Download Acyl Transfer from Esters

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
1
Thomas C. Bruice Publications By Topic
Table of Contents
Books .................................................................................................................................. 2
Acetal Hydrolysis and Lysozyme ....................................................................................... 2
Acyl Transfer from Esters................................................................................................... 3
Aminolysis, Imidizole Catalysis, Alcoholysis, -CO2- Attack ........................................ 3
Intramolecular Models, efficiency of enzyme catalysis ................................................. 5
ElcB & Types, Electrostatic ............................................................................................ 6
The Gem Effect ............................................................................................................... 7
O-acyl Isoureas & Biotin ................................................................................................ 8
Metal Ion Catalysis ......................................................................................................... 8
Triad ................................................................................................................................ 9
Acyl Transfer Reactions Involving Thiol Esters ................................................................ 9
Alpha Effect ...................................................................................................................... 10
Apparent pKa' ................................................................................................................... 10
Arene oxides, K-Region Oxides and Epoxides Reactions ................................................ 10
Carbon Acid Ionization ..................................................................................................... 12
Catalysis in Ice and Water ................................................................................................ 12
Chemiluminescence .......................................................................................................... 13
Chiral Recognition of Prochiral Center ............................................................................ 13
Computational Chemistry and Enzymology ..................................................................... 13
Dihydropyridines and dehydrogenases enzymes .............................................................. 19
Flavin Chemistry and Catalysis ........................................................................................ 21
Iron-sulfur Clusters Fe4S4(SR)4 and Ferredoxins ........................................................... 26
Methoxatin, PQQ and Related ortho-quinones ................................................................. 27
Micelle Catalysis............................................................................................................... 28
Nucleotide Analogs and Phosphate Esters – Materials .................................................... 28
Orbital Steering ................................................................................................................. 34
Organomercurials, hydrolysis of....................................................................................... 34
Porphyrins ......................................................................................................................... 34
Pyridoxal and 3-hydroxypyridine-4-aldehyde .................................................................. 42
Sulfenic Acids ................................................................................................................... 44
Tetranitromethane, Nitration Mechanism ......................................................................... 44
Thiamine ........................................................................................................................... 44
Thyroxine .......................................................................................................................... 44
Miscellaneous ................................................................................................................... 44
2
Books
72. T.C. Bruice and S.J. Benkovic. Bioorganic Mechanisms; Vol. I, W.A. Benjamine,
Inc.: New York, 1966.
73. T.C. Bruice and S.J. Benkovic. Bioorganic Mechanisms; Vol. II, W.A. Benjamine,
Inc.: New York, 1966.
Acetal Hydrolysis and Lysozyme
87. T.C. Bruice and D. Piszkiewicz. A Search for Carboxyl-Group Catalysis in Ketal
Hydrolysis. J. Am. Chem. Soc. 1967, 89, 3568.
90. D. Piszkiewicz and T.C. Bruice. Glycoside Hydrolysis. I. Intramolecular Acetamido
and Hydroxyl Group Catalysis in Glycoside Hydrolysis. J. Am. Chem. Soc. 1967, 89,
6237.
95. D. Piszkiewicz and T.C. Bruice. Glycoside Hydrolysis. II. Intramolecular Carboxyl
and Acetamido Group Catalysis in β-Glycoside Hydrolysis. J. Am. Chem. Soc. 1968,
90, 2156.
98. D. Piszkiewicz and T.C. Bruice. Glycoside Hydrolysis. III. Intramolecular Acetamido
Group Participation in the Specific Acid Catalyzed Hydrolysis of Methyl 2Acetamido-2-deoxy-β-D-glucopyranoside. J. Am. Chem. Soc. 1968, 90, 5844.
99. D. Piszkiewicz and T.C. Bruice. The Identification of Histidine-15 as Part of an
Esteratic Site of Hen's Egg White Lysozyme. Biochem. 1968, 7, 3037.
103. D. Piszkiewicz and T.C. Bruice. Interaction of Cellodextrins with Lysozyme: The
Necessity of the 2-Acetamido Group for Binding and Hydrolysis. Arch. Biochem.
Biophys. 1969, 129, 317.
120. B.M. Dunn and T.C. Bruice. Steric and Electronic Effects on the Neighboring
General Acid Catalyzed Hydrolysis of Methyl Phenyl Acetals of Formaldehyde. J.
Am. Chem. Soc. 1970, 92, 2410.
122. T.A. Giudici and T.C. Bruice. Synthesis of 2- Oxabicyclo[2.2.2]octane. J. Org.
Chem. 1970, 35, 2386.
125. T.A. Giudici and T.C. Bruice. Planarity as a Factor in Determining the Rate
Constant and Mechanism of Acetal Hydrolysis. Chem. Commun. 1970, 690.
127. B.M. Dunn and T.C. Bruice. Further Investigation of the Neighboring Carboxyl
Group Catalysis of Hydrolysis of Methyl Phenyl Acetals of Formaldehyde.
Electrostatic and Solvent Effects. J. Am. Chem. Soc. 1970, 92, 6589.
140. B.M. Dunn and T.C. Bruice. Electrostatic Catalysis. IV. Intramolecular Carboxyl
Group Electrostatic Facilitation of the A-l-Catalyzed Hydrolysis of Alkyl Phenyl
Acetals of Formaldehyde. The Influence of Oxocarbonium Ion Stability. J. Am.
Chem. Soc. 1971, 93, 5725.
162. B.M. Dunn and T.C. Bruice. Physical Organic Models for the Mechanism of
Lysozyme Action. In Advances in Enzymology; A. Meister; Ed.; Vol. 37; John Wiley
and Sons, 1973; 1-60.
3
165. A. Brown and T.C. Bruice. Mechanism of Hydrolysis of Benzoyl Glucose Acylals.
J. Am. Chem. Soc. 1973, 95, 1593.
175. R.F. Atkinson and T.C. Bruice. Ring Strain and General Acid Catalysis of Acetal
Hydrolysis Lysozyme Catalysis. J. Am.Chem. Soc. 1974, 96, 819.
Acyl Transfer from Esters
Aminolysis, Imidizole Catalysis, Alcoholysis, -CO2- Attack
10. T.C. Bruice and G.L. Schmir. The Catalysis of the Hydrolysis of p-Nitrophenyl
Acetate by Imidazole and its Derivatives. Arch. Biochem.Biophys. 1956, 63, 484.
11. T.C. Bruice and G.L. Schmir. Imidazole Catalysis. I. The Catalysis of the Hydrolysis
of Phenyl Acetates by Imidazole. J.Am. Chem. Soc. 1957, 79, 1663.
13. T.C. Bruice and G.L. Schmir. Imidazole Catalysis. II. The Reaction of Substituted
Imidazoles with Phenyl Acetates in Aqueous Solution. J. Am. Chem. Soc. 1958, 80,
148.
14. G.L. Schmir and T.C. Bruice. Imidazole Catalysis. III. The Solvolysis of 4-(2'Acetoxyphenyl)-imidazole. J. Am. Chem. Soc. 1958, 80, 1173.
17. T.C. Bruice and R. Lapinski, Imidazole Catalysis. IV. The Reaction of General Bases
with p-Nitrophenyl Acetate in Aqueous Solution. J. Am. Chem. Soc. 1958, 80, 2265.
24. T.C. Bruice and M.F. Mayahi. The Influence of the Leaving Tendency of the
Phenoxy Group on the Ammonolysis and Hydrolysis of Substituted Phenyl Acetates.
J. Am. Chem Soc. 1960, 82, 3067.
25. U.K. Pandit and T.C. Bruice. Imidazole Catalysis. VII. The Dependence of Imidazole
Catalysis of Ester Hydrolysis on the Nature of the Acyl Group. J. Am. Chem. Soc.
1960, 82, 3386.
28. T.C. Bruice and J.L. York. The Mechanism of the Reaction of Tris-(hydroxymethyl)aminomethane and Pentaerythritol with Phenyl Esters. J. Am. Chem. Soc. 1961, 83,
1382.
32. T.C. Bruice and J.J. Bruno. The Mechanism of the Reaction of Hydroxylamine with
γ-Butyro- and δ-Valerolactones. Examples of Reactions Kenetically both Third and
Fourth Order. J. Am. Chem. Soc. 1961, 83, 3494.
35. T.C. Bruice; T.H. Fife; J.J. Bruno and N.E. Brandon. Hydroxyl Group Catalysis. II.
The Reactivity of the Hydroxyl Group of Serine. The Nucleophilicity of Alcohols and
the Ease of Hydrolysis of Their Acetyl Esters as Related to Their pKa'. Biochem.
1962, 1, 7.
36. T.C. Bruice and F.H Marquardt. Hydroxyl Group Catalysis. IV. The Mechanism of
Intramolecular Participation of the Aliphatic Hydroxyl Group in Amide Hydrolysis.
J. Am. Chem. Soc. 1962, 84, 365.
4
37. T.C. Bruice and T.H. Fife. Hydroxyl Group Catalysis. III. The Nature of Neighboring
Hydroxyl Group Assistance in the Alkaline Hydrolysis of the Ester Bond. J. Am.
Chem. Soc. 1962, 84, 1973.
38. T.C. Bruice and J. J. Bruno. Imidazole Catalysis. IX. The Bell- shaped pHDependence of the Rate of Imidazole Catalysis of δ-Thiovalerolactone Hydrolysis. J.
Am. Chem. Soc. 1962, 84, 2128.
40. T.C. Bruice; T.H. Fife; J.J. Bruno and P. Benkovic. Hydroxyl Group (V) and
Imidazole (X) Catalysis. The General Base Catalysis of Ester Hydrolysis by
Imidazole and the Influence of a Neighboring Hydroxyl Group. J. Am. Chem. Soc.
1962, 84, 3012.
47. T.C. Bruice. Acyl Imidazoles. In Methods in Enzymology; Vol. VI; Academic Press,
1963; 606.
53. T.C. Bruice and S.J. Benkovic. the Compensation in Δ H± and Δ S± Accompanying
the Conversion of Lower Order Nucleophilic Displacement Reactions to Higher
Order Catalytic Processes. The Temperature Dependence of the Hydrazinolysis and
Imidazole-Catalyzed Hydrolysis of Substituted Phenyl Acetates. J. Am. Chem. Soc.
1964, 86, 418.
61. T.C. Bruice and R.G. Willis. The Reaction of Aliphatic Diamines with Phenyl
Acetate. J. Am. Chem. Soc. 1965, 87, 531.
71. L.R. Fedor; T.C. Bruice; K.L. Kirk and J. Meinwald. Aminolysis of Phenyl Acetates
in Aqueous Solutions. V. Hypernucleophilicity Associated with Constraint of Bond
Angles. J. Am. Chem. Soc. 1966, 88, 108.
80. T.C. Bruice; A. Donzel; R.W. Huffman and A.R. Butler. Aminolysis of Phenyl
Acetates in Aqueous Solutions. VII. Observations on the Influence of Salts, Amine
Structure and Base Strength. J. Am. Chem. Soc. 1967, 89, 2106.
82. R.W. Huffman; A. Donzel and T.C. Bruice. Aminolysis of Esters. VII. The Reaction
of Lysine with Phenyl Acetate and Triacetin. J. Org. Chem. 1967, 32, 1973.
100. S.M. Felton and T.C. Bruice. Mechanism of the Solvolyis of 4-(2'Acetoxyphenyl)imidazole. Chem. Commun. (London) 1968, 15, 907-8.
117. T.C. Bruice; A.F. Hegarty; S.M. Felton; A. Donzel and N.G. Kundu. Aminolysis of
Esters. IX. The Nature of the Transition States in the Aminolysis of Phenyl Acetates.
J. Am. Chem. Soc. 1970, 92, 1370.
148. R. Goitein and T.C. Bruice. Effect of Transfer from Water to 1.0 M Water in
Dimethyl Sulfoxide on the Reaction of Nucleophiles with Phenyl Esters. J. Phys.
Comm. 1972, 76, 432.
182. T.C. Bruice and I. Oka. Nucleophilic Displacements upon Phenyl Esters in Which
the Direct Relationship between Basicity of the Leaving Group and Rate Is
Determined by Ground State Conformations. A Question of Concerted Catalysis in
the Hydrolysis of Hexachlorophene Esters. J. Am. Chem. Soc. 1974, 96, 4500.
462. H. Adalsteinsson & T. C. Bruice. What is the Mechanism of Catalysis of Ester
Aminolysis by Weak Amine Bases? Comparison of Experimental Studies and
5
Theoretical Investigation of the Aminolysis of Substituted Phenyl Esters of Qunoline6- and -8-Carboxylic Acids. J. Am. Chem. Soc. 1998, 120, 3440.
Intramolecular Models, efficiency of enzyme catalysis
18. T.C. Bruice and J.M. Sturtevant. An intramolecular model for an esteratic enzyme.
Biochim. Biophys. Acta. 1958, 30, 208-9.
19. T.C. Bruice and J.M. Sturtevant. Imidazole Catalysis. V. The Intramolecular
Participation of the Imidazolyl Group in the Hydrolysis of Some Esters and the
Amide of γ-(4- Imidazolyl)butyric Acid and 4-(2'-Acetoxyethyl)-imidazole. J. Am.
Chem. Soc. 1959, 81, 2860.
22. T.C. Bruice. Imidazole Catalysis. VI. The Intramolecular Nucleophilic Catalysis of
the Hydrolysis of an Acyl Thiol. The Hydrolysis of n-Propyl γ-(4-Imidazolyl)thiolbutyrate. J. Am. Chem. Soc. 1959, 81, 5444.
23. T.C. Bruice and U.K. Pandit. Intramolecular Models Depicting the Kinetic
Importance of "Fit" in Enzymatic Catalysis. Proc. Natl. Acad. Sci. 1960, 46, 402.
26. T.C. Bruice and U.K. Pandit. The Effect of Geminal Substitution Ring Size and
Rotamer Distribution on the Intramolecular Nucleophilic Catalysis of the Hydrolysis
of Monophenyl Esters of Dibasic Acids and the Solvolysis of the Intermediate
Anhydrides. J. Am. Chem. Soc. 1960, 82, 5858.
29. T.C. Bruice and T.H. Fife. The Nature of Neighboring Hydroxyl Group Assistance in
the Alkaline Hydrolysis of the Ester Bond. Tetrahedron Lett. 1961, 8, 263.
41. T.C. Bruice and S.J. Benkovic. A Comparison of the Bimolecular and Intramolecular
Nucleophilic Catalysis of the Hydrolysis of Substituted Phenyl Acylates by the
Dimethylamino Group. J. Am. Chem. Soc. 1963, 85, 1.
42. T.C. Bruice. Intramolecular Catalysis and the Mechanism of Chymotrypsin Action.
Brookhaven Symp. Biol. 1962, 15, 52-84.
68. T.C. Bruice and W.C. Bradbury. The gem Effect. I. The Influence of 3-Substituents
on the Rates of Solvolysis of Glutaric Anhydride. A Conformational Analysis. J. Am.
Chem. Soc. 1965, 87, 4838.
69. T.C. Bruice and W.C. Bradbury. The gem Effect. II. The Influence of 3-Mono- and
3,3-Disubstitution on the Rates of Solvolysis of Mono-p-bromophenyl Glutarate. J.
Am. Chem. Soc. 1965, 87, 4846.
74. J.W. Thanassi and T.C. Bruice. Neighboring Carboxyl Group Participation in the
Hydrolysis of Monoesters of Phthalic Acid. The Dependence of Mechanisms on
Leaving Group Tendencies. J. Am. Chem. Soc. 1966, 88, 747.
104. T.C. Bruice and S.M. Felton. Intramolecular Amine-Catalyzed Aminolysis of an
Ester. J. Am. Chem. Soc. 1969, 91, 2799.
115. S.M. Felton and T.C. Bruice. Intramolecular General-Base- Catalyzed Hydrolysis
and Aminolysis of the Ester Bond by Imidazole and Quinoline Bases. J. Am. Chem.
Soc. 1969, 91, 6721.
6
121. T.C. Bruice and A. Turner. Solvation and Approximation. Solvent Effects on the
Bimolecular and Intramolecular Nucleophilic Attack of Carboxyl Anion on Phenyl
Esters. J. Am. Chem. Soc. 1970, 92, 3422.
134. T. Maugh II and T.C. Bruice. The Role of Intramolecular Bifunctional Catalysis of
Ester Hydrolysis in Water. J. Am. Chem. Soc. 1971, 93, 3237.
137. T. Maugh II and T.C. Bruice. Hydrolysis and Aminolysis of OAcylhydroxyquinolines. Intracomplex General Base-Catalyzed Aminolysis. J. Am.
Chem., Soc. 1971, 93, 6584.
169. G.A. Rogers and T.C. Bruice. Isolation of a Tetrahedral Intermediate in an Acetyl
Transfer Reaction. J. Am. Chem. Soc. 1973, 95, 4452.
183. P.Y. Bruice and T.C. Bruice. Intramolecular General Base Catalyzed Hydrolysis and
Tertiary Amine Nucleophilic Attack vs. General Base Catalyzed Hydrolysis of
Substituted Phenyl Quinoline-8- and -6-carboxylates. J. Am. Chem. Soc. 1974, 96,
5523.
184. P.Y. Bruice and T.C. Bruice. Aminolysis of Substituted Phenyl Quinoline-8- and -6Carboxylates with Primary and Secondary Amines. Involvement of Proton-Slide
Catalysis. J. Am. Chem. Soc. 1974, 96, 5533.
423. F. C. Lightstone; T. C. Bruice. Geminal-Dialkyl Substitution, Intramolecular
Reactions and Enzyme Efficiency. J. Am. Chem. Soc. 1994, 116, 10789.
438. F. C. Lightstone; T. C. Bruice. Ground State Conformations and Entropic and
Enthalpic Factors in the Efficiency of Intramolecular and Enzymatic Reactions. I
Cyclic Anhydride Formation by Substituted Glutarates, Succinate and 3,6-Endoxoδ4tetrahydrophthalate Monophenyl Esters. J. Am. Chem. Soc. 1996, 118, 2595.
458. F. C. Lightstone & T. C. Bruice. Separation of Ground State and Transition State
Effects in Intramolecular and Enzymatic Reactions. II. A Theoretical Study of the
Formation of Transition States in Cyclic Anhydride Formation. J. Am. Chem. Soc.
1997, 119, 9103.
473. F. C. Lightstone & T. C. Bruice. Enthalpy and Entropy in Ring Closure Reactions.
Bioorganic Chem. 1998, 26, 193.
ElcB & Types, Electrostatic
27. T.C. Bruice and T.H. Fife. A Facile Base-catalyzed Ester Hydrolysis Involving AlkylOxygen Cleavage. The Mechanism of Hydrolysis of Esters of 4(5)Hydroxymethylimidazole. J. Am. Chem. Soc. 1961, 83, 1124.
57. T.C. Bruice and J.L. Herz. Hydrolytic Reactions of 4(5)- Hydroxymethylimidazolyl
Acetate, 1-Methyl-5- Hydroxymethylimidazolyl Acetate, 4(5)Chloromethylimidazole, and 1-Methyl-5-chloromethylimidazole. J. Am. Chem. Soc.
1964, 86, 4109.
85. T.C. Bruice and B. Holmquist. The Question of the Importance of Electrostatic
Catalysis. I. Comparison of the Reactivity of o- Nitrophenyl Hydrogen Oxalate and
Ethyl O-Nitrophenyl Oxalate toward Nucleophiles. J. Am. Chem. Soc.1967, 89, 4028.
7
102. T.C. Bruice and B. Holmquist. The Establishment of a Carbanion Mechanism for
Ester Hydrolysis and the Unimportance of Electrostatic Effects of α Substituents on
the Rates of Hydroxide Ion Attack at the Ester Carbonyl Group. J. Am. Chem. Soc.
1969, 90, 7136.
105. B. Holmquist and T.C. Bruice. Electrostatic Catalysis. II. A Comparison of
Spontaneous and Alkaline Hydrolytic Rate Constants for α Substituted O-Nitrophenyl
Esters. J. Am. Chem. Soc. 1969, 91, 2982.
