Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Radiation Power Equilibrium as key to Nuclear Forces H. Vic Dannon [email protected] May 2016 ABSTRACT: Assuming that the Hydrogen Proton is at rest, the force on the orbiting hydrogen electron is v e2 1 e2 . me = re 4pe0 re2 However, the accelerating electron radiates energy towards the proton, and would fall on the proton in a split second if that energy would not be returned by the proton to the electron. Thus, to prevent the annihilation of the Hydrogen Atom, the proton must be accelerating and orbiting the electron, the same as the sun orbits the earth. Then, the force on the proton is Vp2 1 e2 Mp . = rp 4pe0 re2 The total ignorance of the proton’s equation, renders baseless any Atomic analysis done since Bohr to these days. In particular, the Schrödinger equation does not compensate for the missing 1 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon electrodynamics here, because that equation too assumes that the proton is at rest. We establish here, that the Proton’s Motion is the key to Quantized Angular Momentum in the nucleus and in the Atom, to Nuclear Energy, to the Nuclear Forces, and to the Structure of the Nucleus, and the Atom. In particular, we emphasize Nuclear Forces because the enigma of Nuclear Forces have never been resolved. To date there is no explanation why the closely packed positive protons that repulse each other at extreme forces inversely proportional to the squared distance, stay bonded together, and how the neutral neutrons bond them. The claims that nuclear forces are the “leaking” of the strong forces between quarks that were never directly detected, are speculative if not hallucinated. And remind more of religious arguments, than Physics. Here, perceiving the neutron as a mini-Hydrogen Atom, we establish the motion of the protons, and the radiation power equilibrium between nucleonic electrons and protons as the source of the Nuclear Forces. The nuclear force is not a special force that defies electrical repulsion. It is the result of the motion of the Atomic protons, and 2 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon the Neutronic protons in the nucleus. The moving protons stay packed together, bonded by the Neutronic electrons orbitals. Using the Zinc Nucleus as an example, we compute (with Numbers, Not Lagrangians) Nuclear Forces, and Energies for the Zinc Nucleus. Regarding Angular Momentum, the electron in the n th Hydrogen orbit, has angular momentum n , and the Quantum of Angular Momentum for the Hydrogen Atom is . This determines the n th orbit radius, the speed of the Hydrogen electron in the n th orbit, and the frequency of the electron motion in the n th orbit. For instance, the force on the nth orbit Hydrogen electron is vn2 1 e2 = me , rn 4pe0 rn2 e2 1 1 , = (mevnrn )2 4pe0 me rn And applying mevnrn = n h , 2p e0 h 2 rn = n . mee 2 p 2 Thus, quantized angular momentum is essential to determining the radius, speed, and frequency in electron orbits: [Born, p.113] expresses the false belief that is the quantum of 3 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon angular momentum for any atom: “It seems now a natural suggestion, that we should regard the quantization condition for the angular momentum as an essential feature of the new mechanics. We therefore postulate that it is universally valid.” In fact, any Atom has its particular quantum of angular momentum for its proton orbits, and its particular quantum of Angular Momentum for its electron orbits, both different from . Consequently, the radius, speed, and frequency obtained based on the assumption that the quantum of angular momentum is , are all wrong. The existing theory requires the quantum of angular momentum in order to obtain the radius, speed and frequency. And to obtain that quantum of angular momentum we need to know the radius, and the speed. We resolve this paradox by utilizing radiation equilibrium which is the reason for the quantized angular momentum. As in [Dan5], we assume that the Neutron is a collapsed Hydrogen Atom. Consequently, in the Zinc nucleus the 35 neutrons add 35 protons to the 30 atomic protons, and 35 electrons that orbit those 65 protons, within the nucleus boundary. Clearly, the 60 protons are moving in their own orbits within the Nucleus. 