 15 < 12
Name
Alg1 Q3 Quarter Exam
Test: 3/26/14
PRACTICE PROBLEMS
Q2 Test 1 Review
Solve and graph the solution ste for each compound inequality:
1) 19 - 4x < -1  6x -29 > -41
2) 18x – 31 > 41  23 – 5x < 28
3) 17 - 3x > 26  7x – 13 > 15
4) 7 < ⅖x + 11 < 13
5) 28 – ¾ x > 31  ½ x + 19 < 22
6) -39 < 4x - 15 < 5
7) A snack stand at Yankee Stadium sells sodas for $4.25 and hot dogs for $6.50.
During one game the stand sold 3 more hot dogs than 4 times the amount of sodas. If the
total sales for sodas and hot dogs were $4,254.50; how many of each item were sold?
8) A phone call cost $7.67. Introductory minutes cost $.20/min and additional minutes
are $.13/min. If there were 7 less additional minutes than triple the introductory minutes,
how many minutes were billed at each rate?
9) A store sold Seminole t-shirts for $27 and Gator t-shirts for $22. The store sold 38
more Seminole shirts than 11 times the amount of Gator shirts and made $1,664. How
many of each T-shirt were sold?
10) A jar of change has $81.25 in it. There are 4 dimes more than 3 times the amount of
nickels and 3 quarters less than double the amount of nickels. How many nickels, dimes,
and quarters are in the jar? (There are no pennies.)
11) A jar of change has $67.75 in it. There are 5 less nickels than 3 times the amount of
dimes and 8 quarters more than double the amount of dimes. How many nickels, dimes,
and quarters are in the jar? (There are no pennies.)
12) A jar of change has $74.15 in it. There are 7 nickels less than twice the amount of
dimes and 6 less quarters than triple the amount of dimes. How many nickels, dimes, and
quarters are in the jar?
13) The perimeter of a rectangular garden is 172 feet. If the length is 10 feet less than
3 times the width, what are the length and width of the garden?
14)
The perimeter of a rectangle is 134 inches. If the width is 7 inches more than ½
the length, what are the dimensions of the rectangle?
15)
The perimeter of a rectangle is 234 inches. If the width is 12 inches less than ¼
the length, what are the dimensions of the rectangle?
Name
Alg1 Q3 Quarter Exam
Test: 3/26/14
PRACTICE PROBLEMS
Q2 Test 2 Review
Part I: Find the equation in slope intercept form and graph: (1 on each set of axis)
1) (-3, 6)(4, -8)
2) (3, 5)(-6, -1)
3) (4, -6)(-4, -6)
Name
Alg1 Q3 Quarter Exam
4) m = - ¾ (-8, 7)
5) m = 2 (5, 6)
6) m = undefined (3,8)
Test: 3/26/14
PRACTICE PROBLEMS
Name
Alg1 Q3 Quarter Exam
7) y - 5 = ¼(x - 4)
8) 48x - 12y = 72
9) y + 2 = (-3/5)(x - 10)
Test: 3/26/14
PRACTICE PROBLEMS
Name
Alg1 Q3 Quarter Exam
10) 54x + 18y = 36
11) 55x - 22y = 66
12) y - 4 = (-1/3)(x + 3)
Test: 3/26/14
PRACTICE PROBLEMS
Name
Alg1 Q3 Quarter Exam
Part II: Solve each system graphically
1) y = 2x - 5
y = - ½x + 5
2) 15x + 15y = 30
y - 6 = -1(x + 4)
Test: 3/26/14
PRACTICE PROBLEMS
Name
Alg1 Q3 Quarter Exam
3) y - 3 = ¾ (x - 8)
34x – 17y = -34
4) 24x - 18y = -18
y = -7
Test: 3/26/14
PRACTICE PROBLEMS
Name
Alg1 Q3 Quarter Exam
5) y - 2 = ⅓(x - 9)
9x – 27y = -135
6) x = -6
y + 15 = (-5/3)(x - 9)
Test: 3/26/14
PRACTICE PROBLEMS
Name
Alg1 Q3 Quarter Exam
Part I:
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
Y = -2x
Y = ⅔x + 3
Y = -6
Y=-¾x+1
Y = 2x – 4
X = -3
Y=¼x+4
Y = 4x – 6
Y = (-3/5)x + 4
Y = -3x + 2
Y = (5/2)x – 3
Y = -⅓x + 3
Part II:
1)
2)
3)
4)
5)
6)
(4,3)
Dependent
(-4,-6)
(-6,-7)
Inconsistent
(-6,10)
Test: 3/26/14
PRACTICE PROBLEMS
Name
Alg1 Q3 Quarter Exam
Test: 3/26/14
PRACTICE PROBLEMS
Q2 Test 3 Review
Part I:
Solve each system GRAPHICALLY and check!