106. B. Holmquist and T.C. Bruice. Electrostatic Catalysis. III. Comparison of the
Reactivity of α Substituted O-Nitrophenyl Esters with Anionic and Amine
Nucleophiles. J. Am. Chem. Soc. 1969, 91, 2985.
107. B. Holmquist and T.C. Bruice. The Carbanion (ElcB) Mechanisms of Ester
Hydrolysis. I. Hydrolysis of Malonate Esters. J. Am. Chem. Soc. 1969, 91, 2993.
108. B. Holmquist and T.C. Bruice. The Carbanion Mechanism of Ester Hydrolysis. II. oNitrophenyl, α-Cyano- and α-Dimethylsulfonioacetate Esters. J. Am. Chem. Soc.
1969, 91, 3003.
126. R.F. Pratt and T.C. Bruice. The Carbanion Mechanism (ElcB) of Ester Hydrolysis.
III. Some Structure-Reactivity Studies and the Ketene Intermediate. J. Am. Chem.
Soc. 1970, 92, 5956.
257. M. Inoue and T.C. Bruice. The Influence of Electron Delocalization upon the Rate
Constants for Competing BAC2 and Elcb Ester Hydrolyses. J. Chem. Soc., Chem.
Commun. 1981, 17, 884-6.
262. M. Inoue and T.C. Bruice. Extended ElcB Mechanism for Ester Hydrolysis: Allylic
Substitution via Carbanion in Ester Hydrolysis. J. Am. Chem. Soc. 1982, 104, 1664.
279. M. Inoue and T.C. Bruice. Influence of Steric Effects upon the Rate Constants for
Competing BAC2 and ElcB Ester Hydrolyses. J. Org. Chem. 1983, 48, 3559.
313. M. Inoue and T.C. Bruice. Mechanistic Change from (ElcB)R to (ElcB)i Brought
about by a Sterically Bulky Substituent in Ester Hydrolysis. J. Org. Chem. 1986, 51,
959.
The Gem Effect
68. T.C. Bruice and W.C. Bradbury. The gem Effect. I. The Influence of 3-Substituents
on the Rates of Solvolysis of Glutaric Anhydride. A Conformational Analysis. J. Am.
Chem. Soc. 1965, 87, 4838.
69. T.C. Bruice and W.C. Bradbury. The gem Effect. II. The Influence of 3-Mono- and
3,3-Disubstitution on the Rates of Solvolysis of Mono-p-bromophenyl Glutarate. J.
Am. Chem. Soc. 1965, 87, 4846.
70. T.C. Bruice and W.C. Bradbury. The gem Effect. III. The Influence of 3-Mono and 3gem Substitution on the Acid Dissociation Constants of Glutaric Acid. A Comparison
of the Sensitivity of Δ pKa of Dicarboxylic Acids and the Rate of Ring Closure of
Their Monoesters to the Intramolecular Distance Separating Carboxyl Functions. J.
Am. Chem. Soc. 1965, 87, 4851.
8
97. T.C. Bruice and W.C. Bradbury. The gem Effect. IV. Activation Parameters
Accompanying the Increased Steric Requirements of 3,3'-Substituents in the
Solvolysis of Mono-p-bromophenyl Glutarates. J. Am. Chem. Soc. 1968, 90, 3808.
O-acyl Isoureas & Biotin
114. A.F. Hegarty; T.C. Bruice and S.J. Benkovic. Biotin and the Nucleophilicity of 2Methoxy-2-imidazoline Toward the sp2 Carbonyl Carbon. Chem. Commun. 1969, 20,
1173-4.
124. T.C. Bruice and A.F. Hegarty. Biotin-Bound CO2 and the Mechanism of Enzymatic
Carboxylation Reactions. Proc. Natl. Acad. Sci. 1970, 65, 805.
128. A.F. Hegarty and T.C. Bruice, Acyl Transfer Reactions from and to the Ureido
Functional Group. I. The Mechanisms of Hydrolysis of an O-Acylisourea (2-Amino4,5-benzo-6-oxo-1,3- oxazine). J. Am. Chem. Soc.1970, 92, 6561.
129. A.F. Hegarty and T.C. Bruice. Acyl Transfer Reactions from and to the Ureido
Functional Group. II. The Mechanisms of Aminolysis of an O-Acylisourea (2Amino-4,5-benzo-6-oxo- 1,3-oxazine). J. Am. Chem. Soc. 1970, 92, 6568.
130. A.F. Hegarty and T.C. Bruice. Acyl Transfer Reactions from and to the Ureido
Functional Group. III. The Mechanism of Intramolecular Nucleophilic Attack of the
Ureido Functional Group upon Acyl Groups. J. Am. Chem. Soc. 1970, 92, 6575.
135. A.F. Hegarty; R.F. Pratt; T. Guidici and T.C. Bruice. Acyl Transfer Reactions from
and to the Ureido Functional Group. IV. Neighboring Carboxyl Group General Acid
Catalysis in the Hydrolysis of an O-Acylisourea (2-Amino-8-carboxy-4-oxo- 3,1,4benzoxazine). J. Am. Chem., Soc. 1971, 93, 1428.
141. R.F. Pratt and T.C. Bruice. Reactions of S-Acylisothioureas. I. S- to N-Acyl
Migrations in S-Benzoylisothiobiotin and Analogs. Biochem. 1971, 10, 3178.
143. T.C. Bruice and R.F. Pratt. An Intramolecular Acyl Transfer Reaction Limited by
Substrate Isomerization. Chem. Commun. 1971, 20, 1259-61.
146. R.F. Pratt and T.C. Bruice. Reactions of S-Acylisothioureas. II. Effects of Structure
and Stereochemistry on the Rates of Hydrolysis, Thiol Elimination, and S and N Acyl
Migration in Acylic Systems. J. Am. Chem. Soc. 1972, 94, 2823.
Metal Ion Catalysis
214. M.A. Wells and T.C. Bruice. The Nucleophilicity of Metal Bound Hydroxide
Mechanisms of Displacement on Esters and Transesterification Involving the MetalAcyl Anhydride Bond. In Metal-Ligand Interactions in Organic Chemistry and
Biochemistry Part 2; B. Pullman and N. Goldblum; Eds.; D. Reidel Publishing
Company: Dordrecht-Holland, 1976; 273-284.
206. M.A. Wells; G.A. Rogers and T.C. Bruice. Intramolecular Hydrolysis of a Methyl
Ester by Substrate Bound Metal Hydroxide. J. Am. Chem. Soc. 1976, 98, 4336.
218. M.A. Wells and T.C. Bruice. Intramolecular Catalysis of Ester Hydrolysis by Metal
Complexed Hydroxide Ion. Acyl Oxygen Bond Scission in Co2+ and Ni2+
Carboxylic Acid Complexes. J. Am. Chem. Soc. 1977, 99, 5341.
9
Triad
34. T.C. Bruice. The Mechanisms for Chymotrypsin. Proc. Natl. Acad. Sci. 1961, 47,
1924.
131. T.C. Bruice; P.G. Kury and D.M. McMahon. Chromophoric Lactones and the
Mechanism of Chymotrypsin Action. J. Am. Chem. Soc. 1970, 92, 6674.
150. T.C. Bruice and D.M. McMahon Nucleophilic Selectivity in Attack at Amide
Bonds. Reactivity of Oxygen and Nitrogen Nucleophiles with NAcetyldehydrophenylalanyl-L-proline Diketopiperazine. Biochem. 1972, 11, 1273.
169. G.A. Rogers and T.C. Bruice. Isolation of a Tetrahedral Intermediate in an Acetyl
Transfer Reaction. J. Am. Chem. Soc. 1973, 95, 4452.
177. G.A. Rogers and T.C. Bruice. Control of Modes of Intramolecular Imidazole
Catalysis of Ester Hydrolysis by Steric and Electronic Effects. J. Am. Chem. Soc.
1974, 96, 2463.
178. G.A. Rogers and T.C. Bruice. Synthesis and Evaluation of a Model for the SoCalled "Charge-Relay" System of the Serine Esterases. J. Am. Chem. Soc. 1974, 96,
2473.
179. G.A. Rogers and T.C. Bruice. The Mechanisms of Acyl Group Transfer from a
Tetrahedral Intermediate. J. Am. Chem. Soc. 1974, 96, 2481.
Acyl Transfer Reactions Involving Thiol Esters
33. T.C. Bruice. The Chemistry and Biochemistry of the Acyl Thiols. In Organic Sulfur
Compounds; Kharasch, N.; Ed.; Pergamon Press, 1961; Ch. 35, 421-42.
46. T.C. Bruice; J.J. Bruno and W-S. Chou. Nucleophilic Displacement Reactions at the
Thiol-Ester Bond of δ-Thiolvalerolactone. J. Am. Chem. Soc. 1963, 85, 1659.
51. T.C. Bruice and L.R. Fedor. The Kinetic Demonstration of a Metastable Intermediate
in a Nucleophilic Displacement at a Thiol-Ester Bond. J. Am. Chem. Soc. 1964, 86,
738.
52. T.C. Bruice and L.R. Fedor. O- vs. N-Attack of Hydroxylamine on n-butyl
Thiolacetate and the Establishment the N-Attack Passes through a Metastable
Intermediate. J. Am. Chem. Soc. 1964, 86, 739.
55. L.R. Fedor and T.C. Bruice. Nucleophilic Displacement Reactions at the Thiolester
Bond. II. Hydrazinolysis and Morpholinolysis in Aqueous Solutions. J. Am. Chem.
Soc. 1964, 86, 4117.
59. T.C. Bruice and L.R. Fedor. Nucleophilic Displacement Reactions at the Thiolester
Bond. III. Kinetic Demonstrations of Metastable Intermediates in the
Hydroxylaminolysis and Methoxylaminolysis of Thiolesters and Thilactones in
Aqueous Solutions. J. Am. Chem. Soc. 1964, 86, 4886.
60. L.R. Fedor and T.C. Bruice. Kinetic Evidence for the Formation of a Tetrahedral
Intermediate in the Aqueous Solvolysis of Ethyl Trifluorothiolacetate. J. Am. Chem.
Soc. 1964, 86, 5697.
10
67. L.R. Fedor and T.C. Bruice. Nucleophilic Displacement Reactions at the Thiol Ester
Bond. IV. General Base Catalyzed Hydrolysis of Ethyl Trifluorothiolacetate. Kinetic
Evidence for the Formation of Tetrahedral Intermediate. J. Am. Chem. Soc. 1965, 87,
4138.
81. M.J. Gregory and T.C. Bruice. Nucleophilic Displacement Reactions at the Thiol
Ester Bond. V. Reactions of 2,2,2- Trifluoroethyl Thiolacetate. J. Am. Chem. Soc.
1967, 89, 2121.
91. N.G. Kundu and T.C. Bruice. A Reinvestigation of the Reaction of Piperidine with
2,2,2-Trifluoroethyl Thiolacetate. J. Org. Chem. 1968, 33, 422.
113. T. Maugh and T.C. Bruice. Cyanolysis of Ethyl Thiolacetate. J. Chem. Soc., Chem.
Commun. 1969, 18, 1056-7.
149. G.J. Kasperek and T.C. Bruice. Intramolecular Catalysis in the Aminolysis of Thiol
Esters. J. Org. Chem. 1972, 37, 1456.
Alpha Effect
83. M.J. Gregory and T.C. Bruice. The Importance of the "α-Effect" in Amine General
Base Catalyzed Ionization of Nitroethane. J. Am. Chem. Soc. 1967, 89, 2327.
88. M.J. Gregory and T.C. Bruice. The α-Effect. II. Displacement on sp3 Carbon. J. Am.
Chem. Soc. 1967, 89, 4400.
136. J.E. Dixon and T.C. Bruice. α Effects. III. The Reaction of Malachite Green with
Primary Amines, Methoxylamine and Hydrazines. J. Am. Chem. Soc. 1971, 93, 3248.
138. J.E. Dixon and T.C. Bruice. The α Effect. IV. Additional Observation on the α
Effect Employing Malachite Green as Substrate. J. Am. Chem. Soc. 1971, 93, 6592.
147. J.E. Dixon and T.C. Bruice. α Effect. V. Kinetic and Thermodynamic Nature of the
α Effect for Amine Nucleophiles. J. Am. Chem. Soc. 1972, 94, 2052.
159. R.F. Pratt and T.C. Bruice. The lack of an α Effect for Proton Abstraction from
Carbon Acids. J. Org. Chem. 1972, 37, 3563.
Apparent pKa'
21. T.C. Bruice and G.L. Schmir. The Influence of Mechanism on the Apparent pKa' of
Participating Groups in Enzymic Reactions. J. Am. Chem. Soc. 1959, 81, 4552.
Arene oxides, K-Region Oxides and Epoxides Reactions
145. G.J. Kasperek and T.C. Bruice. The Mechanism of the Aromatization of Arene
Oxides. J. Am. Chem. Soc. 1972, 94, 198.
151. H. Yagi; D.M. Jerina; G.J. Kasperek and T.C. Bruice. A Novel Mechanism for the
NIH-Shift. (1,4-dimethylbenzene oxide isomerization/kinetic analysis/nonenzymatic
additions/ microxomal oxidation/carcinogenesis). Proc. Natl. Acad. Sci. (USA) 1972,
69, 1985.
11
154. G.J. Kasperek and T.C. Bruice. Differentiation Between the Concerted and Stepwise
Mechanisms for Aromatization (NIH- Shift) of Arene Epoxides. J. Chem. Soc. Chem.
Commun. 1972, 13, 784-5.
158. G.J. Kasperek; T.C. Bruice; H. Yagi; N. Kaubisch and D.M. Jerina. Solvolytic
Chemistry of 1,4-dimethylbenzene Oxide. A New and Novel Mechanism for the
NIH-Shift. J. Am. Chem. Soc. 1972, 94, 7876.
164. P.Y. Bruice; G.J. Kasperek; T.C. Bruice; H. Yagi and D.M. Jerina. The Oxygen
Walk as a Complementary Observation to the NIH Shift. J. Am. Chem. Soc. 1973, 95,
1673.
170. G.J. Kasperek; P.Y. Bruice; T.C. Bruice; H. Yagi and D.M. Jerina. Multiple
Pathways for Aromatization of 8,9-Indan Oxide. J. Am. Chem. Soc. 1973, 95, 6041.
176. D.M.E. Reuben and T.C. Bruice. Relative Nucleophilicity of Thiols and Glutathione
Towards Benzene Oxide. J. Chem. Soc. Chem. Commun. 1974, 3, 113-14.
181. J.D. Richardson,; T.C. Bruice; S.M. Waraszkiewicz and G.A. Berchtold.
Aromatization of 4-Carboxybenzene Oxide. J. Org.Chem. 1974, 39, 2088.
187. P.Y. Bruice; T.C. Bruice; H.G. Selander; H. Yagi and D.M. Jerina. Comparative
Mechanisms of Reaction of K-Region and Non-K- Region Arene Oxides of
Phenanthrene. J. Am. Chem. Soc. 1974, 96, 6814.
196. D.M. Johnson and T.C. Bruice. Nucleophilic Catalysis of the Aromatization of an
Arene Oxide. The Reaction of Trimethylamine with 4-Carbo-tert-butoxybenzene
Oxide. J. Am. Chem. Soc. 1975, 97, 6901.
197. D.M.E. Reuben and T.C. Bruice. Reaction of Thiol Anions with Benzene Oxide and
Malachite Green. J. Am. Chem. Soc. 1976, 98, 114.
199. P.Y. Bruice; T.C. Bruice; P.M. Dansette; H.G. Selander; H. Yagi and D.M. Jerina.
Comparison of the Mechanisms of Solvolysis and Rearrangement of K-Region vs.
Non-K-Region Arene Oxides of Phenanthrene. Comparative Solvolytic Rate
Constants of K- Region and Non-K-Region Arene Oxides. J. Am. Chem. Soc. 1976,
98, 2965.
200. P.Y. Bruice; T.C. Bruice; H. Yagi and D.M. Jerina. Nucleophilic Displacement on
the Arene Oxides of Phenanthrene. J. Am. Chem. Soc. 1976, 98, 2973.
201. P.Y. Bruice and T.C. Bruice. Modes of Acid Catalysis in the Aromatization of
Arene Oxides. J. Am. Chem. Soc. 1976, 98, 2023.
208. T.C. Bruice and P.Y. Bruice. Solution Chemistry of Arene Oxides. Acc. Chem. Res.
1976, 9, 378.
226. P.Y. Bruice; S.C. Wilson and T.C. Bruice. Inactivation of Glyceraldehyde-3phospate Dehydrogenase and Yeast Alcohol Dehydrogenase by Arene Oxides.
Biochem. 1978, 17, 1662.
227. A.R. Becker; J.M. Janusz; D.Z. Rogers and T.C. Bruice. Structural Features Which
Determine the Carcinogenesis, Mutagenesis and the Rates of Acid- and WaterMediated Solvolysis of and Nucleophilic Attack upon Diol Epoxides, Bay-Region
12
and Non- Bay-Region Tetrahydro Epoxides, and K-Region and Non-K- Region
Arene Oxides. J. Am. Chem. Soc. 1978, 100, 3244.
233. J.M. Janusz; A.R. Becker and T.C. Bruice. The Importance of Intramolecular
Hydrogen Bonding on the Reactivity of Tetrahydro Diol Epoxides. J. Am. Chem. Soc.
1978, 100, 8269.
237. D.Z. Rogers and T.C. Bruice. Comparative Chemistry of the Bay- and Non-BayRegion Tetrahydro Epoxides of Phenanthrene. J. Am. Chem. Soc. 1979, 101, 4713.
240. A.R. Becker; J.M. Janusz and T.C. Bruice. Solution Chemistry of the syn- and antiTetrahydrodiol Epoxides, The syn- and anti- Tetrahydrodimethoxy Epoxides, and the
1,2- and 1,4- Tetrahydro Epoxides of Naphthaline. J. Am. Chem. Soc. 1979, 101,
5679.
Carbon Acid Ionization
112. J.K. Coward and T.C. Bruice. Intramolecular Amine-Catalyzed Ketone Enolization.
A Search for Concerted Intramolecular General-base, General-Acid Catalysis. J. Am.
Chem. Soc. 1969, 91, 5339.
116. J.E. Dixon and T.C. Bruice. Dependence of the Primary Isotope Effect (kH/kD) on
Base Strength for the Primary Amine Catalyzed Ionization of Nitroethane. J. Am.
Chem. Soc. 1970, 92, 905.
198. P.Y. Bruice and T.C. Bruice. The Lack of Concertedness in the General Acid-Base
Catalysis of the Enolization of Oxalacetic Acid. A Case for Stepwise Nucleophilic
General Base Catalysis. J. Am. Chem. Soc. 1976, 98, 844.
228. P.Y. Bruice and T.C. Bruice. Lack of Concertedness in the Catalysis of the
Enolization of Oxaloacetic Acid by General Acids and Bases. Formation of a
Carbinolamine Intermediate in the Tertiary Amine Catalyzed Enolization Reaction. J.
Am. Chem. Soc. 1978, 100, 4793.
229. P.Y. Bruice and T.C. Bruice. Diethyl Oxaloacetate. Nonconcerted General Catalysis
of Enolization, Tertiary Amine Catalyzed Enolization via an Addition-Elimination
Mechanism, and General-Acid-Catalyzed Dehydration and Cleavage. J. Am. Chem.
Soc. 1978, 100, 4802.
Catalysis in Ice and Water
50. A.R. Butler and T.C. Bruice. Catalysis in Water and Ice. A Comparison of the
Kinetics of Hydrolysis of Acetic Anhydride, β-Propiolactone, and p-Nitrophenyl
Acetate and the Dehydration of 5-Hydro-6-hydroxy-deoxyuridine in Water and in
Ice. J. Am. Chem. Soc. 1964, 86, 313.