4 Gauge Institute Journal, Volume 12, No. 2, May 2016 5 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon The Zinc Nucleus has A=65 Nucleons: Z = 30 Protons, and A - Z = 35 Neutrons. We assume that each neutron is a mini- Hydrogen atom made of an electron and a proton. The Nucleonic electrons orbitals bond the Protons, and the Neutronic Protons of the Nucleus. The 30 Protons, the 35 Neutronic Protons and the 35 Nucleonic electrons constitute the Zinc Nucleus. The 35 Nucleus electrons at orbit radius rNuc , encircle the 65 Protons that orbit the center at radius rp . We approximate the 35 Neutronic electrons by a charge of 35e, with mass 35me orbiting the center at radius rNuc , and speed bNucc . We approximate the 65 protons by a charge of 65e, with mass 65M p orbiting the center at radius rp , and speed bpc . The nucleus is stable because the power radiated by the accelerating Neutronic electrons towards the Protons, equals the 6 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon power radiated by the accelerating protons towards the Neutronic electrons To derive the orbits speeds, radii, frequencies, angular momentums, and energies of the Neutronic electrons, and the protons in the nucleus, we apply Einstein’s mass-energy equation, and our Radiation Power Equilibrium between the 35 Neutronic electrons, and the 65 protons. ZINC-NUCLEUS RADIATION POWER EQUILIBRIUM 65 protons with mass 30 electrons with mass 65M p , charge 65e, and radius rp 35m e , charge 35e and radius rNuc 7 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Next, we assume that the Zinc Atom 30 spectral electrons interact only with the Zinc’s 30 atomic protons, and those 30 protons orbits define the Zinc’s nucleus boundary. The 30 Atomic electrons orbitals orbit the 30 atomic protons, and bond the Zinc Atom. Since the 30 Atomic electrons do not interact with the interior of the nucleus, the 30 Atomic protons appear located at the boundary of the nucleus, orbiting the center at radius rNuc . We approximate the 30 atomic electrons by a charge of 30e, with mass 30m e orbiting the center at radius re , and speed bec . We approximate the 30 atomic protons by a charge of 30e, with mass 30M p orbiting the center at radius rNuc , and speed bpNucc . The Zinc atom is stable because the power radiated by the accelerating atomic electrons towards the Atomic Protons, equals the power radiated by the accelerating atomic protons towards the 8 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon atomic electrons To derive the orbits speeds, radii, frequencies, angular momentums, and energies of the 30 Atomic electrons, and the 30 Atomic protons in the nucleus, we apply our Radiation Power Equilibrium between the 30 Atomic electrons, and the 30 Atomic protons. ZINC-ATOM RADIAION POWER EQUILIBRIUM 30 Atomic protons with mass 30M p , and radius rNuc 30 Atomic electrons with mass 30m e , and radius re In conclusion, we obtain numerical values for orbit speeds, radii, frequencies, angular momentums, energies, and forces between electrons and protons, in the nucleus, and in the atom. We sum these up in the following Summary. 9 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon SUMMARY OF NUMERICAL RESULTS Hydrogen Proton nth Orbit Radius rH,n = n 2rH Speed VH,n = me » n 2 (1.221173735)10-12 m Mp 1 ö4 1 c æç me ÷÷ 1 ç ÷÷ » 334, 528 m/sec ç n 137 çè M p ø n 1 c æ ö M 1 137 ç p ÷÷4 1 4.311097293 ´ 1016 cycles/sec Frequency = çç » ÷ 3 3 ÷ 2p n 2prH çè me ø n WH,n 1 æ M ö4 Angular Momentum M p rn2Wn = n ççç p ÷÷÷ = n(6.546018057) èç m e ÷ø Quantum of Angular Momentum (6.546018057) Neutron’s Electron nth Orbit Radius rne,n n 2 (9.398741807)10-14 m = n 2 (1.776104665)10-3 rH Speed vne,n = Frequency wne,n 2p 1 51, 558,134 m/sec n vH 1 n 0.043132065 8.73067052 ´ 1019 cycles/sec 10 Gauge Institute Journal, Volume 12, No. 2, May 2016 = 1 n3 H. Vic Dannon 1.305362686 ´ 104 me Angular Momentum 1- 2 bne, n wH cycles/sec . 