Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
STAB22 Statistics I
Lecture 16
1
Probability Tree
Describe events & probabilities at different stages
Conditional
Probabilities
Simple
Probabilities
Joint
Probabilities
B
P(BC|A)
BC
P(A ∩ BC) = P(A) × P(BC|A)
B
P(AC ∩ B) = P(AC) × P(B|AC)
BC
P(AC ∩ BC) = P(AC) × P(BC|AC)
A
P(A)
P(B|AC)
P(AC)
P(A ∩ B) = P(A) × P(B|A)
P(B|A)
AC
P(BC|AC)
2
Example (Monty Hall Problem)
Contestant shown 3 doors:
1 contains a car
other 2 contain goats
Contestant picks a door
Presenter must open a door
containing a goat,
Then offer contestant to
Switch doors, or
Stay with his original pick
( From TV show “Let’s Make a Deal” )
3
Example (Monty Hall Problem)
4
Example
Doctor prescribes screening test for Hepatitis B
(HB), since it affects 2% of population
What is prob. of having HB? P(HB) =
However, the test is not perfectly accurate!
If you have HB, test is positive (+) with P(+|HB) = 96%
If you don’t (HBC), test is negative (−) with P(−|HBC) = 98%
Actual
Test’s Accuracy table:
Prob Correct
HB
96%
HBC
98%
Build a probability tree for the test
5
Accuracy table:
Example
Simple
Probs
Actual
Condition
HB
HBC
Conditional
Probs
Actual
Prob Correct
HB
96%
HBC
98%
Test
Result
Joint Probs
+
−
+
−
Find prob. of testing positive: P(+) =
Find prob. of having HB given that you tested positive:
P(HB|+) =
6
Random Variables
Consider experiment of rolling 2 dice
How can you define event A?
1.
Describe the event
2.
3.
Event A
A = “Sum of two rolls is 3”
List outcomes in event
A = {(1,2),(1,2)}
Use a Random Variable
Most common way
to describe events!
1,1
1,2
1,3
1,4
1,5
1,6
2,1
2,2
2,3
2,4
2,5
2,6
3,1
3,2
3,3
3,4
3,5
3,6
4,1
4,2
4,3
4,4
4,5
4,6
5,1
5,2
5,3
5,4
5,5
5,6
6,1
6,2
6,3
6,4
6,5
6,6
Sample space (S)
7
Random Variables
Random variable X assigns a single number
to every outcome of an experiment
Eg. Consider flipping 2 fair coins
Random variable X = # of heads in 2 flips
Sample space (S)
H , H H ,T
T , H T , T
Values of random variable X
X H ,H 2
X H ,T 1
X T , H 1
X T ,T 0
8
Random Variables
In practice, Random Variables used to
describe events and their probability
Example: Rolling 2 fair dice
Random Variable X = sum of 2 rolls
List sample points of event
(X=5)
Find probability P(X=5)
1,1
1,2
1,3
1,4
1,5
1,6
2,1
2,2
2,3
2,4
2,5
2,6
3,1
3,2
3,3
3,4
3,5
3,6
4,1
4,2
4,3
4,4
4,5
4,6
5,1
5,2
5,3
5,4
5,5
5,6
6,1
6,2
6,3
6,4
6,5
6,6
Sample space
9
Types of Random Variables
Discrete
Can only take specific value, e.g. 0, 1, 2, ...
Typically the result of counting something
E.g. the number of children in a family
Continuous
Can take any value within an interval, e.g. all
values in [0,1]
Typically the result of some type of measurement
E.g. the temperature tomorrow
10
Probability Model
A table, graph, or formula that describes
The values of a random variable
The probability associated with each value
Probability of X taking some specific value x is
denoted by P(X=x) or just P(x)
E.g. X = sum of 2 dice rolls → P(X=5) = P(5)= 4/36
For any probability model:
0 P ( X x) 1 &
P ( X x) 1
all x
11
Example
Flip 2 fair coins, X = # of heads
Fill in the probability model
Value x
P(X=x)
X H ,H 2
X H ,T 1
X T , H 1
X T ,T 0
Sample space
Total
12
Example
Flip 3 fair coins, X = # of heads
Probability model →
Find prob. of getting 2 or more heads
Find prob. of getting at least 1 head
Value x
P(X=x)
0
1/8
1
3/8
2
3/8
3
1/8
Total
1
13
Expected Values
Probability model of (discrete) Random
Variable can be described numerically with:
Mean or Expected Value: E X xP x
all x
2
2
Variance: Var ( X ) x P x
all x
Standard Deviation: SD( ) Var ( X )
14
Example
Flip 2 fair coins, X = # of heads
Find mean, variance, and standard deviation of X
x
P(x)
0
1/4
1
2/4
2
1/4
Total
1
x × P(x)
(x − µ)²
(x − µ)² × P(x)
15