56. T.C. Bruice and A.R. Butler. Catalysis in Water and Ice. II. The Reaction of
Thiolactones with Morpholine in Frozen Systems. J. Am. Chem. Soc. 1964, 86, 4104.
65. T.C. Bruice and A.R. Butler. Ionic reactions in frozen aqueous systems. Fed. Proc.
1965, 24, S-45.
13
Chemiluminescence
238. R. Maskiewicz; D. Sogah and T.C. Bruice. Chemiluminescent Reactions of
Lucigenin. 1. Reactions of Lucigenin with Hydrogen Peroxide. J. Am. Chem. Soc.
1979, 101, 5347.
239. R. Maskiewicz; D. Sogah and T.C. Bruice. Chemiluminescent Reactions of
Lucigenin. 2. Reactions of Lucingenin with Hydroxide Ion and Other Nucleophiles.
J. Am. Chem. Soc. 1979, 101, 5355.
Chiral Recognition of Prochiral Center
168. R. Job and T.C. Bruice. Chiral Recognition of a Prochiral (meso- Carbon) Centre by
λ(-)436-α-1,1-2,9-diamino-4,7-diaza- decanecobaltate. J. Chem. Soc. Chem.
Commun. 1973, 10, 332-3.
174. R.C. Job and T.C. Bruice. Chiral Recognition of Prochiral Centers. The (2S,9S)-2,9Diamino-4,7-diazadecanecobalt(III) Mediated Decarboxylation of
Aminoalkylmalonic Acids. J. Am. Chem. Soc. 1974, 96, 809.
186. J.P. Glusker; H.L. Carrell; R. Job and T.C. Bruice. Mechanism for Chiral
Recognition of a Prochiral Center and for Amino Acid Complexation to a Cobalt(III)
Tetramine. The Crystal Structure, Absolute Configuration, and Circular Dichroism of
λ(-)436-β2- [(2S,9S)-2,9-Diamino-4,7-diazadecanecobalt(III) aminomethylmalonate]
Perchlorate Monohydrate. J. Am. Chem. Soc. 1974, 96, 5741.
Computational Chemistry and Enzymology
362. H.-Y. Mei; T. W. Karet and T. C. Bruice. A computational approach to the
mechanism of self-cleavage of hammerhead RNA. Proc. Natl. Acad. Sci (USA) 1989,
86, 9727.
401. O. Almarsson and T. C. Bruice. Evaluation of the factors influencing reactivity and
steeospecificity in NAD(P)H dependent dehydrogenase enzymes. J. Am. Chem. Soc.
1993, 115, 2125.
406. O. Almarsson; A. Sinha; E. Gopinath and T. C. Bruice. The Mechanism of Oneelectron oxidationof NAD(P)H and the function of NADH Bound to Catalase. J. Am.
Chem. Soc. 1993, 115, 7093.
433. L. P. Olson and T. C. Bruice. Electron tunneling and ab initio calculations related to
the one-electron oxidation of NAD(P)H bound to catalase. Biochemistry 1995, 34,
7335-7347.
438. F. C. Lightstone and T. C. Bruice. Ground state conformations and entropic and
enthalpic factors in the efficiency of intramolecular and enzyme reactions. 1. Cyclic
anhydride formation by substituted glutarates, succinate and 3.6-endoxo-Δ4tetrahydrophthalate monophenyl esters. J. Am. Chem. Soc. 1996, 118, 2595-2605.
443. R. A. Torres; O. Almaesson and T. C. Bruice. Molecular mechanics calculations of
the riboacetal internucleotide linkage in double and triple helices. Proc. Natl. Acad.
Sci (USA) 1996, 93, 6875-6880.
14
444. L. P. Olson; J. Luo; O. Almarsson; and T. C. Bruice. Mechanism of aldehyde
oxidation catalyzed by horse liver alcohol dehydrogenase. Biochemistry 1996, 35,
9782-9791.
445. H. Adelsteinsson; A. H. Maulitz and T. C. Bruice. Calculation of the potential
energy surface for the intermolecular amide hydrogen bonds using semiempirical
and ab initio methods. J. Am. Chem. Soc. 1996, 118, 7689-7693.
450. Y-J. Zheng & T. C. Bruice. On the Dehalogenation Mechnism of 4-Chlorobenzoate
by 4-Chlorobenzoyl CoA Dehydrogenase: Insights from Study Based on Active Site
Model. J. Am. Chem. Soc. 1997, 17, 3868-3877.
451. Y-Y. Zheng & T. C. Bruice. Is Strong Hydrogen Bonding in the Transition State
Enough To Account for the Observed Rate Acceleration in a Mutant of Papain? Proc.
Natl. Acad. Sci. 1997, 94, 4285.
453. A. H. Maulitz; F. C. Lightstone; Y-J. Zheng & T. C. Bruice. Non- Enzymatic and
Enzymatic Hydrolysis of Alkyl Halides. I. A Theoretical Study of the SN2 Reactions
of Acetate and Hydroxide Ions with Alkyl Chlorides. Proc. Natl. Acad. Sci (USA).
1997, 94, 6591.
454. F. C. Lightstone; Y-J. Zheng; A. H. Maulitz & T. C. Bruice. Non-enzymatic and
Enzymatic Hydrolysis of Alkyl Halides. A Haloalkane Dehalogenation Enzyme
Evolved to Stabilized the Gas Phase Transition State of an SN2 Displacement
Reaction. Proc. Natl. Acad. Sci. (USA) 1997, 94, 8417.
455. J. Luo & T. C. Bruice. Nanosecond Molecular Dynamics Study of a Polycation
Ribonucleic Guanidine (RNG) Duples with a Complimentary DNA Oligomer Strand.
J. Am. Chem. Soc. 1997, 119, 6693.
457. Y-J. Zheng & T. C. Bruice. A Theoretical Examination of the Factors Controlling
the Catalytic Efficiency of a Transmethylation Enzyme: Catechol OMethyltransferase. J. Am. Chem. Soc. 1997, 119, 8137.
458. F. C. Lightstone & T. C. Bruice. Separation of Ground State and Transition State
Effects in Intramolecular and Enzymatic Reactions. II. A Theoretical Study of the
Formation of Transition States in Cyclic Anhydride Formation. J. Am. Chem. Soc.
1997, 119, 9103.
459. Y-J. Zheng & T. C. Bruice. Conformation of coenzyme Pyrroloquinolinequinone
(PQQ) and the Role of Ca2+ in the Catalytic Mechanism of Quinoprotein Methanol
Dehydrogenase. Proc. Natl. Acad. Sci. (USA) 1997, 94, 11881.
460. J. Luo & T. C. Bruice. Nanosecond Molecular Dynamics of Hybrid Triplex and
Duplex of Polycation Deoxyribonucleic Guanidine (DNG) Strands with a
Complimentary DNA Strand. J. Am. Chem. Soc. 1998, 120, 1115.
461. Y-J. Zheng & T. C. Bruice. Rapid Enzyme-catalyzed Heterolytic C-H Bond
Cleavage by A Base Strength Amplification Mechanism: A Theoretical Examination
of the Mechanism of Oxidation of Vitamin K. J. Am. Chem. Soc. 1998, 120, 1623.
462. H. Adalsteinsson & T. C. Bruice. What is the Mechanism of Catalysis of Ester
Aminolysis by Weak Amine Bases? Comparison of Experimental Studies and
15
Theoretical Investigation of the Aminolysis of Substituted Phenyl Esters of Qunoline6- and -8-Carboxylic Acids. J. Am. Chem. Soc. 1998, 120, 3440.
463. Y-J. Zheng & T. C. Bruice. Role of a Critical Water in Scytalone Dehydratase
Calalyzed Reaction. Proc. Natl. Acad. Sci. (USA) 1998, 95, 4158.
464. Y-J. Zheng & T. C. Bruice. Identifying the Intermediate in the Dioxygen Transfer
from 4a-Hydroperoxyflavin Anion to Phenolate and Indole Anions. Bioorganic
Chem. 1998, 25, 331.
467. F. C. Lightstone; Y-J. Zheng & T. C. Bruice. Molecular Dynamics Simulations of
Ground and Transition States for the SN2 Displacement of Cl- from 1,2Dichloroethane at the Active Site of Xanthobacter Autotrophicus Haloalkane
Dehalogenase. J. Am. Chem. Soc. 1998, 120, 5611.
469. B. Schiøtt; Y.-J. Zheng & T. C. Bruice. Theorectical Investigation of the Hydride
Transfer from Formate to NAD+ and the Implications for the Catalytic Mechanism of
Formate Dehydrogenase. J. Am. Chem. Soc. 1998, 120, 7192.
474. B. Shiøtt; B. B. Iversen; G. K. H. Madsen, & T.C. Bruice. On the Electronic Nature
of Low-Barrier Hydrogen Bonds in Enzymatic Reactions. Proc. Natl. Acad. Sci.
(USA) 1998, 95, 12799.
472. F. C. Lightstone; Y-J. Zheng & T. C. Bruice. The Structure of the ES Complex and
Transition State Formed in the SN2 Displacement of Cl- from 1,2-Dichloroethane at
the Active Site of Xanthobacter autothropicus Haloalkane Dehalogenase. Bioorganic
Chem. 1998, 26, 169.
473. F. C. Lightstone & T. C. Bruice. Enthalpy and Entropy in Ring Closure Reactions.
Bioorganic Chem. 1998, 26, 193
474. B. Shiøtt; B. B. Iversen; G. K. H. Madsen; & T.C. Bruice. On the Electronic Nature
of Low-Barrier Hydrogen Bonds in Enzymatic Reactions. Proc. Natl. Acad. Sci.
(USA) 1998, 95, 12799.
475. E. Y. Lau & T. C. Bruice. Importance of Correlated Motions in Forming Highly
Reactive Near Attack Conformations in Catechol O Methyltransferase. J. Am. Chem.
Soc. 1998, 120, 12387.
477. B. Shiøtt; B. B. Iversen; G. K. H. Madsen; & T.C. Bruice. Characterization of the
Short Strong Hydrogen Bond in Benzoylacetone by Ab Initio Calculations and
Accurate Diffraction Experimentts. Implications for the Electronic Nature of LowBarrier Hydrogen Bonds in Enzyme Reactions. J. Am. Chem. Soc. 1998, 120, 12117.
478. T. C. Bruice & F. C. Lightstone. Ground State and Transition State Contributions to
Intramolecular and Enzymatic Reactions. Acc. Chem Res. 1999, 32, 127.
482. J. Luo; K. Kahn; & T. C. Bruice. The Linear Dependence of log(kcat/Km) for
Reduction of NAD+ by PhCH2OH on the Distance Between Reactants when
Catalyzed by Horse Liver Alcohol Dehydrogenase and 203 Single Point Mutants.
Bioorg. Chem. 1999, 27, 289.
16
483. E. Y. Lau & T. C. Bruice. Consequences of Breaking the Asp-His Hydrogen Bond
of the Catalytic Triad: Effects on the Structure and Dynamics of the Serine Esterase
Cutinase. J. Biophys. 1999, 77, 85.
484. R. Torres; B. Schiott; & T. C. Bruice. Molecular Dynamics Simulations of Ground
and Transition States for the Hydrid Transfer from Formate to NAD+ in Formate
Dehydrogenase. J. Am. Chem. Soc. 1999, 121, 8164.
485. E. Y. Lau & T. C. Bruice. Active Site Dynamics of the HhaI Methyltransferase:
Insights from Computer Simulation. J. Mol. Bio. 1999, 293, 9.
488. R. Torres & T. C. Bruice. Theoretical Investigation of the (1,2)-Sigmatropic
Hydrogen Migration in the Mechanism of Oxidation of 2-Aminobenzoyl-CoA by 2Aminobenzoyl-CoA Monooxygenase/Reductase. Proc. Natl. Acad. Sci. (USA) 1999,
96, 14748.
490. Kahn, K.; Bruice, T. C.. Transition state and ground state structures and their
interaction with the active site residues in catechol O–methyltransferase. J. Am.
Chem. Soc. 2000, 122, 46–51.
492. Adalsteinsson, H.; Bruice, T. C.. Generation of putative neuroregenerative drugs. 1.
Virtual point mutations to the polyketide rapamycin. Bioorg. Med. Chem. 2000, 8,
617–624.
493. Adalsteinsson, H.; Bruice, T. C.. Generation of putative neuroregenerative drugs. 2.
Screening virtual libraries of novel polyketides which possess the binding domain of
rapamycin. Bioorg. Med. Chem. 2000, 8, 625–635.
494. Luo, J.; Bruice, T. C.. Structural properties of hybrid triplex of polycation
deoxyribonucleic S–methylthiourea (DNmt) strands with a complementary DNA
strand, probed by nanosecond molecular dynamics. J. Biomol. Stru. Dyn. 2000, 17,
629–643.
495. Torres, R. A.; Bruice, T. C.. The mechanism of phosphodiester hydrolysis: near inline attack conformations in the hammerhead ribozyme. J. Am. Chem. Soc. 2000, 122,
781–791.
497. Bruice, T. C.; Benkovic, S. J.. Chemical basis for enzyme catalysis. Biochemistry
2000, 39, 6267–74.
500. Kahn, K.; Bruice, T. C.. α-Ketoamides and α-ketocarbonyls: Conformational
analysis and development of all-atom OPLS force field. Bioorg. Med. Chem. 2000, 8,
1881-1891.
501. Lau, E.; Bruice, T. C.. Comparison of the dynamics for ground-state and transitionstate structures in the active site of catechol O-methyltransferase. J. Am. Chem. Soc.
2000, 122, 7165-7171.
503. Lau, E. Y.; Kahn, K.; Bash, P. A.; Bruice, T. C.. The importance of reactant
positioning in enzyme catalysis: a hybrid quantum mechanics/molecular mechanics
study of a haloalkane dehalogenase. Proc. Natl. Acad. Sci. (USA) 2000, 97, 99379942.
17
504. Bruice, T. C.; Kahn, K.. Computational enzymology. Curr. Opin. Chem. Biol. 2000,
4, 540-544.
505. Zheng, Y.-J.; Xia, Z.-X.; Chen, Z.-W.; Mathews, F. S.; Bruice, T. C.. Catalytic
mechanism of quinoprotein methanol dehydrogenase: a theoretical and x-ray
crystallographic investigation. Proc. Natl. Acad. Sci. (USA) 2001, 98, 432-434.
506. Lau, E. Y.; Newby, Z. E.; Bruice, T. C.. A theoretical examination of the acidcatalyzed and noncatalyzed ring-opening reaction of an oxirane by nucleophilic
addition of acetate. Implications to epoxide hydrolases. J. Am. Chem. Soc. 2001, 123,
3350-3357.
510. Lau, E. Y.; Bruice, T. C.. The active site dynamics of 4-chlorobenzoyl-CoA
dehalogenase. Proc. Natl. Acad. Sci. (USA) 2001, 98, 9527-32.
513. Luo, J.; Bruice, T. C.. Dynamic structures of horse liver alcohol dehydrogenase
(HLADH): Results of molecular dynamics simulations of HLADH-NAD+PhCH2OH, HLADH-NAD+-PhCH2O-, and HLADH-NADH-PhCHO. J. Am. Chem.
Soc. 2001, 123, 11952-59.
514. Kahn, K.; Bruice, T. C.. Diphtheria toxin catalyzed hydrolysis of NAD+: Molecular
dynamics study of enzyme-bound substrate, transition state, and inhibitor. J. Am.
Chem. Soc. 2001, 123, 11960-69.
519. Hur, S.; Bruice, T, C.. The mechanism of catalysis of the chorismate to prephenate
reaction by the Escherichia coli mutase enzyme. Proc. Natl. Acad. Sci. (USA) 2002,
99, 1176-1181.
520. Bruice, T. C.. A view at the millennium: the efficiency of enzymatic catalysis. Acc.
Chem. Res. 2002, 35, 139-146.
521. Newby, Z. E. R.; Lau, E.; Bruice, T. C.. A theoretical examination of factors
controlling the catalytic efficiency of the DNA-(adenine-N6)-methyltransferase from
Thermus aquaticus. Proc. Natl. Acad. Sci. (USA) 2002, 7922-7927.
522. Kahn, K.; Bruice, T. C.. Parameterization of OPLS–AA force field for the
conformational analysis of macrocyclic polyketides. J. Comput. Chem. 2002, 23, 977996.
523. Hur, S.; Bruice, T. C.. The mechanism of cis-trans isomerization of prolyl peptides
by cyclophilin. J. Am. Chem. Soc. 2002, 124, 7303-7313.
524. Mazumder, D.; Kahn, K.; Bruice, T. C., Computer Simulations of trypanosomal
nucleoside hydrolase: Determination of the protonation state of the bound transition
state analog. J. Am. Chem. Soc. 2002, 124, 8825-8833.
525. Hur, S.; Bruice, T. C.. Molecular dynamics study of orotidine 5’-monophosphate
decarboxylase in ground state and in intermediate state: A role of the 203-218 loop
dynamics. Proc. Natl. Acad. Sci. (USA) 2002, 15, 9668-9673.
526. Reddy, S.Y.; Kahn, K.; Zheng; Y. J.; Bruice, T. C.. Protein engineering of nitrile
hydratase activity of papain: Molecular dynamics study of a mutant and wild-type
enzyme. J.Am. Chem. Soc. 2002, 124, 12979-90.
18
527. Schiøtt, B. & Bruice, T. C.. The reaction mechanism of soluble epoxide hydrolase:
Insights from molecular dynamics simulations. J. Am. Chem. Soc. 2002, 124, 1455814570.
528. Mazumder, D. & Bruice, T. C., Exploring nucleoside hydrolase catalysis in silico:
Molecular dynamic study of enzyme-bound substrate and transition state. J. Am.
Chem. Soc. 2002, 124, 14591-14600.
529. Luo, J. & Bruice, T. C.. Ten nanosecond molecular dynamics simulation of the
motions of the horse liver alcohol dehydrogenase·PhCH2O- complex. Proc. Natl.
Acad. Sci (USA), 2002, 99, 16597-16600.
530. Hur, S. & Bruice, T. C.. Comparison of formation of reactive conformers for the SN2
displacements by CH3CO2- in water and by Asp124- CO- in a haloalkane
dehalogenase. Proc. Natl. Acad. Sci. 2003, 100, 2215-2219.
531. Hur, S. & Bruice, T. C.. Enzymes Do What is Expected (Chalcone isomerase vs.
Chorismate mutase). J. Am. Chem. Soc. 2002, 125, 1472-1473. Editors Choice:
Highlights of recent literature, Laussez-faire Versus Keynesian, Science, February
2003, 299, issue 7
533. Hur, S. & Bruice, T. C.. Comparison of formation of reactive conformers (NACs)
for the Claisen rearrangement of chorismate to prephenate in water and in E. coli
Mutase: The Efficiency of the Enzyme Catalysis. J. Am. Chem. Soc. 2003, 125, 59645972.
534. Reddy, S. Y., Mathews, F. S., Zheng, Y-J. and Bruice, T. C.. Quinoprotein methanol
dehydrogenase: A molecular dynamic study and comparison with crystal structure. J.
Mol. Struct. 2003, 655 (2), 269-277.
535. Mazumder, D., Kahn, K. & Bruice, T. C.. Computational study of ketosteroid
isomerase: Insights from molecular dynamic simulation of enzyme bound substrate
and intermediate. J. Am. Chem. Soc., 2003, 125, 7553-7561.
537. Kahn, K. and Bruice, T. C.. Comparison of reaction energetics and leaving group
interactions during the enzyme-catlyzed and uncatalyzed displacement of chloride
from haloalkanes, J. Pys. Chem. B, 2003, 107, 6876-6885.
538. Reddy, S. Y. and Bruice, T. C.. In silico studies of the mechanism of methanol
oxidation by quinoprotein methanol dehydrogenase. J. Am. Chem. Soc. 2003, 125,
8141-8150.
539. Torres, R. A.; Himo, F; Bruice, T. C.; Noodleman, L. & Lovell, T.. Theoretical
examination of Mg2+ mediated hydrolysis in the Hammerhead ribozyme. J. Am.