1) y - 10 = -4(x + 4)
18x – 27y = -216
2) y – 2 = - ¾(x – 4)
28x – 14y = 84
3) x = -5
8x + 20y = 40
4) 27x + 9y = 27
y + 7 = -2(x - 6)
5) y = 6
y + 9 = (3/2)(x + 6)
6) 11x + 11y = 44
12x – 36y = 144
Answers:
1) (-3,6)
2) (4,2)
Part II:
Graph each inequality:
3) (-5,4)
4) (-2,9)
5) (4,6)
1) 28x + 7y > 21
2) y – 4 = ⅔(x – 6)
3) x > 3
4) y < - 4
Part III: Graph each system of inequalities:
1) 28x – 14y > 56
y – 3 > - ¼ (x + 12)
2) y – 7 > - ⅓(x + 15)
12x – 60y > -60
3) y > 6
16x + 4y < 20
4) x < -4
y – 3 > ½ (x + 2)
5) 27x -18y < -18
y + 3 > -2(x – 2)
6) y – 4 < (4/3)(x – 3)
33x + 44y < 126
6) (6,-2)
Name
Alg1 Q3 Quarter Exam
Test: 3/26/14
PRACTICE PROBLEMS
Q3 Test 1 Review
Part I: Monomials and Multiplying Polynomials:
1) (4x4y-3z6)3
2) (2x8y10z-5)(5x-5y3z2)3
3) 48x7y6z8 _
32x5y-6z8
4) (4x10y8z5 )2
(2x4y-4z-2)5
5) (7x7y4z3)2(4x-5y3z)3
6)
7) 6x(9x2 – 4x + 8) + 4x(6x2 + 12x – 9)
9) (x + 8)(x – 7)
(8x2y5z3)2 _
(4x-3y2z2)3
8) 8x2(7x2 – 3x – 12) – 6x(4x2 – 16x – 3)
10) (x – 9)(x – 12)
12) (x – 4)(x + 7)
13) (x – 11)2
14) (5x – 4)(12x + 9)
15) (3x + 4)(8x + 3)
16) (7x2 – 4x + 3)(5x – 4)
17) (4x2 – 7x + 2)(10x2 – 3x – 5)
18) (6x2 + 8x – 3)(5x2 + 10x – 2)
19) (5x3 – 9x + 3x – 7)(11x3 + 5x2 – 4x + 8) 20) (3x2 – 5x - 2)2
Part II: Factoring with the GCF
7
6
1) 24x - 72x + 40x
5
4 3
6
5
4
11
10
9
5 2
3) 60x - 105x - 90x
8
4 2
4 4 4
4 3
2 4
7 2
6 3
6 5
6) 240a b + 96a b - 144a b
3
5
4
8) 75x + 150x -25x3
7) 12x y + 24x y - 44x y
5 4 3
2 5
2
5
4) 64x y - 160x y + 288x y - 96xy
5) 84b + 96b -18b + 6b
5 3
3 4
2) 42x y - 70x y + 56x y - 14xy
3 4 5
9) 135a b c - 90a b c + 180a b c
5
2 2
5
10) 12x + 11x y – 10xy
Name
Alg1 Q3 Quarter Exam
Test: 3/26/14
PRACTICE PROBLEMS
Q3 Test 2 Review:
For 1-36 Factor each quadratic:
1) 8x2 + 2x - 3
2) 49x2 – 64
3) 9x2 - 36
4) x2 – 16x + 64
5) x2 + 15x + 54
6) 3x3 + 21x2 – 132x
7) 36x2 – 1
8) 100x2 – 25
9) x2 + 22x - 48
10) x2 + 2x – 1,443
11) x2 – 50x + 504
12) x2 – 10x - 24
13) x2 – 13x + 36
14) x2 - 34x + 64
15) 169x2 - 196
16) 4x2 – 26x + 12
17) 4x2 + 24x - 13
18) 4x2 - 32x – 192
19) 64x2 – 121
20) 64x2 – 4
21) 64x2 - 144
22) 5x2 – 60x + 180
23) x7 + 44x6 + 84x5
24) 12x4 – 60x3 – 288x2
25) 8x2 + 14x + 5
26) 8x2 – 112x - 120
27) 8x2 + 14x - 4
28) x2 – 12x - 45
29) x2 + 26x + 25
30) x2 + 6x – 16
31) x2 – 3x - 88
32) x2 – x - 30
33) x2 + 11x - 42
34) 8x2 - 200
35) 12x2 - 27
36) 12x2 + 61x + 5
For #’s 37- 42 write the reason WHY each quadratic is PRIME:
37) x2 + 2x + 35
40) x2 – 17x – 72
38) x2 – x + 42
41) x2 + 64
For #’s 43 – 45 pick out which quadratic is prime:
43)
a) x2 + 89x – 90
c) x2 – 25x + 84
b) x2 – 17x – 38
d) x2 + 19x – 90
44)
a) x2 – 441
c) x2 – 30
b) 5x2 + 80
d) 9x2 + 81
45)
a) 3x2 + 24x - 45
c) x2 – 25x + 26
b) x2 – 20x – 44
d) x2 + x – 270
39) x2 + 14x – 48
42) x2 – 63
Name
Alg1 Q3 Quarter Exam
Test: 3/26/14
PRACTICE PROBLEMS
For #’s 43 – 45 pick out which quadratic IS NOT PRIME:
46)
a) x2 + 9x – 90
c) x2 – 19x - 84
b) x2 – x + 90
d) x2 + 5x + 84
47)
a) x2 – 44
c) 3x2 – 35
b) 289x2 - 1
d) 8x2 - 27
48)
a) 3x2 + 24x - 41
c) x2 – 29x + 28
b) x2 – 45x – 44
d) x2 + 6x – 27
Related documents