2p vne,nrne,n = n(0.043132065) Quantum of Angular Momentum (0.043132065) Neutron’s Proton nth Orbit Radius rnp,n n 2 (2.209505336)10-15 , Speed Vnp,n Frequency Wnp 2p Angular Momentum 1 7, 905,145 m/sec , n 5.69422884 ´ 1020 cycles/second . Mp 2 1 - bnp, n (bnp,nc )rnp,n = n(0.277126027) Quantum of Angular Momentum (0.277126027) The Zinc Nucleus 1) is at Radiation Power Equilibrium me 2 1 - bNuc 2 rNuc » 11 Mp 1 - bp2 rp2 Gauge Institute Journal, Volume 12, No. 2, May 2016 2) Mp me 1 1 e2 2 bNucrNuc = = bp2rp 65 1 - b 2 35 1 - b 2 107 Nuc p rNuc 3) 65bp2 Mp rNuc rp me » 42.5 2 bNuc 42.5 5) 7) rp » 2 35bNuc 4) 6) H. Vic Dannon Wp wNuc 65 2 b 35 p 1 35 æç M p ö÷÷4 ç ÷ » 4.803464029 65 ççè m e ÷ø rp ÷ö 1 1 e 2 æç ÷÷ 65 çç 1 + Mass-Energy M n - M p - me » 7 2 10 rp çè rNuc ÷ø Dm Zinc Nucleus Proton nth Orbit Orbit Radius Speed Frequency rp,n n 2 (1.436178468)10-13 Vp,n Wp,n 2p = 1 n 3 1 5, 801, 257 m/sec n 6.42885789 ´ 1018 cycles/sec 12 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Mp Angular Momentum Vp,n rp,n = n(13.21701291) 2 1 - bp, n Quantum of Angular Momentum (13.21701291) Nucleus Radiation Equilibrium Quantized Angular Momentum Zinc Nucleus Electron nth Orbit Orbit Radius rNuc,n » n 2 rp,n 35 2 bNuc,n n 2 (6.108688998)10-12 2 65 bp,n vNuc,n Speed 1 51, 560,184 m/sec n Neutron Electron Speed Frequency wNuc,n 2p Angular Momentum = 1 n 3 1.343341943 ´ 1018 cycles/sec me 1- 2 bNuc, n vNuc,nrNuc,n = n(2.761794253) Quantum of Angular Momentum (2.761794253) The Zinc Atom 1) is at Radiation Power Equilibrium 30me 1 - be2 re2 » 30M p + 35M n 2 1 - bpNu c 13 rN2uc Gauge Institute Journal, Volume 12, No. 2, May 2016 2) 30me 1- be2re be2 = be2 re 4) = 107 re 3) rNuc » 30M p + 35M n 2 1 - bpN uc 2 bpNuc rNuc rNuc 2 bpN uc Mp » me + 7 Mn » 63 6 me 1 30 2 bNuc 63 65 be2 5) 6) (30e )2 H. Vic Dannon 1 æ M p 7 M ö÷4 n÷ = ççç + ÷ » çè me 6 me ø÷ WpNuc we 63 » 7.937253933 Zinc Atomic Electron nth Orbit Orbit Radius 1 4, 446,105 m/sec n v e,n Speed Frequency re,n n 2 (3.903068097)10-10 m we,n 2p Angular Momentum = 1 n 3 1.81298294 ´ 1015 cycles/sec me 1 - be,2 n 14 v e,nre,n = n(14.99154238) Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Quantum of Angular Momentum (14.99154238) Zinc Atomic Proton nth Orbit rNuc,n n 2 (6.108688998)10-12 Orbit Radius Speed Frequency VpNuc,n WpNuc,n 2p Angular Momentum 1 n 3 (1.439010597)1016 cycles/sec Mp 1- 1 556, 225 m/sec n 2 bpNuc, n VpNuc,nrNuc,n » n(53.89157159) Quantum of Angular Momentum (53.89157159) Atomic Radiation Equilibrium Quantized Angular Momentum Zinc Nucleus Zero Point Energy 1 a - (35)(65) w -268, 285 eV 2 bNuc Nuc - 1 e2 (35)(65) -268, 498 eV 8pe0 rNuc 19,743´(Hydrogen’s Zero Point Energy) The Zinc Nucleus Zero Point Energy Frequency 15 Gauge Institute Journal, Volume 12, No. 2, May 2016 2 H. Vic Dannon 268,498 eV 1.298451396 ´ 1020 cycles/sec h (35)(65) a wNuc (1.297990381)1020 cycles/sec bNuc 2p Zinc Nucleus Nuclear Binding Energy 1 a - (35)(65) Wp = -11, 415, 889 eV bp 2 1 e2 (35)(65) -11, 420, 788 eV rp 8pe0 42.5´(Nucleus Zero Point Energy Binding) 19349´(Hydrogen’s Nuclear Energy Binding) Zinc Nucleus Nuclear Force 1836´(Zinc Nucleus Zero Point Energy Force) 7,287,084´(Zinc Atomic Zero Point Energy Force) 694,938,230´(Hydrogen’s Nuclear Force) Zinc Atomic Nuclear Force 3969´(Zinc Atomic Zero Point Energy Force) Zinc Nuclear Binding Energy 16 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 19,688 (Hydrogen Binding Energy) 108 ´(The Zinc Atomic Binding Energy) Force on a Zinc Nucleus Proton 2,142 (Force on a Zinc Atomic Proton) Force on a Zinc Nucleus Electron 8845 (Force on a Zinc Atomic Electron) 17 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Keywords: Subatomic, Photon, Neutron Radius, electron Radius, Composite Particles, Quark, electron, Proton, Proton Radius, Neutron, Graviton, Radiation Energy, Kinetic Energy, Gravitational Energy, Rotation Energy, Electric Energy, Orbital Magnetic Energy, Spin Magnetic Energy, Centripetal Force, Lorentz Force, Electric Charge, Mass-Energy, Wave-particle, Inertia Moments, Nuclear Structure, Nucleus Stability, Nuclear Force, Nuclear Bonding, Orbitals, Electromagnetic Spectrum, X Ray, Bohr Model, Hydrogen Atom, Radiation Equilibrium, Neutron Star, PhysicsAstronomyClassificationScheme: 14.20-c, 14.20.Dh, 14.60Cd, 14.60.Ef, 14.60.Fg, 14.60. 