Chem. Soc. 2003, 125, 9861-9867.
540. Obika, S., Reddy, S. Y., Bruice, T. C.. Sequence specific DNA binding of Ets-1
Transcription Factor: Molecular dynamics study on the ETS domain-DNA
complexes. J. Mol. Biol. 2003, 331, 345-369.
541. Hur, S. & Bruice, T. C.. Just a Near Attack Conformer for Catalysis (Chorismate to
Prephenate Rearrangements in Water, Antibody, Enzymes, and Their Mutants). J.
Am. Chem. Soc. 2003, 125, 10540-10542.
19
542. Hur, S. & Bruice, T. C.. The NAC approach to the study of the chorismate to
prephenate reaction. Proc. Natl. Acad. Sci. 2003, 100, 12015-12020.
COMMENTARY. R. L. Schowen, How an enzyme surmounts the activation barrier,
Proc. Natl. Acad. Sci., 2003, 100, 15475-15480.
543. Reddy, S. Y., Obika, S., Bruice, T. C.. Conformational and dynamics of Ets-1 ETS
domain-DNA complexes. Proc. Natl. Acad. Sci. 2003, 100, 15475-15480.
545. Hur, S. & Bruice, T. C., Transition state stabilization by general acid catalysis, water
expulsion and enzyme reorganization in Medieago sativa Chalcone isomerase. Proc.
Natl. Acad. Sci., 2004, 101, 2730-2735.
546. Kahn, K. and Bruice, T. C.. Systematic convergence of energies to basis set and
treatment of electron correlation: focal point conformational analysis of methanol.
Theor. Chem. Acc. 2004, 111, 18-24.
547. Reddy, S. Y. & Bruice, T. C., Mechanism of glucose oxidation by quinoprotein
soluble glucose dehydrogenase: Insights from molecular dynamics studies. J. Am.
Chem. Soc., 2004, 126, 2431-2438.
549. Mazumder, D., Kahn, K. & Bruice, T. C., Structural alterations of the thermophilic
indole glycerol phosphate synthase with temperature. J. Am. Chem. Soc., 2004, 126,
5936-5937.
552. Moebitz, H. & Bruice, T.C., Multiple substrate binding states and chiral recognition
in cofactor-independent Glutamate racemase: A molecular dynamic study.
Biochemistry, 2004, 43, 9685-9694.
553. Reddy, S.Y. & Bruice, T.C., Review: Determination of enzyme mechanisms by
molecular dynamic studies on quinoproteins, methanol dehydrogenase and soluble
glucose dehydrogenase, Protein Science, 2004, 13, 1965-1978.
554. Luo, J. & Bruice, T.C., Anti-correlated motions as a driving force in enzyme
catalysis. The dehydrogenase reaction. Proc. Natl. Acad. Sci, 2004, In Press.
555. Mazumder, D. & Bruice, T.C., Molecular dynamics studies of ground state and
intermediate of the hyperthermophilic indole-3-glycerol phosphate synthase, Proc.
Natl. Acad. Sci, 2004, Submitted.
556. Valina, A.L.B., Mazumder, D. & Bruice, T.C., Probing the Ser-Ser-Lys catalytic
triad mechanism of peptide amidase. Computational studies of the ground state,
transition state, and intermediate, Biochemistry, 2004, Submitted.
557. Estabrook, R., Luo, J., Matthew, P., Vyas, S., Rannganarhan, R., Bruice, T.C. &
Reich, N.O., Identification of dynamically and energetically coupled residues
involved in enzyme catalysis, Science, 2004, Submitted.
Dihydropyridines and dehydrogenases enzymes
161. S. Shinkai and T.C. Bruice. Reduction of Pyridoxal Phosphate (and Analogs) by 1,4Dihydropyrindine. J. Am. Chem. Soc. 1972, 94, 8258.
20
166. S. Shinkai and T.C. Bruice. Model Reactions Which Establish a Facile Reduction of
Pyridoxal Phosphate and Analogs by 1,4-Dihydropyridines. Biochem. 1973, 12, 1750.
265. M.F. Powell; W-H. Wong; and T.C. Bruice. Concerning 1e- transfer in reduction by
dihydronicotinamide: Reaction of oxidized flavin and flavin radical with N-benzyl1,4- dihydronicotinamide. Proc. Natl. Acad. Sci. (USA) 1982, 79, 4604.
267. M.F. Powell and T.C. Bruice. Reinvestigation of NADH Analogue Redox Reactions
in Acetonitrile: Consequences of Isotope Scrambling on Kinetic and Product Isotope
Effects. J. Am. Chem. Soc. 1982, 104, 5834.
271. M.F. Powell and T.C. Bruice. Hydride vs. Electron Transfer in the Reduction of
Flavin and Flavin Radical by 1,4-Dihydropyridines. J. Am. Chem. Soc. 1983, 105,
1014.
282. M.F. Powell and T.C. Bruice. Effect of Isotope Scrambling and Tunneling on the
Kinetic and Product Isotope Effects for Reduced Nicotinamide Adenine Dinucleotide
Model Hydride Transfer Reactions. J. Am. Chem. Soc. 1983, 105, 7139.
290. M.F. Powell; J.C. Wu and T.C. Bruice. Ferricyanide Oxidation of Dihydropyridines
and Analogues. J. Am. Chem. Soc. 1984, 106, 3850.
295. A. Sinha and T.C. Bruice. Rate-Determining General-Base Catalysis in an Obligate
1e- Oxidation of a Dihydropyridine. J.Am. Chem. Soc. 1984, 106, 7291.
343. M.F. Powell and T.C. Bruice. Hydride vs. Electron Transfer in the Oxidation of
NADH Model Compounds. In Oxidases and Related Redox Systems; H. S. Mason;
Ed.; A. R. Liss, Inc.: New York, NY, 1988; 369-385.
398. Ö. Almarsson; R. Karaman; and T.C. Bruice. Kinetic Importance of Conformations
of Nicotinamide Adenine Dinucleotide in the Reactions of Dehydrogenase Enzymes.
J. Am. Chem. Soc. 1992, 114, 8702.
401. Ö. Almarsson and T.C. Bruice. Evaluation of the Factors Influencing Reactivity and
Stereospecificity in NAD(P)H Dependent Dehydrogenase Enzymes. J. Am. Chem.
Soc. 1993, 115, 2125.
406. Ö Almarsson; A. Sinha, E. Gopinath and T.C. Bruice. The Mechanism of OneElectron Oxidation of NAD(P)H and the Function of NADPH Bound to Catalase. J.
Am. Chem. Soc. 1993, 115, 7093
415. G-X. He, A. Blaskó, and T.C. Bruice. 1H NMR Study of the Rates and Isotope
Effects of NADH Model Hydride Transfer Reaction. Bioorganic Chem. 1993, 21,
423.
433. L. P. Olson and T. C. Bruice. Ab Initio and Electron Tunneling Calculations Related
to the One-Electron Oxidation of NAD(P)H Bound to Catalase. Biochemistry 1995,
34, 7335.
444. L. P. Olson; J. Luo; Ö. Almarsson and T. C. Bruice. On the Mechanism of Aldehyde
Oxidation Catalyzed by Horse Liver Alcohol Dehydrogenase. Biochemistry 1996, 35,
9782.
21
Flavin Chemistry and Catalysis
144. T.C. Bruice; L. Main; S. Smith and P.Y. Bruice. Preequilibrium Complex Formation
and Nucleophilic Addition (and Its Position) As Factors in Flavin-Catalyzed
Oxidations. J. Am. Chem. Soc. 1971, 93, 7327.
153. L. Main; G.J. Kasperek and T.C. Bruice. Isoalloxazine(Flavin)Dehydrogenation of
Dimethyl trans-1,2-Dihydrophthalate. J. Chem. Soc., Chem. Commun. 1972, 14, 8478.
155. M. Brüstlein and T.C. Bruice. Demonstration of a Direct Hydrogen Transfer
between NADH and a Deazaflavin. J. Am. Chem. Soc. 1972, 94, 6548.
157. L. Main; G.J. Kasperek and T.C. Bruice. Kinetics and Mechanism of the
Isoalloxazine (Flavin) Dehydrogenation of Dimethyl Dihydrophthalates. Biochem.
1972, 11, 3991
160. L. Hevesi and T.C. Bruice. 5 vs. 4a-Addition to Isoalloxazine. J. Am. Chem. Soc.
1972, 94, 8277.
163. L. Hevesi and T.C. Bruice. Reaction of Sulfite with Isoalloxazines. Biochem. 1973,
12, 290.
167. T.C. Bruice; L. Hevisi and S. Shinkai. Mechanisms of Formation and Equilibria of
4a and 5 Adducts of an Isoalloxazine. Reaction of 10-(2',6'-Dimethylphenyl)-3methylisoalloxazine- 6,8-disulfonate with Sulfite in Aqueous Media. Biochem. 1973,
12, 2083.
171. S. Shinkai and T.C. Bruice. The Question of Covalent Intermediate Formation in the
Flavine-Catalyzed Carbonyl to Carbinol Oxidation-Reduction Reaction. J. Am. Chem.
Soc. 1973, 95, 7526.
173. D.L. Elliot and T.C. Bruice. Evidence for an Intermediate Adduct in the
Ethylenediaminetetraacetic Acid Mediated Photoreduction of Flavines. J. Am. Chem.
Soc. 1973, 95, 7901.
180. S.B. Smith; M. Brüstlein and T. C. Bruice. Electrophilicity of the 8 Position of the
Isoalloxazine (Flavine) Ring System. Comment on the Mechanism of Oxidation of
Dihydroisoalloxazine. J. Am. Chem. Soc. 1974, 96, 3696.
185. D. Clerin and T.C. Bruice. A Kinetic Study of the Fate of a Covalent Intermediate of
the Type Proposed to be Involved in Flavin Catalysis. J. Am. Chem. Soc. 1974, 96,
5571.
188. S. Shinkai; T. Kunitake and T.C. Bruice. The Importance of 1,2- Enediols in the
Reduction of Lumiflavin by α-Ketols. J. Am.Chem. Soc. 1974, 96, 7140.
189. I. Yokoe and T.C. Bruice. Oxidation of Thiophenol and Nitroalkanes by an Electron
Deficient Isoalloxazine. J. Am. Chem. Soc. 1975, 97, 450.
191. S.B. Smith and T.C. Bruice. Mechanisms of Isoalloxazine (Flavine) Hydrolysis. J.
Am. Chem. Soc. 1975, 97, 2875.
22
192. R.F. Williams; S. Shinkai and T.C. Bruice. Radical Mechanisms for 1,5Dihydroflavin Reduction of Carbonyl Compounds. Proc. Natl. Acad. Sci. (USA)
1975, 72, 1763.
195. T.C. Bruice and Y. Yano. Radical Mechanisms for 1,5-Dihydro-5- methylflavine
Reduction of Carbonyl Compounds. J. Am. Chem. Soc. 1975, 97, 5263.
202. C. Kemal and T.C. Bruice. Simple synthesis of a 4a-hydroperoxy adduct of a 1,5dihydroflavin: Preliminary studies of a model for bacterial luciferase. Proc. Natl.
Acad. Sci. (USA) 1976, 73, 995.
203. T.C. Bruice. Models and Flavin Catalysis. Progress in Bioorganic Chemistry, Vol.
4; E.T. Kaiser; Ed.; Wiley and Sons, 1976; 1-87.
204. C. Kemal and T.C. Bruice. The Chemistry of an N5-Methyl-1,5- dihydroflavin and
Its Aminium Cation Radical. J. Am. Chem. Soc. 1976, 98, 3955.
207. T.C. Bruice. Some Physical Organic Studies Dealing with Flavin Catalysis. Flavins
Flavoproteins, Proc. Int. Symp., 5th 1976, Meeting Date 1975, 244-260.
209. R.F. Williams and T.C. Bruice. The Kinetics and Mechanisms of 1,5-Dihydroflavin
Reduction of Carbonyl Compounds and Flavin Oxidation of Alcohols. 2. Ethyl
Pyruvate, Pyruvamide and Pyruvic Acid. J. Am. Chem. Soc. 1976, 98, 7752.
210. T.C. Bruice and J.P. Taulane. The Kinetics and Mechanisms of 1,5-Dihydroflavin
Reduction of Carbonyl Compounds and Flavin Oxidation of Alcohols. 3. Oxidation
of Benzoin by Flavin and Reduction of Benzil by 1,5-Dihydroflavin. J. Am. Chem.
Soc. 1976, 98, 7769.
211. R.F. Williams; S.S. Shinkai and T.C. Bruice. Kinetics and Mechanisms of the 1,5Dihydroflavin Reduction of Carbonyl Compounds and the Flavin Oxidation of
Alcohols. 4. Interconversion of Formaldehyde and Methanol. J. Am. Chem. Soc.
1977, 99, 921.
212. C. Kemal; T.W. Chan and T.C. Bruice. Chemiluminescent reactions and
electrophilic oxygen donating ability of 4a- hydroperoxyflavins: General synthetic
method for the preparation of N5-alkyl-1,5-dihydroflavins. Proc. Natl. Acad. Sci.
(USA) 1977, 74, 405.
213. T.W. Chan and T.C. Bruice. One and Two Electron Transfer Reactions of Glucose
Oxidase. J. Am. Chem. Soc. 1977, 99, 2387.
219. T.C. Bruice; T.W. Chan; J.P. Taulane; I. Yokoe; D.L. Elliott; R.F. Williams and M.
Novak. Changes in the Chemistry of an Isoalloxazine Brought About by Substitution
at the 7 and 8 Positions by a Strongly Electronegative Substituent. J. Am. Chem. Soc.
1977, 99, 6713.
220. R.L. Chan and T.C. Bruice. The Chemistry of an Electron- Deficient 5-Deazaflavin.
8-Cyano-10-methyl-5- deazaisoalloxazine. J. Am. Chem. Soc. 1977, 99, 6721.
221. C. Kemal and T.C. Bruice. Chemiluminescence Accompanying the Decomposition
of 4a-Flavin Alkyl Peroxide. Model Studies of Bacterial Luciferase. J. Am. Chem.
Soc. 1977, 99, 7064.
23
222. C. Kemal; T.W. Chan and T.C. Bruice. Reactions of 3O2 with Dihydroflavins. 1.
N3,5-Dimethyl-1,5-Dihydrolumiflavin and 1,5-Dihydroisoalloxazines. J. Am. Chem.
Soc. 1977, 99, 7272.
223. T.W. Chan and T.C. Bruice. Reaction of Nitroxides with 1,5-Dihydroflavins and
N3,5-Dimethyl-1,5-Dihydrolumiflavin. J. Am. Chem. Soc. 1977, 99, 7287.
224. M. Novak and T.C. Bruice. Oxidation of 9-Hydroxy- and 9- Methoxyfluorene
Carbanions by Flavin. Proof of Radical Mechanism. J. Am. Chem. Soc. 1977, 99,
8079.
231. T.W. Chan and T.C. Bruice. Importance of C4a- and N5-Covalent Adducts in the
Flavin Oxidation of Carbanions. Biochem. 1978, 17, 4784.
232. R.L. Chan and T.C. Bruice. Characterization and One- and Two- Electron Redox
Chemistry of 1,5-Dicarba-1,5- dideazaisoalloxazines (Flavins). J. Am. Chem. Soc.
1978, 100, 7375.
234. G. Tollin; R.L. Chan; T.R. Malefyt and T.C. Bruice. Some One Electron Reduction
Products of Flavin Analogs: Cyanoisoalloxazines and Deazaisoalloxazines.
Photochem. Photobiol. 1979, 29, 233-43.
235. C. Kemal and T.C. Bruice. Transfer of O2 from a 4a- Hydroperoxyflavin Anion to a
Phenolate Ion. A Flavin- Catalyzed Dioxygenation Reaction. J. Am. Chem. Soc. 1979,
101, 1635.
236. S. Ball and T.C. Bruice. 4a-Hydroperoxyflavin N-Oxidation of Tertiary Amines. J.
Am. Chem. Soc. 1979, 101, 4017.
241. A. Miller and T.C. Bruice. Oxidations by a 4a- Hydroperoxyisoalloxazine hindered
in the 9a and 10a Positions. J. Chem. Soc., Chem. Comm. 1979, 20, 896-7.
242. M. Novak; A. Miller; T.C. Bruice and G. Tollin. The Mechanism of Flavin 4a
Substitution Which Accompanies Photolytic Decarboxylation of α-substituted Acetic
Acids. J. Am. Chem. Soc. 1980, 102, 1465.
243. M. Novak and T.C. Bruice. Mechanistic Investigation of the Oxidation of the
Carbanion of Methyl 2-Methoxy-2- phenylacetate by an Isoalloxazine. J. Chem. Soc.,
Chem. Commun. 1980, 9, 372-4.
244. T.C. Bruice and A. Miller. Products of the Decomposition of the Anion of a 4aHydroperoxyisoalloxazine Hindered in the 9a and 10a Positions. J. Chem. Soc.,
Chem. Commun. 1980, 15, 693-4.
245. S. Muto and T.C. Bruice. Dioxygen Transfer from 4a- Hydroperoxyflavin Anion. 2.
Oxygen Transfer to the 10 Position of 9-Hydroxyphenanthrene Anions and to 3,5-Ditert- butylcatechol Anion. J. Am. Chem. Soc. 1980, 102, 4472.
246. M. Iwata; T.C. Bruice; H.L. Carrell and J.P. Glusker. Reactions of 4a-Peroxides and
4a-Pseudobases of N10- and N5- Phenethylflavins. J. Am. Chem. Soc. 1980, 102,
5036.
247. T.C. Bruice. Mechanisms of Flavin Catalysis. Accts. Chem. Res. 1980, 13, 256-262.
24
248. S. Ball and T.C. Bruice. Oxidation of Amines by a 4a- Hydroperoxyflavin. J. Am.
Chem. Soc. 1980, 102, 6498.
250. Bruice, Thomas C.. Carbon acid oxidations and oxygen activation by flavins.
Advances in Chemistry Series 1980, 191(Biomimetic Chem.), 89-118.
251. S. Muto and T.C. Bruice. Dioxygen Transfer from 4a- Hydroperoxyflavin Anion. 3.
Oxygen Transfer to the 3-Position of Substituted Indoles. J. Am. Chem. Soc. 1980,
102, 7559.
252. P.T. Shepherd and T.C. Bruice. Formation of a Non- chemiluminescent ExcitedState Species in the Decomposition of 4a-(Alkylperoxy)flavins. J. Am. Chem. Soc.
1980, 102, 7774.
253. E.J. Nanni; D.T. Sawyer; S.S. Ball and T.C. Bruice. Redox Chemistry of N5-Ethyl4a-hydroperoxy-3-methyllumiflavin in Dimethylformamide. Evidence for the
Formation of the N5- Ethyl-4a-hydroperoxy-3-methyllumiflavin Anion via RadicalRadical Coupling with Superoxide Ion. J. Am Chem. Soc. 1981, 103, 2797.
254. S. Ball and T.C. Bruice. The Chemistry of 1-Carba-1-deaza-N5- ethyl-N3methyllumiflavins. Influence of the N1 upon the Reactivity of Flavin 4aHydroperoxides. J. Am. Chem. Soc. 1981, 103, 5494.
258. A. Wessiak and T.C. Bruice. On the Nature of the Intermediate between 4aHydroperoxyflavin and 4a-Hydroxyflavin in the Hydroxylation Reaction of pHydroxybenzoate Hydroxylase. Synthesis of 6-Aminopyrimidine-2,4,5(3H)-triones
and the Mechanism of Aromatic Hydroxylation by Flavin Monooxygenases. J. Am.
Chem. Soc. 1981, 103, 6996.
259. Shepherd, Peter T.; Bruice, Thomas C.. Chemiluminescence derived from 4a(alkylperoxy) flavins. Biolumin. Chemilumin., [Int. Symp. Anal. Appl. Biolumin.
