Download P F RACTICE

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MAT0022 DEVELOPMENTAL ALGEBRA
Name:___________________________
PRACTICE FINAL
Simplify each expression.
Solve each equation for the specified variable.
1.
9  3  42 • 2  10
14. Solve for p: 6p − 5q = 3
2.
24  2(3  9)2  32
15. Solve for y: 3x + 4y = 7
3.
Solve each inequality.
9  16   8
16. 4x + 6  3(3x  5)
4.
 17  16  24
17. 24 − 5x > −3x + 18
Evaluate the expressions for the given values of x
and y.
5.
5xy  x2; x = 4 and y = 2
6.
x2 − 2xy + 3y2; x = −2 and y = −1
Translate and solve.
18. Eight times the difference of some number and
5 is 32. Find the number.
19. Twelve subtracted from three times a number is
6 more than the number. Find the number.
Simplify each expression.
7.
3x – 2(5x + 5) + 4
20 The product of five and a number is the same as
the number increased by 44. Find the number.
8.
−2(5y + 3) – 9y – 13
Solve each problem.
9.
5x – 3 − 4(x – 5)
21. The perimeter of a rectangle is 28 feet. Find the
length of the rectangle if the length is 4 feet less
than two times the width.
Solve each equation.
10. 8  2(a  1)  9  a
11. 7(2 x  3)  6 x  1  7 x
12.
13.
1
3
y  2  y 1
3
4
3
x  2  1  3x
7
©Palm Beach State College
22. The number of women attending a conference
was three less than twice the number of men. If
51 people attended the workshop, how many
were women?
Simplify each expression.
23. (2r 3 s 2t )(5st 6 )
24. ( x3 y5 z 0 )( x4 y 2 )
Page 1 of 4
Developmental Algebra – Practice Final
Simplify each expression.
Factor each expression completely.
25. (a 7b2c0 )3
38. 5x2y3 − 15x3y + 10xy2
39. 16 x4 y 2  8x3 y 2  4 x2 y 2
26. ( x3 y 2 z )5
40. 25x2 − 16y2
2 6 3
27.
28.
x y z
x11 yz 4
41. 64a4 − 9b2
x6 y  5
x 2 y3
Factor each expression completely.
2
42. 9y − 3x + 3y − xy
Write the number in scientific notation.
29. 0.0000415
43. ax − a + bx − b
Write the number in standard form.
44. 4x2 − 11x + 6
30. 6.102 × 106
45. 5x2  13x  6
Add the polynomials.
Solve each equation.
31. (2x2 − 3x − 5) + (−8x2 + 5x − 2)
46. 3y2 − 4y − 15 = 0
Subtract the polynomials.
2
2
32. (x + 2x − 5) − (6x − 4x − 1)
47. 4a2  9a  5  0
2
Multiply the polynomials.
48. x + 7x − 60 = 0
33. 6x3 (3x2 − 5)
49. x2 − 2x − 48 = 0
34. −4x2y (5x3y2 − 2x2y + 3x)
Simplify each expression.
35. (3x − 2)(4x + 1)
50.
2 x2  7 x  4
x 2  16
51.
x2  4x  3
x2  1
36. (4x − 5y)2
37. (2x − 7)(2x + 7)
©Palm Beach State College
Page 2 of 4
Developmental Algebra – Practice Final
Simplify each expression. Assume the variable
represents a non-negative number.
Graph each linear equation.
59. y = −4x − 5
52.
60a6
53.
144 x7 y 4
6
5
4
3
2
1
-6 -5 -4 -3 -2 -1
Simplify each expression.


54.
3 2 3  21
55.
3  2 75  27
y
x
1 2 3 4 5 6
-1
-2
-3
-4
-5
-6
60. 2x + y = 4
6
5
4
3
2
1
56. 4 5  6 45  80
Find the x-intercept for the given line.
-6 -5 -4 -3 -2 -1
57. 2x + 5y = 15
Find the y-intercept for the given line.
-1
-2
-3
-4
-5
-6
y
x
1 2 3 4 5 6
58. x + 3y = 2
©Palm Beach State College
Page 3 of 4
Developmental Algebra – Practice Final
ANSWER KEY
1.
25
27.
53. 12 x3 y 2 x
y5
x9 z
x8
y8
2.
−57
3.
−1
4.
23
5.
24
29. 4.15 × 10−5
56. 10 5
6.
3
30. 6,102,000
 15 
57.  , 0 
 2 
28.
54. 6  3 7
55. 12 3
2
7.
7x  6
31. −6x + 2x − 7
8.
19y  19
32. −5x2 + 6x − 4
9.
x + 17
10. a  1
4
11. x  
3
36
12. y  
5
7
13. x  
6
5q  3
14. p 
6
7  3x
15. y 
4
5
33. 18x − 30x
5 3
4 2
2
37. 4x2 − 49
2
2
38. 5xy(xy − 3x + 2y)
40. (5x − 4y)(5x + 4y)
45. (x − 3)(5x + 2)
5
46. y   , y  3
3
43. (x − 1)(a + b)
5
47. a  , a  1
4
49. x = −6, x = 8
y7
24.
x
b6
25.
a 21
50.
2x  1
x4
51.
x3
x 1
y10
x15 z 5
©Palm Beach State College
60.
6
5
4
3
2
1
-6 -5 -4 -3 -2 -1-1
-2
-3
-4
-5
-6
y
x
1 2 3 4 5 6
48. x = −12, x = 5
10
23.  3 5
r st
26.
x
1 2 3 4 5 6
41. (8a2 + 3b)(8a2 − 3b)
18. 8(x  5) = 32; x = 9
22. 33 women
y
-6 -5 -4 -3 -2 -1-1
-2
-3
-4
-5
-6
39. 4x2y2(4x2 − 2x + 1)
44. (x − 2)(4x − 3)
21. 8 ft
6
5
4
3
2
1
36. 16x2 − 40xy + 25y2
17. x < 3
20. 5x = x + 44; x = 11
59.
35. 12x − 5x − 2
42. (3 + y)(3y − x)
19. 3x  12 = x + 6; x = 9
3
34. −20x y + 8x y − 12x y
16. x  21
5
 2
58.  0, 
 3
3
52. 2a3 15
Page 4 of 4
Developmental Algebra – Practice Final
Related documents