14.65.-q, 14.65.Bt, 14.70.Bh, 47.32.-y, 47.32.C, 03.75.-b, 03.75.Be, 61.05.J-, 61.05.fm, 18 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Contents 0. Protons’ Motion as key to Quantized Angular Momentum & Nuclear Energy I. HYDROGEN 1. The Hydrogen Electron Quantum of Angular Momentum 2. Hydrogen Radiation Equilibrium, and Proton Quantized Angular Momentum 3. Hydrogen Proton nth Orbit Radius, Speed, and Frequency II. NEUTRON 4. The Neutron’s Electron Quantum of Angular Momentum 5. The Neutron’s Proton Quantum of Angular Momentum 6. The Neutron’s Proton nth Orbit Radius, Speed, and Frequency III. ZINC NUCLEUS 7. Nucleus Radiation Equilibrium 8. rNuc rp 9. The Neutronic Electron Energy 10. The Protons’ Energy 11. The Nucleus Mass-Energy 12. The Protons’ Orbit Radius 19 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 13. The Protons’ Speed 14. The 1st Orbit Proton Frequency 15. The Nucleus Electron Speed from Radiation Equilibrium 16. The Nucleus Electron Speed from the Force Equation 17. Nucleus Electron 1st Orbit Radius 18. 1st Orbit Nucleus Electron Frequency 19. Nucleus Electron Quantum of Angular Momentum 20. The Nucleus Electron nth Orbit Radius, Speed, and Frequency 21. The Nucleus Proton Quantum of Angular Momentum 22. The Nucleus Proton nth Orbit Radius, Speed, and Frequency 23. Nucleus Radiation Equilibrium is Equivalent to the Proton Quantized Angular Momentum IV. ZINC ATOM 24. Atomic Radiation Equilibrium 25. re rNuc 26. The Nucleus Speed 27. The Atomic Electrons Speed from Radiation Equilibrium 28. The Atomic Electron Speed from the Force Equation 29. The Atomic Electron 1st Orbit Radius 30. 1st Orbit Atomic Electron Frequency 31. Atomic Electron Quantum of Angular Momentum 20 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 32. The Atomic Electron nth Orbit Radius, Speed, and Frequency 33. The Atomic Proton Quantum of Angular Momentum 34. Atomic Radiation Equilibrium is Equivalent to the Proton Quantized Angular Momentum V. NUCLEAR FORCES 35. Nucleus Zero Point Energy 36. Nucleus Nuclear Energy Binding 37. Nuclear Force and Zero Point Energy Force 38. Gamma Rays Origin is Neutrons’ Protons 39. The Nuclear Binding Energy 40. The Atomic Binding Energy 41. Nuclear Forces vs. Atomic Forces VI. SUMMARY OF NUMERICAL RESULTS References 21 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Protons’ Motion as key to Quantized Angular Momentum & Nuclear Forces Assuming that the Hydrogen Proton is at rest, the force on the orbiting hydrogen electron is v e2 1 e2 . me = re 4pe0 re2 However, the accelerating electron radiates energy towards the proton, and would fall on the proton in a split second if that energy would not be returned by the proton to the electron. Thus, to prevent the annihilation of the Hydrogen Atom, the proton must be accelerating and orbiting the electron, the same as the sun orbits the earth. Then, the force on the proton is Vp2 1 e2 . Mp = 4pe0 re2 rp The ignorance of this equation, renders baseless any analysis done since Bohr to these days. In particular, the Schrödinger equation does not compensate for the missing electrodynamics here, because that equation too assumes that the proton is at rest. Only Proton’s Motion ensures Radiation Power Equilibrium which 22 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon is key to Quantized Angular Momentum in the nucleus and in the Atom, to Nuclear Energy, to the Nuclear Forces, and to the Structure of the Nucleus, and the Atom. 0.1 The Angular Momentum Quantum is h / 2 only for the Hydrogen Electron. It can be shown that The electron in a