Chemilumin.], 2nd 1981, Meeting Date 1980, 391-4.
260. Bruice, Thomas C.. A progress report on studies of the activation of molecular
oxygen by dihydroflavins. Developments in Biochemistry 1982, 21(Flavins
Flavoproteins), 265-77.
261. G. Eberlein and T.C. Bruice. One- and Two-Electron Reduction of Oxygen by 1,5Dehydroflavins. J. Am. Chem. Soc. 1982, 104, 1449.
263. S. Muto and T.C. Bruice. Dioxygen Transfer from 4a- Hydroperoxyflavin Anion. 4.
Dioxygen Transfer to Phenolate Anion as a Means of Aromatic Hydroxylation. J.
Am. Chem. Soc. 1982, 104, 2284.
266. E.B. Skibo and T.C. Bruice. Preparation and Study of a Low- Potential Flavin
Analogue. J. Am. Chem. Soc. 1982, 104, 4982.
268. Bruice, Thomas C.. 4a-Peroxyflavins. Oxidases Relat. Redox Syst., Proc. Int. Symp.,
3rd 1982, Meeting Date 1979, 423-46.
272. T.C. Bruice. Leaving Group Tendencies and the Rates of Monooxygen Donation by
Hydrogen Peroxide, Organic Hydroperoxides, and the Peroxycarboxylic Acids. J.
Am. Chem. Soc., Chem. Commun. 1983, 1, 14-15.
25
273. T.C. Bruice; J.B. Noar; S.S. Ball and U.V. Venkataram. Mono-oxygen Donation
Potential of 4a-Hydroperoxyflavins as Compared with Those of a Percarboxylic Acid
and other Hydroperoxides. Monooxygen Donation to Olefin, Tertiary Amine, Alkyl
Sulfide, and Iodide Ion. J. Am. Chem. Soc. 1983, 105, 2452.
274. E.B. Skibo and T.C. Bruice. High- and Low-Potential Flavin Mimics (Based on the
Pyrimidino[5,4-g]pteridine and Imidazo[4,5-g]pteridine System). 1. General
Chemistry. J. Am. Chem. Soc. 1983, 105, 3304.
275. E.B. Skibo and T.C. Bruice. High- and Low-Potential Flavin Mimics. 2. 3,7,10Trimethyl-(1H,3H,5H,7H,9H,10H)- pyrimido[5,4,-g]-pteridine-2,4,6,8-tetrone
Dianion Reduction of Carbonyl, Nicotinamides, and Alkyl Disulfide Functional
Groups. J. Am. Chem. Soc. 1983, 105, 3316.
277. A. Wessiak and T.C. Bruice. Synthesis and Study of a 6-Amino- 5-oxo-3H,5Huracil and Derivatives. The Structure of an Intermediate Proposed in Mechanisms of
Flavin and Pterin Oxygenases. J. Am. Chem. Soc. 1983, 105, 4809.
280. G. Eberlein and T.C. Bruice. The Chemistry of a 1,5-Diblocked Flavin. 1.
Interconversion of the Reduced, Radical and Oxidized Forms of 1,10-Ethano-5ethyllumiflavin. J. Am. Chem. Soc. 1983, 105, 6679.
281. G. Eberlein and T.C. Bruice. The Chemistry of a 1,5-Diblocked Flavin. 2. Proton
and Electron Transfer Steps in the Reaction of Dihydroflavins with Oxygen. J. Am.
Chem. Soc. 1983, 105, 6685.
284. A. Wessiak; J.B. Noar and T.C. Bruice. The possibility that the spectrum of
intermediate two, seen in the course of reaction of flavoenzyme phenol hydroxylases,
may be attributable to iminol isomers of a flavin-derived 6-arylamino-5oxo(3H,5H)uracil. Proc. Natl. Acad. Sci. (USA) 1984, 81, 332.
285. L.-C. Yuan and T.C. Bruice. Redox Reactions of a Tetrahydro/Hexahydropyrido[2,3-d3:6,5-d']dipyrimidine Tetrone Couple. A High vs. Low
Potential 5-Carba-5-deazaflavin Mimic. J. Am. Chem. Soc. 1984, 106, 1530.
287. O.L. Farng and T.C. Bruice. Carbon-Carbon Double Bond Formation
Accompanying Hydride Transfer from a Carbanion to a 5-Carbalumiflavin. J. Chem.
Soc., Chem. Commun. 1984, 3, 185-6.
288. T.C. Bruice. Oxygen-Flavin Chemistry. Isr. J. Chem. 1984, 24, 54.
291. A. Wessiak; L.M. Schopfer; L.C. Yuan; T.C. Bruice; and V. Massey. Use of
riboflavin-binding protein to investigate steric and electronic relationships in flavin
analogs and models. Proc. Natl. Acad. Sci. 1984, 81, 4246.
292. U.V. Venkataram and T.C. Bruice. Determination of the Kinetic pKa of a Flavin 4aPseudobase from a Study of the Hydrolysis of 4a-Hydroxy-5-ethyl-3-methyllumiflavin in H2O. The Oxygen Donation Potential of 4a-Hydroperoxyflavins. J.
Chem. Soc., Chem. Commun. 1984, 14, 899-900.
293. U.V. Venkataram and T.C. Bruice. On the Mechanism of Flavin- Catalyzed
Dehydrogenation α, β to an Acyl Function. The Mechanism of 1,5-Dihydroflavin
Reduction of Malemides. J. Am. Chem. Soc. 1984, 106, 5703.
26
296. G. Eberlein; T.C. Bruice; R.A. Lazarus; R. Henrie and S.J. Benkovic. The
Interconversion of the 5,6,7,8-Tetrahydro-, 7,8-Dihydro-, and Radical Forms of
6,6,7,7-Tetramethyldihydropterin. A Model for the Biopterin Center of Aromatic
Amino Acid Mixed Function Oxidases. J. Am. Chem. Soc. 1984, 106, 7916.
297. Bruice, Thomas C.. Flavin oxygen chemistry brought to date. Flavins Flavoproteins,
Proc. Int. Symp., 8th 1984, 45-55.
317. E.B. Skibo and T.C. Bruice. High- and Low-Potential Flavin Mimics. 3. 3,7,10Trimethyl-(1H,3H,5H,7H,9H,10H)- pyrimido[5,4-g]pteridine-2,4,6,8-tetroneMediated Reduction of Carbon-Carbon Double Bonds α-β to an Acyl Function. J.
Am. Chem. Soc. 1986, 108, 1650.
363. S.-R. Keum; D.H. Gregory; and T.C. Bruice. Oxidation of Aminophenols by 4aHydroperoxy-5-ethyllumiflavin Anion. Flavoenzyme Hydroxylase Mechanism. J.
Am. Chem. Soc. 1990, 112, 2711.
366. T.W. Kaaret and T.C. Bruice. Electrochemical Luminescence with N(5)-Ethyl-4aHydroxy-4a,5-Dihydrolumiflavin. The Mechanism of Bacterial Luciferase.
Photochem. Photobiol. 1990, 51, 629.
464. Y-J. Zheng & T. C. Bruice. Identifying the Intermediate in the Dioxygen Transfer
from 4a-Hydroperoxyflavin Anion to Phenolate and Indole Anions. Bioorganic
Chem. 1998, 25, 331.
Iron-sulfur Clusters Fe4S4(SR)4 and Ferredoxins
190. T.C. Bruice; R. Maskiewicz and R. Job. The Acid-Base Properties, Hydrolytic
Mechanism and Susceptibility to O2 Oxidation of Fe4S4(SR)4-2 Clusters. Proc. Natl.
Acad. Sci. (USA) 1975, 72, 231.
193. R. Maskiewicz; T.C. Bruice and R.G. Bartsch. The Acid-Base Properties and
Kinetics of Dissolution of the Fe4S4 Cores of Chromatium Ferredoxin and High
Potential Iron Protein. Biochem. Biophys. Res. Commun. 1975, 65, 407.
194. R.C. Job and T.C. Bruice. Iron-sulfur Clusters II: Kinetics of ligand exchange
studied on a water-soluble Fe4S4(SR)4n- cluster. Proc. Natl. Acad. Sci. (USA) 1975,
72, 2478.
215. H.L. Carrell; J.P. Glusker; R. Job and T.C. Bruice. A Synthetic Tetranuclear IronSulfur Complex with Ionized Side Chains: The Crystal Structure of
(Fe4S4(S(CH2)2COO)4)6- .(NA5.N(C4H9)4)6+.5C5H9NO. J. Am. Chem. Soc.
1977, 99, 3683.
216. R. Maskiewicz and T.C. Bruice. Kinetic Study of the Dissolution of Fe4S42- Cluster Core Ions of Ferredoxins and High Potential Iron Protein. Biochem. 1977, 16,
3024.
225. R. Maskiewicz and T.C. Bruice. Dependence of the rates of dissolution of the Fe4S4
clusters of chromatium vinosum high- potential iron protein and ferredoxin on cluster
oxidation state. Proc. Natl. Acad. Sci. (USA) 1977, 74, 5231.
27
230. R. Maskiewicz and T.C. Bruice. Solvation as the Determining Factor for the Redox
Potential for Fe4S4[S-(CH2)nCO2]6- -Cluster Ions. J. Chem. Soc., Chem. Commun.
1978, 16, 703-4.
Methoxatin, PQQ and Related ortho-quinones
264. T.S. Eckert; T.C. Bruice; J.A. Gainor and S.M. Weinreb. Some electrochemical and
chemical properties of methoxatin and analogous quinoquinones. Proc. Natl. Acad.
Sci. (USA) 1982, 79, 2533.
270. D. Igdaloff; D.V. Santi; T.S. Eckert and T.C. Bruice. Effects of 1,7- and 1,10phenanthroline dione on tissue culture cells. Biochem. Pharmacol. 1983, 32, 172.
276. T.S. Eckert and T.C. Bruice. Chemical Properties of Phenanthrolinequinones and the
Mechanism of Amine Oxidation by O-Quinones of Medium Redox Potentials. J. Am.
Chem. Soc. 1983, 105, 4431.
303. P.R. Sleath; J.B. Noar; G.A. Eberlein; and T.C. Bruice. Synthesis of 7,9Didecarboxymethoxatin (4,5-Dihydro-4,5-dioxo-1H- [pyrrolo[2,3-f]quinoline-2carboxylic Acid) and Comparison of Its Chemical Properties with Those of
Methoxatin and Analogous O-Quinones. Model Studies Directed Towards the Action
of PQQ Requiring Bacterial Oxoreductases and Mammalian Plasma Amine Oxidase.
J. Am. Chem. Soc. 1985, 107, 3328.
308. M. Conlin; H.S. Forrest and T.C. Bruice. Replacement of Methoxatin by 4,7Phenanthroline-5,6-dione and the Inability of Other Phenanthroline Quinones, As
Well As 7,9-Di-decarboxy Methoxatin, to Serve as Cofactors for the MethoxatinRequiring Glucose Dehydrogenase of AcinotobacterCalcoaceticus. Biochem. and
Biophys. Res. Commun. 1985, 131, 564.
309. J.B. Noar; E.J. Rodriguez and T.C. Bruice. Synthesis of 9-Decarboxymethoxatin.
Metal Complexation of Methoxatin as a Possible Requirement for Its Biological
Activity. J. Am. Chem. Soc. 1985, 107, 7198.
329. E.J. Rodriguez; T.C. Bruice and D.E. Edmondson. Studies on the Radical Species of
9-Decarboxymethoxatin. J. Am. Chem. Soc. 1987, 109, 532.
334. J.B. Noar and T.C. Bruice. Decarboxylated Methoxatin Analogues. Synthesis of 7and 9-Decarboxymethoxatin. J. Org. Chem. 1987, 52, 1942.
360. E.J. Rodriguez and T.C. Bruice. Reaction of Methoxatin and 9Decarboxymethoxatin with Benzylamine. Dynamics and Products. J. Am. Chem. Soc.
1989, 111, 7947.
459. Y-J. Zheng & T. C. Bruice. Conformation of coenzyme Pyrroloquinolinequinone
(PQQ) and the Role of Ca2+ in the Catalytic Mechanism of Quinoprotein Methanol
Dehydrogenase. Proc. Natl. Acad. Sci. (USA) 1997, 94, 11881.
505. Zheng, Y.-J.; Xia, Z.-X.; Chen, Z.-W.; Mathews, F. S.; Bruice, T. C.. Catalytic
mechanism of quinoprotein methanol dehydrogenase: a theoretical and x-ray
crystallographic investigation. Proc. Natl. Acad. Sci. (USA) 2001, 98, 432-434.
28
534. Reddy, S. Y., Mathews, F. S., Zheng, Y-J. and Bruice, T. C.. Quinoprotein methanol
dehydrogenase: A molecular dynamic study and comparison with crystal structure. J.
Mol. Struct. 2003, 655 (2), 269-277.
538. Reddy, S. Y. and Bruice, T. C.. In silico studies of the mechanism of methanol
oxidation by quinoprotein methanol dehydrogenase. J. Am. Chem. Soc. 2003, 125,
8141-8150.
547. Reddy, S. Y. & Bruice, T. C., Mechanism of glucose oxidation by quinoprotein
soluble glucose dehydrogenase: Insights from molecular dynamics studies. J. Am.
Chem. Soc., 2004, 126, 2431-2438.
553. Reddy, S.Y. & Bruice, T.C., Review: Determination of enzyme mechanisms by
molecular dynamic studies on quinoproteins, methanol dehydrogenase and soluble
glucose dehydrogenase, Protein Science, 2004, 13, 1965-1978.
Micelle Catalysis
84. T.C. Bruice; J. Katzhendler and L.R. Fedor. Nucleophilic Micelles. I. J. Phys. Chem.
1967, 71, 1961.
93. T.C. Bruice; J. Katzhendler and L.R. Fedor. Nucleophilic Micelles. II. The Effect on
the Rate of Solvolysis of Neutral, Positively and Negatively Charged Esters of Varied
Chain Length when Incorporated into Nonfunctional and Functional Micelles of
Neutral, Positive and Negative Charge. J. Am. Chem. Soc. 1968, 90, 1333.
Nucleotide Analogs and Phosphate Esters – Materials
373. A. Salehi; H-Y. Mei; and T.C. Bruice. Synthesis and DNA-Binding Studiesof New
Cationic Guanidine and Betaineamide Tetraphenylpophyrins. Tet. Lett. 1991, 32,
3453.
385. T.C. Bruice; H.-Y. Mei; G.-X. He; and V. Lopez. Rational Design of Substituted
Tri-Pyrrole Peptides Which Complex with DNA by Both Selective Minor Groove
Binding and Electrostatic Interaction with Phosphate Backbone. Proc. Natl. Acad.
Sci. (USA) 1992, 89, 1700.
393. K.A. Browne and T.C. Bruice. Chemistry of Phosphodiesters, DNA and Models. II.
The Hydrolysis of Bis(8-hydroxyquinoline) Phosphate in the Absence and Presence
of Metal Ions. J. Am. Chem. Soc. 1992, 114, 4951.
403. G-X. He; K.A. Browne; J.C. Groppe; A. Blasko; H-Y. Mei; and T.C. Bruice.
Microgonotropens and Their Interactions with DNA. I. Synthesis of the Tri-Pyrrole
Peptides Dien-Microgonotropen-a, -b, and -c and Characterization of Their
Interactions with dsDNA. J. Am. Chem. Soc. 1993, 115, 7061.
404. K.A. Browne; G-X. He; and T.C. Bruice. Microgonotropens and Their Interactions
with DNA. II. Quantitative Evaluation of Equilibrium Constants for 1:1 and 2:1
Binding of Dien-Microgonotropen-a, -b, and -c as well as Distamycin and Hoechst
33258 to d(GGCGCAAATTTGGCGG)/d(CCGCCAAATTTGCGCC). J. Am. Chem.
Soc. 1993, 115, 7072.
29
405. A. Blasko; K.A. Browne; G-X. He; and T.C. Bruice. Microgonotropens and Their
Interactions with DNA. III. Structural Analysis of the 1:1 Complex of
d(CGCAAATTTGCG)2 and Dien- Microgonotropen-c by 2D NMR Spectroscopy
and Restrained Molecular Modeling. J. Am. Chem. Soc. 1993, 115, 7080.
407. Ö Almarsson; T.C. Bruice; J. Kerr and R. Zuckermann. Molecular Mechanics
Calculations of the Structures of Polyamide Nucleic Acid DNA Duplexes and Triple
Helical Hybrids. Proc. Natl. Acad. Sci. (USA) 1993, 90, 7518.
409. Ö Almarsson and T.C. Bruice. Peptide Nucleic Acid (PNA) Conformation and
Polymorphism in PNA-DNA and PNA-RNA Hybrids. Proc. Natl. Acad. Sci. (USA)
1993, 90, 9542.
410. A. Blaskó and T.C. Bruice. Stoichiometry and Structure of Complexes of DNA
Oligomers with Microgonotropens and Distamycin by 1H NMR Spectroscopy and
Molecular Modeling. Proc. Natl. Acad. Sci. (USA) 1993, 90, 10018.
414. H.G. Hansma, R.L. Sinsheimer, J. Groppe, T.C. Bruice, V. Elings, G. Gurley, M.
Bezanilla, I.A. Mastrangelo, P.V.C. Hough, and P.K. Hansma. Recent Advances in
Atomic Force Microscopy of DNA. Scanning 1993, 15, 296.
417. G-X. He, K.A. Browne, A. Blaskó, and T.C. Bruice. Microgonotropens and Their
Interactions with DNA. IV. Synthesis of the Tripyrrole Peptides TrenMicrogonotropen-a and -b and Characterization of Their Interactions with DsDNA. J.
Am. Chem. Soc. 1994, 116, 3716.
418. A. Blaskó; K.A. Browne; and T.C. Bruice. Microgonotropens and Their Interactions
with DNA. V. Structural Characterization of the 1:1 complex of
d(CGCAAATTTGCG)2 and Tren-Microgonotropen-b by 2D NMR Spectroscopy and
Restrained Molecular Modeling. J. Am. Chem. Soc. 1994, 116, 3726.
419. R.O. Dempcy and T.C. Bruice. The Negative Charge of Alkyl Phosphate Diesters
and the Slow-gaited Hydrolysis of RNA and DNA. Catalysis of RNA Hydrolysis
through Metal Ion Ligation to the Ester >PO2- Moiety. J. Am. Chem. Soc. 1994, 116,
4511.
421. R. O. Dempcy; Ö. Almarsson; and T. C. Bruice. The Design and Synthesis of DNG:
A Polycation Analogue of DNA. Proc. Natl. Acad. Sci. (USA) 1994, 91, 7864.
422. H. G. Hansma; K. A. Browne; M. Bezanilla; and T. C. Bruice. Bending and
Straightening of DNA Induced by the Same Ligand: Characterization with the
Atomic Force Microscope. Biochemistry 1994, 33, 8436.
424. A. Tsubouchi; T. C. Bruice. A Remarkable (~1013) Rate Enhancement in
Phosphonate Ester Hydrolysis Catalyzed by Two Metal Ions. J. Am. Chem. Soc.
1994, 116, 11614.
425. T. Xue; K. A. Browne; T. C. Bruice. A Novel Minor Groove Binding Reagent
Designed to Serve as a "Truck" to Carry DNA Modifying Moieties into the Major
Groove. Bioconjugate Chem. 1995, 6, 82.
426. T. C. Bruice; A. Blaskó´; R. D. Arasasingham; J-S. Kim; M. Petyak. Hydrolysis of a
Phosphate Diester by Simultaneous Carboxylate and Carboxyl Group Participation in
30
a Rigid System with Kinetically Unfavorable Rotamers Frozen Out. J. Am. Chem.
Soc. 1995, 117, 3639.
429. R. O. Dempcy; K. A. Browne and T. C. Bruice. Synthesis of the Polycation
Thymidyl DNG, It's Fidelity in Binding Polyanionic DNA/RNA, and the Stability
and Nature of the Hybrid Complexes. J. Am. Chem. Soc. 1995, 117, 6140.
