Download

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034
B.Sc. DEGREE EXAMINATION – MATHEMATICS
SECOND SEMESTER – APRIL 2011
MT 2501/MT 2500 - ALGEBRA, ANAL.GEO & CALCULUS - II
Date : 08-04-2011
Time : 9:00 - 12:00
Dept. No.
Max. : 100 Marks
PART – A
Answer ALL questions:
 tan
Evaluate  x e
1
1. Evaluate
2.
4
x
(10 x 2 = 20)
x dx .
dx .
dy
1
 y cos x  sin 2 x .
dx
2
2
4. Solve: D  5D  6 y  e x .
1 1 1
5. Prove that the series 1     .......... is convergent.
1! 2 ! 3 !
3. Solve:


n3  1
.

n
n 0 2  1

6. Test for convergency the series
7. Find the general term in the expansion of 1  x  3 .
2
 1 1  n  3n 2  .
1  2 x  3x 2
8. Prove that the coefficient of x in the expansion of
is
x
n!
e
9. Find the equation of the sphere which has its centre at the point 6,  1, 2 and touches the
plane 2 x  y  2 z  2  0 .
10. Find the distance between the parallel planes 2 x  2 y  z  3  0 and 4 x  4 y  2 z  5  0
n
n
PART – B
Answer any FIVE questions:

11. Prove that
(5 x 8 = 40)

4
 log 1  tan  d  8 log 2 .
0
12. If I n   sin xdx ( n being a positive integer), prove that nI n   sin n 1 x cos x  n  1I n  2 .
n

Also evaluate

2

2
6
 sin xdx and
 sin
0
0

7
xdx .
13. Solve: D 2  1 y  x cos x .
14. Solve
d2y
 y  sec x.
dx 2
15. Test for convergency and divergency the series 1 
16. Show that the sum of the series 1 
2 x 32 x 2 4 3 x 3 5 4 x 4



 ..........
2!
3!
4!
5!
1  3 1  3  3 2 1  3  3 2  33
1


 .........  ee 2  1 .
2!
3!
4!
2
17. Show that if x  0 , log x 
x 1 1 x2 1 1 x3 1
 .
 .
 ..........
x  1 2 x  12 3 x  13
18. Find the equation of the plane passing through the points
2, 5,  3,  2,  3, 5 and 5, 3,  3 .
PART – C
Answer any TWO questions:
19. a) Evaluate

(2 x 20 = 40)
3x  2
(10 marks)
dx
4x 2  4x  5
b) Find the area and the perimeter of the cardiod r  a1 cos  .
20. a) Solve: x 2
(10 marks)
d2y
dy
1
.
 3x  y 
2
dx
dx
1  x 2
b) Discuss the convergence of the series
positive values of x .
21.a) Show that the error in taking
(10 marks)
1
1
1
1



 .......... for
2
3
1  x 1  2x
1  3x
1  4x 4
(10 marks)
1 x 2  x

as an approximation to 1  x is
2 x
4
x4
when x is small.
27

1
1
b) show that 
   log 2.
2
n 1 2n  1 2n 2n  1
approximately equal to
(10 marks)
(10 marks)
22. a) A sphere of constant radius k passes through the origin and meets the axes in A, B, C.
Prove that the centroid of the triangle ABC lies on the sphere 9 x 2  y 2  z 2  4k 2 .
(10 marks)
b) Find the shortest distance between the lines
x 3 y 8 z 3 x 3 y  7 z 6


;


.
3
1
1
3
2
4
Also find the equation of the line of shortest distance.
(10 marks)

$$$$$$$

Related documents