Download ELECTRODYNAMICS—lecture notes second semester 2004 Ora Entin-Wohlman

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ELECTRODYNAMICS—lecture notes
second semester 2004
Ora Entin-Wohlman
References:
1. J. D. Jackson, “Classical Electrodynamics”,
Wiley.
2. G. B. Arfken, "Mathematical methods for
Physicists", Academic Press.
1
Summary of vector analysis

F
F
F
F  xˆ
 yˆ
 zˆ
x
y
z


r dF

F
(r
)
The gradient of
: F
r dr
  Vx Vy Vz


V 


2. Divergence,   ,
x
y
z

1. Gradient,  ,
xˆ
 




V

3. Curl (rotor),   ,
x
Vx
4.
5.
6.
7.
yˆ

y
Vy
zˆ

z
Vz
2F 2F 2F


Div.grad=Laplacian,  ,  F 
x 2 y 2 z 2
 
Rot  grad =0,   F  0
  
Div.rot=0,     V  0

 
  

2


(


V
)


(


V
)


V
Rot  rot,
2
2
8. Gauss’s theorem

 
ˆ
V

n
da

d
r

  V
S
V
Important consequence:

  1
  r  4
 dr    r   dr   r 3   0




Exercise: show that when V  A  P, where A is a constant vector,

 
ˆ
n

P
da

d
r
Gauss’s theorem gives 
  P.
S
V
9. Stoke’s theorem
 
 
V

d




  V  nˆda
S



Exercise: show that when V  AF , where A is a constant vector,


ˆ
n


Fda

Fd
Stoke’s theorem gives 
 
S
2
Electrostatics
1. Coulomb’s law
 

The electric field, E (r ) , at point r , due to a collection of point
charges, q i , located at ri , is
 
n
 
r  ri
E ( r )   qi   3
| r  ri |
i 1
When those charges can be described as a charge-density (of

dimension charge per unit volume),  (r ' ) , then
 
 
  r  r'
E (r )   dr '  (r ' )   3
| r  r '|
The two expressions coincide for
n

 
 (r )   qi  (r  ri )
i 1
The delta-function
Dirac delta-function obeys the following in one-dimension:
 ( x  a)  0, x  a
a
 dx ( x  a)  1
a
and has the properties
3
 dxf ( x) ( x  a)  f (a)
  f ( x)   
i
1
df
dx
 dxf ( x) ' ( x)   f ' (a)
 ( x  xi )
xi
In more than one dimension, the delta-function becomes a
product. In cartesian coordinates


 (r  R)   ( x  X ) ( y  Y ) ( z  Z )
In spherical coordinates
 
 (r  r ' ) 
1
 (r  r ' ) (cos   cos ' ) (   ' )
r2
Examples:
1. Gaussian representation of a one-dimensional delta-function,
the limit   0 of
  x 2 
 ( x0 
exp    
 
    
1
2. Gaussian representation of a three-dimensional delta-function,
the limit   0 of
 1 
 (r )   
 2 
3/ 2


 1

exp

x2  y2  z 2 
3
2


 2

1
4
3. Other one-dimensional delta-functions: (a) Lorentzian--the
1
1
limit   0 of  ( x) 
; (b) of
 1  ( x /  ) 2
sin( x /  )
1
 ( x) 

x
2
1 ( x /  )
,x 0
(c) and of  ( x)  e

4. From Gauss’s theorem,
 (r )  
1/ 
dte
ixt
1 /
1 2 1 
  
4
r
2. Gauss’s law
n

 
ˆ
E

n
da

4

q

4

d
r
 i

  (r )
S
i 1
S
V
n
V
q
E
 
  
   r  r'

  E (r )   dr '  (r ' )    3  4(r )
| r  r '|
  
  E (r )  0
explanation:
 r

  3  4 (r )
r
and
 r
 3  0
r
5
Example: Calculate the electric field of an infinite cylinder, of
radius a, charged with a constant charge density  per unit
length. We use cylindrical coordinates,  ,  , z . By symmetry, the
field is only along the ̂ -direction. Consider a volume of length L
around the cylinder. By Gauss’s law,
Q

EL2  4   L 2  4   L 2 ,   a ,
 SL 
S
Q

EL2  4   La 2  4   La 2 ,   a ,
 SL 
S
giving

2
E (  )  ˆ 2  ,   a ,
a

2
E (  )  ˆ
  a.
,

3. scalar potential
 
   (r ' )
 
E (r )    dr '    (r ),
| r  r '|


  (r ' )
(r )   dr '  
| r  r '|

1
 1
 r

r
2 1
   3  4 (r )
since    3      
r
r
r
r
r
 
 E  dl   B   A ,
B
Thus:
A
 
 E  dl  0
(work per charge)
6
4. surface charge distributions
n
E2

 (r )
E1




E 2  E1  nˆ  4
discontinuity in the normal component of
the electric field. The tangential components are continuous.
5. Poisson and Laplace equations
When there is charge density, the potential satisfies the Poisson
equation:
 2   4 . Otherwise, it satisfies the Laplace
equation:
 2  0 .
Example: Let us find the charge distribution giving rise to the
scalar potential
e r  r 
( r )  q
1  
r 
2
Let us the Laplacian of this potential (in Cartesian coordinates)
7

r 
x
(r ) 
 q F (r ),
x
x r
r
 2 
r  1

F (r )  e  2  
r
r
2


 F (r )  x  2 

2
 x



(
r
)

q
F
(
r
)

q

F
(
r
)
 
2


x
x r
 r  r
 r

Therefore,
 2 (r ) 
q r 3
e  and
2
 (r )  2qe r 3
6. Electrostatic potential energy
The potential energy of a collection of point charges is:
qi q j
1
W    
2 i j | ri  r j |
The potential energy of continuous charge distribution is:


   (r ' )  (r ) 1  

 

1
1
W    dr ' dr     dr  (r )(r )    dr (r ) 2 (r )
2
| r  r '|
2
8
W
   2 1
 2
1
d
r
|


(
r
)
|

d
r
E
8 
8 
8
Related documents