430. R. O. Dempcy; K. A. Browne; T. C. Bruice. Synthesis of a Thymidyl Pentamer of
DNG and Binding Studies with DNA Homopolyoligonucleotides. Proc. Natl. Acad.
Sci (USA) 1995, 92, 6097.
431. K. A. Browne; R. O. Dempcy; T. C. Bruice. Binding Studies of Cationic DNG to
RNA Homopolynucleotides. Proc. Natl. Acad. Sci(USA) 1995, 92, 7051.
432. A. Blasko; K. A. Browne; T. C. Bruice. NMR Structure of
d(CGCA3T3GCG)2:Tren-Microgonotropen-b:Zn(II) Complex and Solution Studies
of Metal Ion Complexes of Tren- Microgonotropen-b Interacting with DNA.
Bioorganic and Medicinal Chemistry 1995, 3, 631.
434. A. Tsubouchi; T. C. Bruice. Phosphonate Ester Hydrolysis Catalyzed by Two
Lanthanum Ions. Intramolecular Nucleophilic Attack of Coordinated Hydroxide and
Lewis Acid Activation. J. Am. Chem. Soc. 1995, 117, 7399.
435. Thomas C. Bruice; Andrei Blaskó; and Mark E. Petyak. Participation of two
Carboxyl Groups in Phosphodiester Hydrolysis. I. The Hydrolysis of Bis-(2carboxyphenyl) Phosphate. J. Am. Chem. Soc. 1995, 117, 12064.
436. Thomas C. Bruice; Andrei Blaskó; Ramesh D. Arasasingham; and Jang- Seob Kim.
Participation of two Carboxyl Groups in Phosphodiester Hydrolysis. II A Kinetic,
Isotopic and 31P NMR Study of the Hydrolysis of a Phosphodiester with Carboxyl
Groups Fixed in an Attack Conformation. J. Am. Chem. Soc. 1995, 117, 12070.
437. R. A. Torres and T. C. Bruice. Interresidue Hydrogen Bonding in a PNA.RNA
Heteroduplex. Proc. Natl. Acad. Sci (USA) 1996, 93, 649.
440. Dempcy, Robert O.; Bruice, Thomas C.. The synthesis and DNA/RNA hybridization
properties of DNG, a putative antisense agent with an attractive polycationic
guanidinium backbone. NATO ASI Series, Series C: Mathematical and Physical
Sciences 1996, 479(DNA and RNA Cleavers and Chemotherapy of Cancer and Viral
Diseases), 143-162.
441. D. Sengupta; A. Blasko; T. C. Bruice. A Microgonotropin Pentaaza
Pentabutylamine and its Interactions with DNA. Bioorganic and Med. Chem. 1996, 4,
803.
442. R.O. Dempcy; Jia Luo and T.C. Bruice. Design and Synthesis of Ribonucleic
Guanidine: A polycationic analog of RNA. Proc. Natl. Acad. Sci (USA) 1996, 93,
4326.
443. R. A. Torres; Ö. Almarsson and T. C. Bruice. Molecular Mechanics Calculations of
the Riboacetal Internucleotide Linkage in Double and Triple Helices. Proc. Natl.
Acad. Sci (USA) 1996, 93, 6875.
31
446. A. Blasko; R. O. Dempcy; E. E. Minyat & T. C. Bruice. Association of Short Strand
DNA Oligomers with Guanidinium Linked Nucleosides (DNG). A Kinetic and
Thermodynamic Study. J. Am. Chem. Soc. 1996, 118, 7892.
447. T. C. Bruice; A. Tsubouchi; R. O. Dempcy and L. P. Olson. Oneand Two Metal Ion
Catalysis of the Hydrolysis of Adenosine-3'-(alkyl)phosphate esters. Models for One
and Two Metal Ion Catalysis of RNA Hydrolysis. J. Am. Chem. Soc. 1996, 118,
9867.
448. T. C. Bruice; D. Sengupta; A. Blasko; S-Y. Chiang; & T. A. Beerman. A
Microgonotropen Branched Decaaza Decabutylamine and its Interactions with DNA
& DNA/Transcription Facor Interactions. Bioorganic and Med. Chem. 1997, 5, 685.
449. S.-Y. Chiang; T. C. Bruice; J. C. Azizkhan; L. Gawron & T. Beerman. Targeting
E2F1/DNA Complexes with Microgonotropen DNA Binding Agents. Proc. Natl.
Acad. Sci. (USA) 1997, 94, 2811.
452. A. Blasko; E. E. Minyat; R. O. Dempcy & T. C. Bruice. Fidelity of Binding of the
Guanidinium Nucleic Acid (DNG) d(Tg)4-T-azido with Short Strand DNA
Oligamers {A5G3A5, GA4G3A4G, G2A3G3A3G2,G2A2G5A2G2} with a
Guanidinium Linked (DNG) Nucleoside. A Kinetic and Thermodynamic Study.
Biochemistry 1997, 36, 7821.
456. T. C. Bruice; Y-C. Yip; A. Blasko; M. E. Petyak; K. A. Browne & F. C. Lightstone.
Design, Synthesis, Characterizaton of a Novel Hexa-azacyclophane and Interactions
with d(CGCA3T3GCG), ctDNA and T4DNA. Tetrahedron 1997, 53, 8105.
468. D. P. Arya & T. C. Bruice. Replacement of the Negative Phosphodiester Linkages of
DNA by Positive S-Methyl Thiourea Linkers: A Novel Approach to Putative
Antisense Agents. J. Am. Chem. Soc. 1998, 120, 6619.
465. B. Linkletter & T. C. Bruice. Solid Phase Synthesis of Oligomeric Deoxynucleic
Guanidine (DNG): A Polycationic Analogue of DNA. Bioorganic & Med. Lett. 1998,
8, 1285.
466. D. A. Barawkar; B. Linkletter & T. C. Bruice. Synthesis of Protected Guanidinium
Linked Dinucleoside for Incorporable into an Oligonucleotide Using Solid Phase
DNA Methodology. Bioorganic & Med. Lett. 1998, 8, 1517.
471. D. A. Barawkar & T. C. Bruice. Synthesis, biological properties and nuclease
resistance properties of mixed backbone oligodeoxynucleotides containing cationic
internucleoside guanidinium linkages: DNG/DNA chimeras. Proc. Natl. Acad. Sci.
(USA) 1998, 95, 11047.
476. D. P. Arya & T. C. Bruice. Positively Charged DeoxyNucleic MethylThioureas
(DNmt): Synthesis and Binding Properties of Pentameric Thynidyl S-Methyl
thiourea. J. Am. Chem. Soc. 1998, 120, 12419.
460. J. Luo & T. C. Bruice. Nanosecond Molecular Dynamics of Hybrid Triplex and
Duplex of Polycation Deoxyribonucleic Guanidine (DNG) Strands with a
Complimentary DNA Strand. J. Am. Chem. Soc.1998, 120, 1115.
32
479. Linkletter, B. A.; Szabo, I. E.; Bruice, T. C.. Solid-phase synthesis of deoxynucleic
guanidine (DNG) oligomers and melting point and circular dichroism analysis of
binding fidelity of octameric thymidyl oligomers with DNA oligomers. J. Am. Chem.
Soc. 1999, 121, 3888–3896.
480. Arya, D. P.; Bruice, T. C.. Triple-helix formation of DNA oligomers with
methylthiourea-linked nucleosides (DNmt): A kinetic and thermodynamic analysis.
Proc. Natl. Acad. Sci. (USA) 1999, 96, 4384–4389.
481. Blaskó, A.; Bruice, T. C.. Recent studies of nucleophilic, general-acid, and metal ion
catalysis of phosphate diester hydrolysis. Acc. Chem. Res. 1999, 32, 475–484.
486. Barawkar, D. A.; Bruice, T. C.. Deoxynucleic guanidines/PNA (DNG/PNA)
chimeras: oligonucleoside analogues containing cationic guanidinium and neutral
amide linkages. J. Am. Chem. Soc.1999, 121, 10418–10419.
487. Arya, D. P.; Bruice, T. C.. Fidelity of deoxynucleic S–methylthiourea (DNmt)
binding to DNA oligomers: influence of C mismatches. J. Am. Chem. Soc.1999, 121,
10680–10684.
489. Satz, A. L.; Bruice, T. C.. Synthesis of fluorescent microgonotropen (FMGT–1) and
its interactions with the dodecamer d(CCGGAATTCCGG). Bioorg. Med. Chem. Lett.
1999, 9, 3261–3266.
491. Kojima, N.; Bruice, T. C.. Replacement of the phosphorodiester linkages of RNA
with guanidinium linkages: The solid-phase synthesis of ribonucleic guanidine. Org.
Lett. 2000, 2, 81–84.
496. Arya, D. P.; Bruice, T. C.. Solid-phase synthesis of oligomeric deoxynucleicthiourea (DNT) and deoxynucleic S–methylthiourea (DNmt): a neutral/polycationic
analogue of DNA. Bioorg. Med. Chem. Lett. 2000, 10, 691-693.
498. Linkletter, B. A.; Bruice, T. C.. Solid-phase synthesis of positively charged
deoxynucleic guanidine (DNG) modified oligonucleotides containing neutral urea
linkages: effect of charge deletions on binding and fidelity. Bioorg. Med. Chem.
2000, 8, 1893-1901.
499. Barakar, D. A.; Kwok; Y.; Bruice, T. W. and Bruice, T. C.. Deoxynucleic
Guanidine/Peptide Nucleic Acid Chimeras: Synthesis, Binding and Invasion Studies
with DNA. J. Am. Chem Soc. 2000, 122, 5244.
502. Satz, A. L. & Bruice, T. C.. Synthesis of Fluorescent Microgonotropens (FMGTs)
and Their Interactions with dsDNA. Bioorg. Med. Chem. 2000, 8, 1871-1880.
507. Satz, A.. L. & Bruice, T. C.. Recognition of nine base pairs in the minor groove of
dsDNA by a Tripyrrole Peptide-Hoechst Conjugate. J. Am. Chem. Soc. 2001, 123,
2469-2477.
508. Linkletter, B.; Szabo, I. E. and Bruice, T. C.. Solid phase synthesis of oligopurine
deoxynucleic guanidine (DNG) and analysis of binding with DNA oligomers. Nucleic
Acid Res. 2001, 29, 2370-2376.
33
509. Satz, L. S.; White, C. M.; Beerman, T. A. & Bruice, T. C.. Double -stranded DNA
binding characteristics and subcellular distribution of a minor groove binding
diphenylether bisbenzimidazole. Biochemistry 2001, 40, 6465-6467.
511. White, C. M.; Satz, A. L.; Bruice, T. C. & Beerman, T. A.. Inhibition of
transcription factor-DNA complexes and gene expression by a novel
microgonotropen. Proc. Natl. Acad. (USA) 2001, 98, 10590-10595.
512. Challa, H. & Bruice, T. C.. Incorporation of positively charged deoxynucleic Smethylthiourea linkages into oligonucleotides: Synthesis and characterization of
DNmt/DNA chimera. Bioorg. Med. Chem. Lett. 2001, 11, 2423-2427.
515. White, C. M.; Satz, A. L.; Gawron, L. S.; Bruice, T. C. & Beerman, T. A.. Inhibiting
transcription factor/DNA complexes using fluorescent microgonotropens.
Biochemica et Biophysica Acta gene expression. 2001, 1574, 100-108.
516. Satz, L. S. & Bruice, T. C.. Recognition of nine base pair sequence in the minor
groove of DNA at subpicomolar concemntrations by a novel microgonotropen.
Bioorg. & Med. Chem. 2002, 10, 241-262.
517. Kojima, N.; Szabo, I. E. & Bruice, T. C.. Synthesis of ribonucleic guanidine:
Replacement of the negative phosphodiester linkages of RNA with positive
guanidinium linkages. Tetrahedron 2002, 58, 867-879.
518. Satz, L. S. & Bruice, T. C.. Recognition in the Minor Groove of double-stranded
DNA by microgonotropens. Acc. Chem. Res. 2002, 35, 86-95.
532. Reddy, P. M. & Bruice, T. C.. Solid phase synthesis of positively charged
deoxynucleic guanidine (DNG) oligonucleotide mixed sequences. Bioorg. & Med.
Chem. Lett. 2003, 1281-1285.
536. Reddy, P. M., Jindra, P., Satz, L. S. & Bruice, T. C.. Sequence selective recognition
in the minor groove of dsDNA by pyrrole, imidazole-Hochst conjugates. J. Am.
Chem. Soc., 2003, 125, 7843-7848.
544. Challa, H. & Bruice, T. C., Deoxynucleic Guanidine: Synthesis and incorporation of
purine nucleosides into positively charged DNG oligonucleotides. Bioorganic &
Med. Chem. Lett., 2004, 12, 1475-1481.
548. Reddy, P.M. and Bruice, T.C., Solid-Phase Synthesis of Positively Charged
Deoxynucleic Guanidine (DNG) Tethering a Hoechst 33258 Analogue: Triplex and
Duplex Stabilization by Simultaneous Minor Groove Binding. J. Am. Chem. Soc.
2004, 126, 3736-3747.
550. Szabo, I. & Bruice, T. C., DNG Cytidine: Synthesis and binding properties of
octomeric guanidinium-linked deoxycytidine oligomer. Bioorganic & Med. Chem.,
2004, 12, 4233-4244.
551. Reddy, M. P., Dexter, R. & Bruice, T.C., DNA sequence recognition in the minor
groove by hairpin pyrrole polyamide-Hochst 33258 analog conjugate. Bioorganic &
Med. Chem. Lett., 2004, 14, 3803-3807.
34
Orbital Steering
139. T.C. Bruice, A. Brown and D.O. Harris. On the Concept of Orbital Steering in
Catalytic Reactions. Proc. Natl. Acad. Sci. 1971, 68, 658.
142. T.C. Bruice. Views on Approximation, Orbital Steering and Enzymatic and Model
Reactions. Cold Spring Harbor Symposia on Quantitative Biology 1971, 36, 21.
152. T.C. Bruice. Is "Orbital Steering" A New Concept? Nature 1972, 237, 335.
Organomercurials, hydrolysis of
1. T.C. Bruice. An Improved Synthesis of 2,4- Diacetoxymercurianiline. J. Am. Chem.
Soc. 1950, 72, 1398.
336. E. Gopinath and T.C. Bruice. Assistance of Protodemercuration by Bis-Thiol
Ligation and Nucleophilic Catalysis. A Model Study Which Relates to the
Organomercurial Lyase Reaction. J. Am. Chem. Soc. 1987, 109, 7903.
357. E. Gopinath; T.W. Kaaret; and T.C. Bruice. Mechanism of mercury(II) reductase
and the influence of ligation on the reduction of mercury(II) by a water soluble 1,5dihydroflavin. Proc. Natl. Acad. Sci. (USA) 1989, 86, 3041.
Porphyrins
255. T.C. Bruice; P.G. Furter; and S.S. Ball. Reaction of Primary Amines with the
Dichlorocarbene Complex of Iron(II) Tetraphenylporphyrin [Fe(II)TPP(CCl2)]. J.
Am. Chem. Soc. 1981, 103, 4578.
256. P. Shannon and T.C. Bruice. A Novel P-450 Model System for the N-Dealkylation
Reaction. J. Am. Chem. Soc. 1981, 103, 4580.
269. M.W. Nee and T.C. Bruice. Use of the N-Oxide of of p-Cyano-N,N- dimethylaniline
as an "Oxygen" Donor in a Cytochrome P-450 Model System. J. Am. Chem. Soc.
1982, 104, 6123.
283. J.R. Lindsay Smith; M.W. Nee; J.B. Noar and T.C. Bruice, Oxidation of NNitrosodibenzylamine and Related Compounds by Metallo-porphyrin-catalyzed
Model Systems for the Cytochrome P-450 Dependent Mono-oxygenases. J. Chem.
Soc. Perkin Trans II 1984, 2, 255-60.
286. D.C. Heimbrok; R.I. Murray; K.D. Egeberg; S.G. Sligar; M.W. Nee and T.C.
Bruice. Demethylation of N,N-Dimethylaniline and p- Cyano-N,N-dimethylaniline
and Their N-Oxides by Cytochromes P450LM2 and P450CAM. J. Am. Chem. Soc.
1984, 106, 1514.
289. M.F. Powell; E.F. Pai and T.C. Bruice. Study of (Tetraphenylporphinate)manganese(III)-Catalyzed Epoxidation and Demethylation Using pCyano-N,N-Dimethylaniline N-Oxide as Oxygen Donor in a Homogeneous System.
Kinetics, Radiochemical Ligation Studies, and Reaction Mechanism for a Model of
Cytochrome P-450. J. Am. Chem. Soc. 1984, 106, 3277.
298. L.-C. Yuan and T. C. Bruice. Mechanism of "Oxygen Atom" Transfer to
(Tetraphenylporphinato)chromic Chloride. J. Am. Chem. Soc. 1985, 107, 512.
35
299. W.A. Lee and T.C. Bruice. Homolytic and Heterolytic Oxygen-Oxygen Bond
Scissions Accompanying Oxygen Transfer to Iron(III) Porphyrins by Percarboxylic
Acids and Hydroperoxides. A Mechanistic Criterion for Peroxidase and Cytochrome
P-450. J. Am. Chem Soc. 1985, 107, 513.
302. L.-C. Yuan and T.C. Bruice. Oxygen Donation to Manganese(III)
Tetraphenylporphyrin Chloride. Low Reactivity of Hydroperoxides as Oxygen
Donors to Manganese(III) Porphyrins. Inorg. Chem. 1985, 24, 986.
304. W.A. Lee; T.S. Calderwood; and T.C. Bruice. Stabilization of higher valent states of
iron porphyrin by hydroxide and methoxide ligands: Electrochemical generation of
iron(IV)-oxo porphyrins. Proc. Natl. Acad. Sci. (USA) 1985, 82, 4301.
306. L.-C. Yuan and T.C. Bruice. Use of an Oxaziridine as an Oxene Transfer Agent to
Manganese(III) Tetraphenylporphyrin Chloride. J. Chem. Soc., Chem. Comm. 1985,
13, 868-9.
307. C.M. Dicken; F.-L. Lu; M.W. Nee and T.C. Bruice. Kinetics and Mechanisms of
Oxygen Transfer in the Reaction of p-Cyano-N,N-Dimethylaniline N-Oxide with
Metalloporphyrin Salts. 2. Amine Oxidation and Oxygen Transfer to Hydrocarbon
Substrates Accompanying the Reaction of p-Cyano-N,N-dimethylaniline N-Oxide
with meso-(Tetraphenylporphinato) iron(III) Chloride. J. Am. Chem. Soc. 1985, 107,
5776.
310. T.S. Calderwood; William A. Lee and T.C. Bruice. Spectral and Electrochemical
Identification of Iron(IV)-Oxo Porphyrin and Iron(IV)-Oxo Porphyrin [pi]-Cation
Species. J. Am. Chem. Soc. 1985, 107, 8272.
311. L.-C. Yuan; T.S. Calderwood and T.C. Bruice. Photocatalysis of Oxygen Transfer
from p-Cyano-N,N-dimethylaniline N-Oxide to meso(Tetraphenylporphinato)chromium(III) Chloride. J. Am. Chem. Soc. 1985, 107, 8273.
312. W.A. Lee and T.C. Bruice. Transfer of Oxygen from Percarboxylic Acids and Alkyl
Hydroperoxides to (meso- Tetraphenylporphinato)cobalt(III) Chloride. Inorg. Chem.
1986, 25, 131.
314. C.M. Dicken; T.C. Woon and T.C. Bruice. Kinetics and Mechanisms of Oxygen
Transfer in the Reaction of p-Cyano- N,N-dimethylaniline N-Oxide with
Metalloporphyrin Salts. 3. Catalysis by [meso-Tetrakis(2,6dichlorophenyl)porphinato] iron(III) Chloride. J. Am. Chem. Soc. 1986, 108, 1636.
