Download Name DUE: Wednesday, 10/1/08

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Name
Q1 Test 1 Review
Do all of the BACK in NB
DUE: Wednesday, 10/1/08
TEST: Thursday, 10/2/08
Sections 1 and 2 can be done on sheet.
Sections 3,4, and 5 MUST be done in NB
Section 1: Sets of Numbers
1) Which number is a rational number but not an integer?
a) – 6
b) 0
c) ⅝
d) none
2) Which number is an integer but not a natural number?
a) π
b) -¾
c) 0
d) none
3) Which number is an integer, but not rational?
a) π
b) 4
c) -.25
d) none
4) Which number is whole, but not natural?
a) 0
b) 4
c) .75
d) none
5) Which number is natural, but not whole?
a) ¼
b) 4
c) 0
d) none
6) Give an example of a number that is rational, but not an integer.
7) Give an example of a number that is an integer, but not a whole number.
8) Give an example of a number that is a whole number, but not a natural number.
9) Give an example of a number that is a whole number, but not an integer.
10) Give an example of a number that is rational, but not a whole number.
Section 2: Properties
A. Complete the Matching Column (put the corresponding letter next to the number
1)
6-9=6-9
a) Reflexive
2)
4(5 + 2) = 4(5) + 4(2)
b) Additive Identity
3)
17 · 8 = 8 · 17
c) Multiplicative identity
4)
6 · (2 · 12) = (6 · 2) · 12
d) Associative Property of Mult.
5)
32 + 0 = 32
e) Transitive
6)
11 + (3 + 18) = (11 +3) + 18
f) Associative Property of Add.
7)
If 40 + 4 = 44 and 44 = 4 · 11, then 40 + 4 = 4 · 11
g) Symmetric
8)
22 · 0 = 0
h) Commutative Property of Mult.
9) If 30 = 5 · 6, then 5 · 6 = 30
i) Multiplicative property of zero
10) 26 · 1 = 26
j) Distributive
Name
Q1 Test 1 Review
DUE: Wednesday, 10/1/08
TEST: Thursday, 10/2/08
Do all of the BACK in NB
Section 3: Order of Operations:
1) 256 – 13 ÷ ⅓ + 11=
5) Substitute and Evaluate:
3y3 - 2y2 ÷ 10 + 379 =
y = -5
2) 24 ÷ (6 – 3 · 4) · 13 =
2
6) Substitute and Evaluate: b = 7 and c = -2
bc2 ÷ (42 – 4b) – 11c =
2
3) (-7) - 12 · ¼ + (6)(-2) =
7) Evaluate when a = -8, b = -3, and c = 9
4b3 + ac – ab - 1
c2 – 16b ÷ a + 8a + 2b
Section 4: Simplifying:
1) (6x - 5) + (7x + 7)
2) (6x2 – 5x + 7) + (9x2 – 4x + 8)
3) 4(3x – 5) + 6(4x + 3)
4) 5(6x – 9) – 7(4x – 8)
5)8(3x2 – 4x + 9) + 6(4x2 + 5x – 12)
6) 9(4x2 + 3x – 8) – 7(6x2 – 4x + 10)
7) 6(2x – 5) + 3(3x + 2)
8) 4(8x + 5) – 10(5x + 2)
9) 6(4x2 – x + 7) + 8(3x2 – 2x – 6)
10) 10(3x2 – 5x + 3) + 6(5x2 – 4)
11) 12(3x2 – 6x + 9) – 9(4x2 – 8x + 12)
Section 5: Solving Equations:
1) ½ x + 39 = 31
7) 42 - ¾ x = 21
2) 8x – 5 = 3x + 50
8) (5x – 2) + (7x + 5) = -81
3) 12x – 14 = -74
9) 100- 9x = -154
4) 7(4x – 5) + 6(2x + 1) = 171
10) 10(6x – 4) – 7(8x – 3) = -17
5) 8(3x – 10) = 10(2x – 6)
11) 7(4x – 10) = 6(8x – 10)
6) 6(4x -7) – 5(3x – 5) = 55
12) 9(2x + 3) – 4 = 5(3x – 2)
13) 5(6x – 10) - 1
9
14) 11(8x – 2)
7
+ 19 = -47
16) 5(7x – 1)
12
+ 21 = 41
15) 9(4x - 6) +20
-11
= -29
= -46
Related documents