Download f x ( ) 3 . Find the numerical value of .

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
1. Given the function f ( x)  x 2  3 . Find the numerical value of f ( 4) .
(1) -13
(2) -1
(3) 19
(4) −5
(5) omit
2. If x  log4 828 , the value of x to the nearest hundredth is:
(1) 4.83
(2) 4.84
(3) 4.85
(4) 4.86
(5) omit
b
g
3. The expression 2 x  1 in expanded form equals:
(1) 4 x 2  1 (2) 4 x 2  1
2
(3) 4 x 2  2 x  1 (4) 4 x 2  4 x  1
(5) omit
4. The graph of the equation 2 x 2  5y 2  8 is a:
(1)circle
(2) hyperbola (3)ellipse
(4) parabola
(5) omit
5. If y varies inversely with x, and y = 6 when x = 2 , find the value of x when y = 3.
2
(1) 1
(2) 6
(3) 4
(4)
(5) omit
3
6. Solve the equation for x: 2 x  10  6
(1) −2
(2) 2
(3) 4
(4) 5
(5) omit
7. Find the solution set for the inequality x 2  4 x  12  0 .
(1) 2  x  6 (2) 6  x  2 (3) x  2 or x  6 (4) x  6 or x  2 (5) omit
8. Find the product: (2  3i )(5  2i ) .
(1) 10 − 6i
(2) 10 − 6i2 (3) 16 + 11i (4) 16 − 11i (5) omit
9. If f ( x )  x
(1) 9
2
3
b g
find f 27 .
(2) 3
(3)
1
9
10. What is the solution set for the equation
(1) {13}
(2) {7}
(3) {7,13}
(4)
1
3
x 9  4.
(4) {25}
(5) omit
(5) omit
11. The roots of the equation 3x 2  8x  k  0 will be imaginary when k =
(1) 3
(2) 4
(3) 5
(4) 6
(5) omit
2i
12. Simplify and express in a + bi form:
.
5i
1 5
1 5
1
5
1 5
(1)
(2)
 i
 i (3)
 i (4)
 i (5) omit
12 12
13 13
12 12
13 13
13. If Z1 = 8 + 3i and Z2 = 6 − 9i, in which quadrant does Z1 + Z2 lie?
(1) I
(2) II
(3) III
(4) IV
(5) omit
14. Reduce the algebraic fraction to lowest terms:
x  10
x 5
7 x  10
(3)
(4)
(5) omit
x2
x2
4
x
15. The expression log 2 is equivalent to:
y
(1) log x  log y (2) 2(log x  log y) (3) log x  2 log y (4) log x  2 log y (5) omit
(1)
x 5
x2
x 2  7 x  10
.
x2  4
(2)
16. If f ( x)  2 x  1and g( x)  4 x  12 find f ( g(3)) .
(1) 3
(2) 1
(3) 0
(4) 16
1 1

17. Simplify the complex fraction: 5 x
4
3x
x 5
3x  15
3x  15
3x  3
(1)
(2)
(3)
(4)
20
20
4
4
18. If log x 64  3 , find the value of x.
(1) 3
(2) 4
(3) 2
19. Find the domain of f ( x ) 
(1) x  3
(2) x  5
x3
.
x 5
(3) x  3,5
(5) omit
(5) omit
(4) 8
(5) omit
(4) x  5
(5) omit
20. Solve for all values of x given the equation: 3x  2  11 .
RS
T
(1) 3,
13
3
UV
W
(2) {3}
(3)
RS 13UV
T3W
RS
T
(4) 3,
13
3
UV
W
(5) omit
21. Rationalize the denominator and express the answer in simplest terms:
(1) 4 2
(2)
8 2
2
(3)
16
2
(4) 4
(5) omit
8
.
2
22. Solve the following absolute value inequality and graph the solution set on the real
number line: x  4  9 .
[4]
23. For the equation 2 x 2  7 x  4  0 , find a) the sum of the roots and b) the product of the
roots.
[4]
24. Write in simplest form: 7 8  3 50 .
[4]
25. Factor the following expression completely: 3x 2  27 .
[4]
26. Solve the following equation and express the roots in simplest a + bi form.
[10]
x 2  6x  13  0
27. The number of home runs hit in the major leagues has increased steadily over the past six
years while the number of stolen bases has decreased. The table below contains the data
for the past six years for one team.
Home
Runs
Stolen
Bases
78
82
88
85
93
102
91
78
60
55
51
52
a. Graph the scatter plot of the given information.
b. Find the linear equation of best fit for the given data. Round decimals to two
places.
c. Find the correlation coefficient “r” correct to 4 decimal places.
d. Use the equation found in part b to estimate the number of Stolen Bases for this
team if it hits 120 Home Runs.
Related documents