315. L.-C. Yuan and T.C. Bruice. Influence of Nitrogen Base Ligation and Hydrogen
Bonding on the Rate Constants for Oxygen Transfer from Percarboxylic Acids and
Alkyl Hydroperoxides to (meso-Tetraphenylporphinato) manganese(III) Chloride. J.
Am. Chem. Soc. 1986, 108, 1643.
316. T.C. Bruice; M.F. Zipplies and W.A. Lee. The pH dependence of the mechanism of
reaction of hydrogen peroxide with a non- aggregating, non-µ-oxo dimer-forming
iron(III) porphyrin in water. Proc. Natl. Acad. Sci. (USA) 1986, 83, 4646.
319. T.C. Bruice. Chemical Studies Pertaining to the Chemistry of Cytochrome P-450
and the Peroxidases. New York Acad. Sci. (USA) 1986, 471, 83.
36
320. M.F. Zipplies; W.A. Lee; and T.C. Bruice. Influence of Hydrogen Ion Activity and
General Acid-Base Catalysis on the Rate of Decomposition of Hydrogen Peroxide by
a Novel Non- aggregating Water-Soluble Iron(III) Tetraphenylporphyrin Derivative.
J. Am. Chem. Soc. 1986, 108, 4433.
321. P.N. Balasubramanian and T.C. Bruice. Oxygen Transfer Involving Non-Heme Iron.
The Reaction of (EDTA)FeIII with m-Chloroperbenzoic Acid. J. Am. Chem. Soc.
1986, 108, 5495.
322. E.S. Schmidt; T.S. Calderwood and T.C. Bruice. Synthesis and Characterization of a
meso-Tetrakis(4-ferrocenylphenyl) porphyrin and Examination of its Ability to
Undergo Intramolecular Photocatalyzed Electron Transfer. Inorg. Chem. 1986, 25,
3718,
323. E.S. Schmidt; T.C. Bruice; R.S. Brown and C.L. Wilkins. Oxidation of
(Tetraphenylporphyrin)chromium(III) Chloride by Styrene Ozonide. Inorg. Chem.
1986, 25, 4799.
324. T.S. Calderwood and T.C. Bruice. Electrochemical Generation of Iron(IV)-Oxo
Porphyrins and Iron(IV)-Oxo Porphyrin [pi] Cation Radicals. Inorg. Chem. 1986, 25,
3722.
325. T.C. Woon; A. Shirazi; and T.C. Bruice. 1H NMR Investigation of Iron(III)
5,10,15,20-Tetrakis(2,6-disubstituted phenyl) porphyrins. Isolation and
Characterization of Hydroxy-Ligated (5,10,15,20-Tetrakis(2,6difluorophenyl)porphinato)iron(III). Inorg. Chem. 1986, 25, 3845.
326. T.C. Woon; C.M. Dicken; and T.C. Bruice. The Kinetics and Mechanisms of
Oxygen Transfer in the Reaction of p-Cyano-N,N-Dimethylaniline-N-Oxide with
Metalloporphyrin Salts. IV. Catalysis by meso-Tetrakis-(2,6dimethylphenyl)porphinato Iron(III) Chloride. J. Am. Chem. Soc. 1986, 108, 7990.
327. C.M. Dicken; F.-L. Lu and T.C. Bruice. Metalloporphyrin- Mediated Radical
Cycloadditions of p-Cyano-N,N-Dimethylaniline. Tetrahedron Letts. 1986, 27, 5967.
328. P.N. Balasubramanian; A. Sinha and T.C. Bruice. A Kinetic Study of the
Epoxidation of 2,3-Dimethyl-2-butene by tert-Butyl Hydroperoxide Catalyzed by
Imidazole Ligated (meso-Tetraphenylporphinato)manganese(III). J. Am. Chem. Soc.
1987, 109, 1456.
330. P.N. Balasubramanian and T.C. Bruice. Oxygen transfer involving nonheme iron:
The influence of leaving group ability on the rate constant for oxygen transfer to
(EDTA)Fe(III) from percarboxylic acids and hydroperoxides. Proc. Natl. Acad. Sci.
(USA) 1987, 84, 1734.
331. W.-H. Wong; D. Ostovic and T.C. Bruice. Kinetics and Mechanisms of Oxygen
Transfer in the Reaction of p-Cyano-N,N-dimethylaniline N-Oxide with
Metalloporphyrin Salts. 5. The Influence of Imidazole Ligation of (mesoTetrakis(2,6- dimethylphenyl)porphinato)manganese(III) Chloride on the Rates of
Oxygen Transfer from N-Oxide to Metalloporphyrin Salt and the Efficiency of
Oxidations by the Intermediate Higher Valent Manganese-Oxo Species. J. Am. Chem
Soc. 1987, 109, 3428.
37
332. T.C. Bruice; C.M. Dicken; P.N. Balasubramanian; T.C. Woon and F.-L Lu. Kinetics
and Mechanism of Oxygen Transfer in the Reaction of p-Cyano-N,N-dimethylaniline
N-Oxide with Metalloporphyrin Salts. 6. Oxygen Atom Transfer to and from the
Iron(III) C2cap Porphyrin of Baldwin. J. Am. Chem. Soc. 1987, 109, 3436.
333. D. Ostovic; C.B. Knobler and T.C. Bruice. Kinetics and Mechanism of Oxygen
Transfer in the Reaction of p-Cyano-N,N-dimethylaniline N-oxide with
Metalloporphyrin Salts. 7. Oxygen Atom Transfer to and from (meso-Tetrakis
(pentafluorophenyl)porphinato)iron(III) Chloride. J. Am. Chem. Soc. 1987, 109,
3444.
335. P.N. Balasubramanian; E.S. Schmidt and T.C. Bruice. Catalase Modeling. 2.
Dynamics of a Water-Soluble and Non µ-Oxo Dimer Forming Manganese(III)
Porphyrin with Hydrogen Peroxide. J. Am. Chem. Soc. 1987, 109, 7865.
337. T.C. Bruice. Porphyrin Iron(III) Mixed Function Oxidases: An Evolutionary
Endpoint for Transition Metal(III) Reactions with Oxygen Donors. Cold Spring
Harbor Symposia Quant. Biol. 1987, 52, 567.
338. C.M. Dicken; P.N. Balasubramanian and T.C. Bruice. Oxygen Transfer from pCyano-N,N-dimethylaniline N-oxide to the µ-Oxo Dimer of (mesoTetraphenylporphinato)iron(III). Inorg. Chem. 1988, 27, 197.
339. A. Castellino and T.C. Bruice. Intermediates in the Epoxidation of Alkenes by
Cytochrome P-450 Models. 1. cis-Stilbene as a Mechanistic Probe. J. Am. Chem. Soc.
1988, 110, 158.
340. R.W. Lee; P.C. Nakagaki; P.N. Balasubramanian; and T.C. Bruice. Observations
and comments on the mechanism of epoxidation of alkenes by manganese(III)
porphyrins with hypochlorite. Proc. Natl. Acad. Sci. (USA) 1988, 85, 641.
341. A.J. Castellino and T.C. Bruice. Radical Intermediates in the Epoxidation of
Alkenes by Cytochrome P-450 Model Systems. The Design of a Hypersensitive
Radical Probe. J. Am. Chem. Soc. 1988, 110, 1313.
342. W.A. Lee; L.-C. Yuan and T.C. Bruice. Oxygen Transfer from Percarboxylic Acids
and Alkyl Hydroperoxides to (meso- Tetraphenylporphinato)iron(III) and
chromium(III). J. Am. Chem. Soc. 1988, 110, 4277.
344. P.C. Nakagaki; T.S. Calderwood; and T.C. Bruice. Relevance of the reaction of a
manganese(III) chelate with hydroxyl ion to photosynthesis: Reaction of hydroxide
ion with 5,10,15,20- tetrakis(2,4,6-trimethylphenyl)porphinato-manganese(III) in
ligating and non-ligating solvents. Proc. Natl. Acad. Sci. (USA) 1988, 85, 5424.
345. D. Ostovic and T.C. Bruice. Transition-State Geometry in Epoxidation by Iron-Oxo
Porphyrin at the Compound I Oxidation Level. Epoxidation of Alkenes Catalyzed by
a Sterically Hindered (meso-Tetrakis(2,6-dibromophenyl) porphinato)iron(III)
Chloride. J. Am. Chem. Soc. 1988, 110, 6906.
346. Bruice, Thomas C.. Formation and reactions of hypervalent metallo-oxo porphyrins.
Chemical studies related to peroxidase, catalase, and P-450 enzymes. Proceedings of
the Robert A. Welch Foundation Conference on Chemical Research 1987, 31, 36-70.
38
347. J.R. Lindsay Smith; P.N. Balasubramanian; and T.C. Bruice. The Dynamics of
Reaction of a Water-Soluble and Non µ-oxo Dimer Forming Iron(III) Porphyrin with
tert-Butyl Hydroperoxide in Aqueous Solution. 1. Studies Using a Trap for
Immediate Oxidation Products. J. Am. Chem. Soc. 1988, 110, 7411.
348. A.J. Castellino and T.C. Bruice. Intermediates in the Epoxidation of Alkenes by
Cytochrome P-450 Models. 2. Use of the trans- 2,trans-3-Diphenylcyclopropyl
Substitutent in a Search for Radical Intermediates. J. Am. Chem. Soc. 1988, 110,
7512.
349. T.C. Bruice; P.N. Balasubramanian; R.W. Lee; and J.R. Lindsay Smith. The
Mechanism of Hydroperoxide O-O Bond Scission on Reaction of Hydroperoxides
with Iron(III) Porphyrins. J. Am. Chem. Soc. 1988, 110, 7890.
350. T.C. Bruice. The Mechanisms of Oxygen Transfer From Acyl and Alkyl
Hydroperoxides to Metal(III) Porphyrins and the Epoxidation of Alkenes by the
Resultant Hypervalent Metal-Oxo Porphyrin Products. Aldrichimica Acta 1988, 21,
87.
351. Bruice, Thomas C.. Chemical studies and the mechanism of flavin mixed function
oxidase enzymes. Molecular Structure and Energetics 1988, 9(Mech. Princ. Enzyme
Act.), 315-52.
352. Bruice, Thomas C.. Chemical studies related to iron protoporphyrin-IX mixedfunction oxidases. Molecular Structure and Energetics 1988, 9(Mech. Princ. Enzyme
Act.), 227-77.
353. J.M. Garrison and T. C. Bruice. Intermediates in the Epoxidation of Alkenes by
Cytochrome P-450 Models. 3. Mechanism of Oxygen Transfer from Substituted
Oxochromium(V) Porphyrins to Olefinic Substrates. J. Am. Chem. Soc. 1989, 111,
191.
355. R.W. Lee; P.C. Nakagaki; and T.C. Bruice. The Kinetics for the Reaction of
Hypochlorite with a Manganese(III) Porphyrin and Subsequent Epoxidation of
Alkenes in a Homogeneous Solution. J. Am. Chem. Soc. 1989, 111, 1368.
356. P.N. Balasubramanian; J.R. Lindsay Smith; M.J. Davies; T.W. Kaaret and T.C.
Bruice. Dynamics of Reaction of (meso-Tetrakis(2,6-dimethyl-3sulfonatophenyl)porphinato)-iron(III) Hydrate with tert-Butyl Hydroperoxide in
Aqueous Solution. 2 Establishment of a Mechanism That Involves Homolytic O-O
Bond Breaking and One-Electron Oxidation of the Iron(III) Porphyrin. J. Am. Chem.
Soc. 1989, 111, 1477.
358. J.M. Garrison; D. Ostovic; and T.C. Bruice. Is a Linear Relationship between the
Free-Energies of Activation and One- Electron Oxidation Potential Evidence for OneElectron Transfer Being Rate Determining? Intermediates in the Epoxidation of
Alkenes by Cytochrome P-450 Models. 4. Epoxidation of a Series of Alkenes by
Oxo(meso-tetrakis-(2,6-dibromophenyl)- porphinato)-chromium (V). J. Am. Chem.
Soc. 1989, 111, 4960.
359. D. Ostovic and T.C. Bruice. Intermediates in the Epoxidation of Alkenes by
Cytochrome P-450 Models. 5. Epoxidation of Alkenes Catalyzed by Sterically
39
Hindered (meso-Tetrakis(2,6- dibromophenyl)porphinato)iron(III) Chloride. J. Am.
Chem. Soc. 1989, 111, 6511.
361. P.N. Balasubramanian; R.W. Lee and T.C. Bruice. Reaction of (meso-Tetrakis(2,6demethyl-3-sulfonatophenyl)porphinato- iron(III) Hydrate with Various Acyl and
Alkyl Hydroperoxides Aqueous Solution. J. Am. Chem. Soc. 1989, 111, 8714.
364. R.D. Arasasingham and T.C. Bruice. Reaction of Hydroxide Ion with
Manganese(III) Tetramesitylporphyrin and the Oxidation States of Manganese
Tetramesitylporphyrins. Inorg. Chem. 1990, 29, 1422.
365. J.M. Garrison; R.W. Lee and T.C. Bruice. Epoxidation of Alkenes by
Oxo(5,10,15,20-tetrakis(2,6-dimethyl-3- sulphonatophenyl)porphinato)chromium(V)
in Aqueous Solution. Inorg. Chem. 1990, 29, 2019.
367. R. Panicucci and T. C. Bruice. Dynamics of the Reaction of Hydrogen Peroxide
with a Water Soluble Non µ-Oxo Dimer Forming Iron(III) Tetraphenylporphyrin. 2.
The Reaction of Hydrogen Peroxide with 5,10,15,20-Tetrakis(2,6-dichloro-3sulfonatophenyl)-porphinatoiron(III) in Aqueous Solution. J. Am. Chem. Soc. 1990,
112, 6063.
368. K. Murata; R. Panicucci; E. Gopinath and T.C. Bruice. The Reaction of 5,10,15,20Tetrakis(2,6-dichloro-sulfonatophenyl) porphinato-iron(III) Hydrate with Alkyl and
Acyl Hydroperoxides. The Dynamics of Reaction of Water-Soluble and Non µ-Oxo
Dimer Forming Iron(III) Prophyrins in Aqueous Solution. 7. J. Am. Chem. Soc. 1990,
112, 6072.
369. C.-H. Lee; B. Garcia; and T.C. Bruice. First Synthesis of a Pendant-Capped
Porphyrin. A Biphenyl Pendant Capped Porphyrin Model of Catalase. J. Am. Chem.
Soc. 1990, 112, 6434.
371. G.-X. He and T.C. Bruice. Nature of the Epoxidizing Species Generated by Reaction
of Alkyl Hydroperoxides with Iron(III) Porphyrins. Oxidation of cis-Stilbene and (Z)1,2-Bis(trans- 2,trans-3-diphenylcyclopropyl)ethene by t-BuOOH in the presence of
[meso-Tetrakis(2,4,6-trimethylphenyl)porphinato]- [meso-Tetrakis(2,6dichlorophenyl)porphinato]-, and [meso- Tetrakis(2,6-dibromophenyl)porphinato]iron(III) Chloride. J. Am. Chem. Soc. 1991, 113, 2747.
372. B.C. Bookser and T.C. Bruice. Synthesis of Quadruply Two- and Three-Atom, AzaBridged, Cofacial Bis(5,10,15,20- Tetraphenylporphyrins). J. Am. Chem. Soc. 1991,
113, 4208.
374. R. Karaman and T. C. Bruice. Synthesis and Characterization of the First WaterSoluble Closely Interspaced Cofacial Porphyrin Dimer. J. Org. Chem. 1991, 56,
3470.
375. T.W. Kaaret; G. Zhang and T.C. Bruice. Electrochemistry and the Dependence of
Potentials on pH of Iron and Manganese Tetraphenylporphyrins in Aqueous Solution.
J. Am. Chem. Soc. 1991, 113, 4652.
376. E. Gopinath and T.C. Bruice. Dynamics of Reaction of [5,10,15,20-Tetrakis(2,6dimethyl-3-sulfonatophenyl)- porphinato]iron(III) Hydrate with t-BuOOH in
Aqueous Solution. 3. Comparison of Refined Kinetic Parameters and D2O Solvent
40
Isotope Effects to Those for [5,10,15,20- Tetrakis(2,6-dichloro-3-sulfonatophenyl)porphinato]iron(III) Hydrate and Iron(III) Hydrate. J. Am. Chem. Soc. 1991, 113,
4657.
377. G.-X. He; H.-Y. Mei and T.C. Bruice. Evaluation of the Selectivity of the
Epoxidation of cis- versus trans-Alkenes by Oxo[meso-tetrakis(2,6dibromophenyl)porphinato] chromium(V). Dynamics, Products and Van der Waals
Energies. J. Am. Chem. Soc. 1991, 113, 5644.
378. E. Gopinath and T.C. Bruice. Dynamics of Reaction of [meso- Tetrakis(2,6dimethyl-3-sulfonatophenyl)porphinato]-iron(III) Hydrate with Various Alkyl
Hydroperoxides in Aqueous Solution. 4. Comparison of Kinetic Parameters and D2O
Solvent Isotope Effects. J. Am. Chem. Soc. 1991, 113, 6090.
379. R.D. Arasasingham and T.C. Bruice. The Dynamics of the Reactions of Methyl
Diphenylhydroperoxyacetate with [meso- Tetrakis(2,6-dimethyl-3sulfonatophenyl)porphinato]- manganese(III) Hydrate and [meso-Tetrakis(2,6dichloro-3- sulfonatophenyl)porphinato]-manganese(III) Hydrate and Imidazole
Complexes. Comparison of the Reactions of Manganese(III) and Iron(III) Porphyrins.
J. Am. Chem. Soc. 1991, 113, 6095.
380. T.C. Bruice. Reactions of Hydroperoxides with Metallo-tetraphenylporphyrins in
Aqueous Solution. Acc. Chem. Res. 1991, 24, 243.
381. B. Garcia; C.-H. Lee; A. Blaskó and T.C. Bruice. Pendant-Capped Porphyrins. 1.
The Synthesis of a Biphenyl Pendant-Capped Iron(III) Porphyrin Model of Catalase.
J. Am. Chem. Soc. 1991, 113, 8118.
382. S. Jeon and T.C. Bruice. Electrochemical Potentials, and Associated pKa Values for
Various Oxidation States of a Water- Soluble, Non µ-Oxo Dimer Forming Chromium
Tetraphenylporphyrin in Aqueous Solution. Inorg. Chem. 1991, 30, 4311.
383. W.F.K. Schnatter; Ö. Almarsson and T.C. Bruice. The Synthesis of a Porphyrin with
a Hydrocarbon Encapsulated Face. Tetrahedron 1991, 47, 8687.
384. G.-X. He; R.D. Arasasingham; G. Zhang and T.C. Bruice. The Rate- Limiting Step
in the One-Electron Oxidation of an Alkene by Oxo[meso-tetrakis(2,6dibromophenyl)porphinato]- chromium(V) Is the Formation of a Charge-Transfer
Complex. J. Am. Chem. Soc. 1991, 113, 9828.
386. R. Karaman; Ö. Almarsson and T.C. Bruice. A Molecular Dynamics Approach to
the Study of Symmetrical and Unsymmetrical Quadruply Bridged, Closely
Interspaced Cofacial Tetraphenylporphyrin Dimers. J. Org. Chem. 1992, 57, 1555.
387. R.D. Arasasingham; S. Jeon and T.C. Bruice. The Dynamics of the Reactions of
meso-Tetrakis(2,6-dimethyl-3- sulfonatophenyl)porphinato-manganese(III) Hydrate
with Various Alkyl Hydroperoxides in Aqueous Solution. Product Studies and
Comparison of Kinetic Parameters. J. Am. Chem. Soc. 1992, 114, 2536.
389. A. Salehi; A. Shirazi and T.C. Bruice. Propensity Toward Formation of Higher
Aggregates in Anionic and Cationic Iron Tetraphenylporphyrin u-Oxo Dimers:
Evidence from 1H- and 13NMR Spectroscopy. Inorg. Chem. Acta. 1992, 194, 119.
