Download 1 

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
M098
Carson Elementary and Intermediate Algebra 3e
Section 5.4
Objectives
1.
2.
Multiply monomials
Simplify a monomial raised to a power.
Vocabulary
Prior Knowledge
If a is a real number except 0 and n is a natural number, then a  n 
1
If a is a real number except 0 and n is a natural number, then
a
n
1
an
.
 an .
Example 1:
a 2b 4
c 3

b 4c 3
a2
New Concepts
If a is a real number and m and n are integers, then am  an  am n .
Example 2:
a.
9 2  95  97
f.
52  34
(Can’t use the product rule. Evaluate.)
b.
34  36  310
g.
2x3  5x3  7x3 (Adding like terms)
h.
 2x3  5x3   10x 6



i.
 1 2  5
3  2 5 
  k m  km n   k  =
4
6


 3

b.
c.  42   46   48  4 8
(A negative number raised to an even
power is positive.)
 34   35   39  39
d.
(A negative number raised to an odd
power is negative.)
e.
V. Zabrocki 2011
5 8 4
k m n
36
5x 3  7x 2  35x 5
page 1
M098
Carson Elementary and Intermediate Algebra 3e
If a is a real number and m and n are integers, then  am 


n
Section 5.4
 amn .
Example 3:
a.
x 2 5  x 2  x 2  x 2  x 2  x 2  x10
c.
4a3  4a4a4a  43 a3  64a3
 m 4 


b.
b
3
 m12
If a and b are real numbers and n is an integer, then abn  anbn .
Example 4:
a.
 3x 2 y 3 


2
 3 2 x 2 2 y 3  2  9 x 4 y 6
b.
2 x 2 y 3 


5
 2x10 y15
e.
4
3
 2x 2 y   2xy 2   128x11y10

 

b.
f.
3
5
 3x 4 y 2 z   yz 4   27x12y11z 23

 

2
  x 2 y    12 x 22 y12  1x 4 y 2  x 4 y 2


(A negative number to an even power is positive.)
c.
d.
V. Zabrocki 2011
5
  x 3 y 2   x15 y10


g.
 x 5y 2 3  x 2y 3 2  x19y12
page 2
Related documents