41
390. R. Karaman; Ö. Almarsson; A. Blaskó and T.C. Bruice. The Design, Synthesis and
Characterization of a "Shopping Basket" Bis- Porphyrin. The First Examples of
Triply Bridged Closely Interspaced Cofacial Porphyrin Dimers. J. Org. Chem. 1992,
57, 2169.
391. R. Karaman; A. Blaskó; Ö. Almarsson; R. Arasasingham and T.C. Bruice.
Symmetrical and Unsymmetrical Quadruply Aza Bridged Closely Interspaced
Cofacial Bis-5,10,15,20- Tetraphenylporphyrins 2. Synthesis, Characterization,
Molecular Mechanics Calculations and Physical Properties. J. Am. Chem. Soc. 1992,
114, 4889.
392. R. Karaman; S. Jeon; Ö. Almarsson and T.C. Bruice. Symmetrical and
Unsymmetrical Quadruply Aza Bridged Closely Interspaced Cofacial Bis-5,10,15,20Tetraphenylporphyrins 3. Intraplanar Distance, 1H NMR Chemical Shifts and the
Catalysis of the Electrochemical Reduction of Oxygen. J. Am. Chem. Soc. 1992, 114,
4899.
394. R. Karaman and T.C. Bruice. Unusual Behavior of meso- Substituted 5,10,15,20Tetraphenylporphine Diacid Toward Oxygen Bronsted Bases. Inorg. Chem. 1992, 31,
2455.
395. D. Ostovic and T.C. Bruice. Mechanism of Alkene Epoxidation by the Higher
Valent Oxo-Metalloporphyrins. Acc. Chem. Res. 1992, 25, 314.
396. H.-Y. Zhang; A. Blaskó; J.-Q. Yu; and T.C. Bruice. Bicyclo[2.2.2] octane-capped
Porphyrins. I. Synthesis, Characterization and Solution Three-dimensional Structure.
J. Am. Chem. Soc. 1992, 114, 6621.
397. S. Jeon and T.C. Bruice. Redox Chemistry of Water-Soluble Iron, Manganese, and
Chromium Metalloporphyrins and Acid- Base Behavior of Their Axial Ligands in
Aqueous Solution: Influence of Electronic Effects. Inorg. Chem. 1992, 31, 4843.
399. M.J. Beck; E. Gopinath; and T.C. Bruice. Influence of Nitrogen Base Ligation on
the Rate of Reaction of [5,10,15,20- Tetrakis(2,6-dimethyl-3sulfonatophenyl)porphinato] Iron(III) Hydrate with t-BuOOH in Aqueous Solution. J.
Am. Chem. Soc. 1993, 58, 438.
402. S. Jeon; Ö. Almarsson; R. Karaman; A. Blaskó, and T.C. Bruice. Symmetrical and
Unsymmetrical Quadruply Aza Bridged Closely Interspaced Cofacial Bis-5,10,15,20
Tetraphenylporphyrins. 4. Structure and Conformational Effects on Electrochemistry
and the Catalysis of Electrochemical Reduction of Dioxygen by Bis-, Tris, and
Quadruply N,N-dimethylene Sulfonamide Bridged Dimeric Bis- Cobalt
Tetraphenylporphyrins. Inorganic Chemistry 1993, 32, 2562.
408. R. D. Arasasingham; G.-X. He; and T. C. Bruice. Mechanism of Manganese
Porphyrin-Catalyzed Oxidation of Alkenes. Role of Manganese(IV)-Oxo Species. J.
Am. Chem. Soc. 1993, 115, 7985.
411. A. Blaskó; B. Garcia; and T.C. Bruice. Pendant-Capped Porphyrins. II. Structural
Analysis and Dynamics of the Biphenyl Pendant- Capped Porphyrin Model of
Catalase and Its Fe(III) Complex by One and Two Dimensional 1H NMR
42
Spectroscopy and Distance Geometry/Molecular Modeling Refinement. J. Org.
Chem. 1993, 58, 5738.
412. Ö. Almarsson; A. Blaskó; and T.C. Bruice. Studies on a Hydrocarbon Capped Free
Base Tetraphenylporphyrin and its Conjugate Acids - First Observation of a
Monoprotonated Tetraphenylporphyrin {CapTPP(H3+)CF3CO2-}. Tetrahedron
1993, 49, 10239.
413. Arasasingham, Ramesh D.; Bruice, Thomas C.. Formation and alkene epoxidation
by higher-valent oxo-metalloporphyrins. Act. Dioxygen Homogeneous Catal. Oxid.,
[Proc. Int. Symp.], 5th 1993, 147-69.
416. Ostovic, Drazen; He, Gong-Xin; Bruice, Thomas C.. Mechanisms of reaction of
hypervalent oxochromium, iron, and manganese tetraphenylporphyrins with alkenes.
Metalloporphyrins Catal. Oxid. 1994, 29-68.
420. H-Y. Zhang; J-Q Yu and T. C. Bruice. Synthesis of a Spheroidal Bis- porphyrin. a
Ligand Designed to Accept Two Catalytic Metal Ions in an Isolated Environment.
Tetrahedron 1994, 59, 11339.
427. O. Almarsson; H. Adalsteinsson; T. C. Bruice. Synthesis and Characterization of An
Octacationic Iron(III) Tetraphenylporphyrin,Which is Soluble in Water and Non moxo Dimer Forming. J. Am. Chem. Soc. 1995, 117, 4524.
428. O. Almarsson; T. C. Bruice. A Homolytic Mechanism of O-O Bond Scission
Prevails in the Reactions of Alkyl Hydroperoxides With An Octacationic
Tetraphenylporphnato Iron(III) Complex in Aqueous Solution. J. Am. Chem. Soc.
1995, 117, 4533.
439. H-Y. Zhang and T. C. Bruice. The Kinetic Influence of Increasing Steric Hindrance
to Metallation By Zinc(II) which Accompanies the Inclusion of 5,10,15,20meso(Tetraphenyl)porphyrin into Capped and Quadruply Bridged Closely Spaced
Bis-porphyrin Structures. Inorganica Chimica Acta. 1996, 247, 195.
Pyridoxal and 3-hydroxypyridine-4-aldehyde
39. T.C. Bruice and R.M. Topping. The Imidazole-Catalyzed (Non- Metal Ion Mediated)
Transamination of Phenylglycine by Pyridoxal. A Reaction Occurring at Ambient
Temperatures by Way of Michaelis-Menten Kinetics. J. Am. Chem. Soc. 1962, 84,
2448.
43. T.C. Bruice and R.M. Topping. Catalytic Reactions Involving Azomethines. I. The
Imidazole Catalysis of the Transamination of Pyridoxal by α-Aminophenylacetic
Acid. J. Am. Chem. Soc. 1963, 85, 1480.
44. T.C. Bruice and R.M. Topping. Catalytic Reactions Involving Azomethines. II. The
pH Dependence of the Imidazole Catalysis of the Transamination of Pyridoxal by αAminophenylacetic Acid. J. Am. Chem. Soc. 1963, 85, 1488.
45. T.C. Bruice and R.M. Topping. Catalytic Reactions Involving Azomethines. III. The
Influence of Morpholine upon the Imidazole Catalysis of the Transamination of
Pyridoxal by α-Aminophenylacetic Acid. The Transamination of the Morpholine
Imine of Pyridoxal. J. Am. Chem. Soc. 1963, 85, 1493.
43
48. Bruice, Thomas C.; Topping, Richard M.. Imidazole-imidazolium ion concerted
general acid, general base catalysis of the transamination of pyridoxal by αaminophenylacetic acid. Chem. Biol. Aspects Pyridoxal Catalysis, Proc. Symp.
Intern. Union Biochem., Rome, 1962 1963, Volume Date 1962, 30, discussion 56,
29-55.
54. T.C. French and T.C. Bruice. Rates and Equilibrium Constants of Imine Formation
with Pyridine-4-Aldehyde and Various Amino Acids. Biochem. Biophys. Res. Comm.
1964, 15, 403.
58. T.C. French and T.C. Bruice. Catalytic Reactions Involving Azomethines. IV. Rates
and Equilibria of Imine Formation with Pyridine-4-aldehyde and Various Amino
Acids. Biochem. 1964, 3, 1589.
62. T.C. French; D.S. Auld and T.C. Bruice. Catalytic Reactions Involving Azomethines.
V. Rates and Equilibria of Imine Formation with 3-Hydroxy-pyridine-4-aldehyde and
Amino Acids. Biochem. 1965, 4, 77.
66. J.W. Thanassi; A.R. Butler and T.C. Bruice. Catalytic Reactions Involving
Azomethines. VI. The Mechanism of the Transamination of 3-Hydroxypridine-4aldehyde by Glutamic Acid. Biochem. 1965, 4, 1463.
77. D.S. Auld and T.C. Bruice. Catalytic Reactions Involving Azomethines. VII. Rates
and Equilibria of Aldimine Formation with 3-Hydroxypyridine-4-aldehyde and
Alanine. J. Am. Chem. Soc. 1967, 89, 2083.
78. D.S. Auld and T.C. Bruice. Catalytic Reactions Involving Azomethines. VIII. Water
and Alanine Catalysis of the Transamination of 3-Hydroxypyridine-4-aldehyde by
Alanine. J. Am. Chem. Soc. 1967, 89, 2090.
79. D.S. Auld and T.C. Bruice. Catalytic Reactions Involving Azomethines. IX. General
Base Catalysis of the Transamination of 3-Hydroxypridine-4-aldehyde by Alanine. J.
Am. Chem. Soc. 1967, 89, 2098.
96. J.R. Maley and T.C. Bruice. Catalytic Reactions Involving Azomethines. X.
Transamination of 1-Methyl-4- formylpyridinium Iodide. J. Am. Chem. Soc. 1968,
90, 2843.
109. T.C. Bruice and A. Lombardo. Catalytic Reactions Involving Azomethines. XI. The
Kinetics of Condensation of Histamine with 3-Hydroxypyridine-4-aldehyde. An
Intramolecular Mannich Reaction. J. Am. Chem. Soc. 1969, 91, 3009.
118. J.R. Maley and T.C. Bruice. Catalytic Reactions Involving Azomethines. XII.
Transamination of 1-Methyl-3-hydroxy-4- formylpyridinium Chloride. Arch.
Biochem. Biophys. 1970, 136, 187.
172. J.E. Dixon and T.C. Bruice. Comparison of the Rate Constants for General Base
Catalyzed Prototropy and Racemization of the Aldimine Species Formed from 3Hydroxypyridine-4- carboxaldehyde and Alanine. Biochem. 1973, 12, 4762.
44
Sulfenic Acids
2. N. Kharasch and T.C. Bruice. Derivatives of Sulfenic Acids. V. 1- Fluorenone Sulfur
Compounds. J. Am. Chem. Soc. 1951, 73, 3240.
6. N. Kharasch; W. King and T.C. Bruice. Derivatives of Su lfenic Acids. XVII. The
Hydrolysis of 2,4-Dinitrobenzenesulfenyl Chloride. J. Am. Chem. Soc. 1955, 77, 931.
12. T.C. Bruice and R.T. Markiw. The Synthesis of a Disulfenic Acid. Anthraquinone1,4-disulfenic Acid. J. Am. Chem. Soc. 1957, 79, 3150.
20. T.C. Bruice and A.B. Sayigh. The Structure of Anthraquinone-l- sulfenic Acid (Fries'
Acid) and Related Compounds. J. Am. Chem. Soc. 1959, 81, 3416.
Tetranitromethane, Nitration Mechanism
94. T.C. Bruice; M.J. Gregory and S.L. Walters. Reactions of Tetranitromethane. I.
Kinetics and Mechanism of Nitration of Phenols by Tetranitromethane. J. Am. Chem.
Soc. 1968, 90, 1612.
132. S.L. Walters and T.C. Bruice. Reactions of Tetranitromethane. II. The Kinetics and
Products for the Reactions of Tetranitromethane with Inorganic Ions and Alcohols. J.
Am. Chem. Soc. 1971, 93, 2269.
156. S. Walters Jewett and T.C. Bruice. Reactions of Tetranitromethane. Mechanism of
the Reaction of Tetranitromethane with Pseudo Acids. Biochem. 1972, 11, 3338.
Thiamine
75. T.C. Bruice and N.G. Kundu. Displacement Reactions on 2-Acetyl- 3,4dimethylthiazolium Iodide. J. Am. Chem. Soc. 1966, 88, 4097.
Thyroxine
3. T.C. Bruice; N. Kharasch and R.J. Winzler. The Synthesis of Some New Thyroxine
Analogs. J. Org. Chem. 1953, 18, 83.
4. T.C. Bruice. A New "Meta" Analog of Thyroxine. J. Org. Chem. 1954, 19, 333.
5. T.C. Bruice; R.J. Winzler and N. Kharasch. The Thyroxine-Like Activity of Some
New Thyroxine Analogues in Amphibia. J. Biol. Chem. 1954, 210, 1.
8. T.C. Bruice; N. Kharasch and R.J. Winzler. A Correlation of Thyroxine-Like Activity
and Chemical Structure. Arch. Biochem. Biophys. 1956, 62, 305.
Miscellaneous
7. T.C. Bruice. Absorption Spectra. I. The Application of the Rho- Sigma Treatment to
the Near Ultraviolet Absorption Spectra of Mono and Disubstituted Benzene. Bol.
Col. Quim. (Puerto Rico) 1955, 12, 14.
9. T.C. Bruice. The Preparation and Metal Complexing of 2-(2'-Pyridyl)-10hydroxybenzo[h]quinoline-4-carboanilide. J. Am. Chem. Soc. 1957, 79, 702.
45
15. T.C. Bruice and F.M. Richards. Reaction of Cyanide with Triketohydrindane Hydrate
(Ninhydrin). J. Org. Chem. 1958, 23,145.
16. T.C. Bruice. Oxidation of 3-Phenoxymesitol. J. Org. Chem. 1958, 23, 246.
30. T.H. Fife and T.C. Bruice The Temperature Dependence of the ΔpD Correction for
the Use of the Glass Electrode in D2O. J. Phys. Chem. 1961, 65, 1079.
31. J. Ogilvie; V.K. Miyamoto and T.C. Bruice. A Kinetic Study of the Reaction of a
"Meso-ionic" Compound (Dehydrodithizone) with Haloacetates. J. Am. Chem. Soc.
1961, 83, 2493.
49. T.C. Bruice and W.C. Bradbury. 3,3-Diphenylglutaric Acid. A Novel Carbanion
Condensation Reaction. J. Org. Chem. 1963, 28, 3403.
63. T.C. Bruice and D.W. Tanner. Neighboring Hydroxyl Group Assistance. VI. In
Amide Hydrolysis. J. Org. Chem. 1965, 30, 1668.
64. T.C. French; S.J. Benkovic and T.C. Bruice. Stopped-Flow Apparatus for a Zeiss
PMQ II Spectrophotometer. Rev. Sci. Instr. 1965, 36, 860.
76. D.W. Tanner and T.C. Bruice. Effect of Self-Association on Spectrophotometric
Determination of Association Constants. A Computational Analysis. J. Phys. Chem.
1966, 70, 3816.
86. T.C. Bruice; B. Holmquist and T.P. Stein. The Reaction of Ribonuclease-A with oNitrophenyl Hydrogen Oxalate. J. Am.Chem Soc. 1967, 89, 4221.
89. R.W. Huffman and T.C. Bruice. The Reaction of Indolenine Salts with Nucleophiles.
J. Am. Chem. Soc. 1967, 89, 6243.
92. D.W. Tanner and T.C. Bruice. Boric Acid Esters. I. A General Survey of Aromatic
Ligands and the Kinetics and Mechanism of the Formation and Hydrolysis of Boric
Acid Esters of Salicylamide, N-Phenylsalicylamide and Disalicylimide. J. Am. Chem.
Soc. 1967, 89, 6954.
101. J.A. Rupley and T.C. Bruice. Conversion of Skeletal Models to Space-filling. J.
Mol. Biol. 1968, 37, 521.
110. A.F. Hegarty and T.C. Bruice. Anionic Nucleophilic Attack Upon a Carboxyl
Anion. J. Am. Chem. Soc. 1969, 91, 4924.
111. J.K. Coward and T.C. Bruice. Mechanism of Hydrolysis of Primary and Secondary
Enamines. J. Am. Chem. Soc. 1969, 91, 5329.
119. T.C. Bruice and J.R. Maley. Equilibrium Titration and pH-Stat Cell for a Cary 15
Spectrophotometer. Anal. Biochem. 1970, 34, 275.
123. Bruice, Thomas C.. Proximity effects and enzyme catalysis. In Enzymes, 3rd Ed;
P.D. Boyer; Ed.; Academic Press: New York, 1970; 2, Ch. 4, 217-79.
133. G.J. Kasperek and T.C. Bruice. Observations on an Oscillating Reaction. The
Reaction of Potassium Bromate, Ceric Sulfate and a Dicarboxylic Acid. Inorg. Chem.
1971, 10, 382.
46
205. T.C. Bruice. Some Pertinent Aspects of Mechanism as Determined with Small
Molecules. Ann. Rev. Biochem. 1976, 45, 331.
217. A.R. Becker; D.J. Richardson and T.C. Bruice. Amine Catalysis and Spontaneous
and Specific Acid Catalyses of the Dienone-Phenol Rearrangement. J. Am. Chem.
Soc. 1977, 99, 5058.
249. S. Muto and T.C. Bruice. Differentiation Between Criegee Rearrangement and
Dioxetane Rearrangement Mechanisms for the Decomposition of α, β-Unsaturated
Hydroperoxides. J. Am. Chem. Soc. 1980, 102, 7379.
300. D.E. Edmondson and T.C. Bruice. N-Nitrosodialkylamines do not function as
substrates for liver monoamine oxidase. Proc. Natl. Acad. Sci. (USA) 1985, 82, 682.
301. T.C. Bruice. Activated Oxygen Species of Flavins and Metallo Porphyrins. In
Atualidades de Fisico-Quimica Organica; J. J. Eduardo Humeres A.; Ed.; Terceira
Conferencia de Fisico- Quimica Organica: Rio de Janeiro, 17 A 19 de Outubro, 1984;
21-46.
305. M.F. Zipplies; M.J. DeVos; and T.C. Bruice. The Formation of Thiiranes from
Olefins in the Course of the Deoxygenation of Tertiary Amine N-Oxides by Carbon
Disulfide. J. Org. Chem. 1985, 50, 3228.
318. J.B. Noar; U.V. Venkataram; T.C. Bruice; G. Bollag; R. Whittle; D. Sammons; R.
Henry and S.J. Benkovic. The Reaction of Nucleophilic Species with Quinonoid
6,6,7,7,- Tetramethyldihydropterin. Bioorg. Chem. 1986, 14, 17.
388. G.-X. He; O. Almarsson and T.C. Bruice. Stabilization of Carbinylcarbocation by
and Nucleophilic Attack upon Cyclopropyl and trans-2, trans-3-Diphenylcyclopropyl
Rings. Reduction of (trans-2, trans-3-Diphenylcyclopropyl)methanol and (trans-2,
trans-3-Diphenylcyclopropyl)-cyclopropylmethanol. Tetrahedron 1992, 48, 3275.
400. R. Karaman; G.-X. He; F. Chu; A. Blaskó; and T.C. Bruice. Opening of a
Cyclopropyl ring in Diphenylcyclopropyl Alkenes Promoted by Electron Transfer
from Potassium 4,4'-di-tert-Butylbiphenyl Radical Anion and X-ray Theoretical
Calculations of (Z)-1,2- bis(trans-2,trans-3-diphenylcyclopropyl)ethane. J. Org.
Chem. 1993, 58, 438.
470. R. A. Torres & T. C. Bruice. MolecularDynamics Study Displays Near In-line
Attack Conformations in the Hammerhead Ribozyme Self-cleavage Reaction. Proc.
Natl. Acad. Sci. (USA) 1998, 95, 11077.
Related documents