Hydrogen orbit m , has angular momentum m , and that the Quantum of Angular Momentum for the Hydrogen Atom is . This enables the determination of the orbit radius, the speed, and the frequency of the electron in the orbit: For instance, the force on the nth orbit Hydrogen electron is vn2 1 e2 = me , rn 4pe0 rn2 e2 1 1 , = (mevnrn )2 4pe0 me rn And applying mevnrn = n h , 2p e0 h 2 . rn = n mee 2 p 2 As shown in [Dan4], already the Hydrogen Proton in its orbits has a different Quantum of Angular Momentum. [Born, p.113] expresses the false belief that is the quantum of 23 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon angular momentum for any atom: “It seems now a natural suggestion, that we should regard the quantization condition for the angular momentum as an essential feature of the new mechanics. We therefore postulate that it is universally valid.” In fact, any Atom has its own quantum of angular momentum for its proton orbits, and its own quantum of Angular Momentum for its electron orbits, which is different from . For instance, is NOT the Angular Momentum Quantum of a Zinc Electron. The key to determining the Quantum of Angular Momentum is the Radiation Power Equilibrium mandated by the Proton’s Motion: 0.2 Nuclear Motion, and Radiation Power Equilibrium as key to Quantized Angular Momentum The Force on the Zinc electron is v e2 1 30e 2 = , 4pe0 re2 1 - be2 re me me 1 - be2 v e2re = 24 1 30e 2 , 4pe0 Gauge Institute Journal, Volume 12, No. 2, May 2016 = Assuming H. Vic Dannon c2 10 7 30e 2 . 1 - be2 » 1 , (m ev e re )2 c2 30e 2 . » 7 m ere 10 Assuming that mev e re = k , c2 (k )2 30e 2 . » 7 m ere 10 The orbit radius is re » = k 2 107 2 30 mec 2e 2 k2 5.29177249 ´ 10-11 30 = k 2 ⋅ 1.763924163 ´ 10-12 Radiation Power equilibrium mandated by the Nucleus motion enables us to obtain in 25.5, re 3.848474069 ´ 10-10 m Therefore, we obtain k = 3.848474069 ´ 10-10 m 1.763924163 ´ 10-12 , = 14.77081054 Thus, the Zinc Quantum of Angular Momentum is (14.77081054) 25 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 0.3 Nuclear Orbital Motion as key to Nuclear Energy The electron radiates its energy onto the proton and, if not compensated for that lost energy, would fall on the proton in a split second. To prevent the demise of Atom, the proton must radiate that energy back onto the electron. This mandates the acceleration of the proton in an orbit so that power radiated in both directions will be in equilibrium. In the Hydrogen Atom, radiation power equilibrium holds when the Inertia Moments of the electron and the proton are equal: M p rp2 = m ere2 . The proton orbit radius rp , is smaller than the electron’s re : in the Mp re2 = » 1836 . me rp2 Hydrogen Atom, Thus, the Nuclear force, 1 e2 4pe0 rp2 is 1836 times greater than the Atomic force 1 e2 . 4pe0 re2 1 e2 And the Nuclear energy of the proton’s ground orbit, 4pe0 rp is 1836 42.5 times greater than 26 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 1 e2 the Zero Point Energy of the electron’s ground orbit, . 4pe0 re The protons’ orbitals pack the nuclear energy that bonds the nucleus. Ignoring the protons’ motion, eliminates 97.7% of the energy of the Hydrogen Atom. Consequently, any analysis that attempts to follow Bohr’s method is not even wrong. On the other hand, the Schrödinger equation is useless here, because it too assumes that the proton is at rest. 0.4 Radiation Power Equilibrium at the Zinc Nucleus The Zinc Nucleus has A=65 Nucleons: Z = 30 Protons, and A - Z = 35 Neutrons. We assume that each neutron is a mini- Hydrogen atom made of an electron and a proton. Consequently, the 35 Zinc neutrons add 35 protons to the 30 atomic protons, and 35 electrons that orbit those 65 protons, within the nucleus boundary. Clearly, the 65 protons are moving in their own orbits within the Nucleus. The Nucleonic electrons at orbit radius rNuc encircle the 65 Protons that orbit the center at radius rp . The electronic orbitals bond the Protons, and the Neutronic Protons of the Nucleus. We approximate the 35 Neutronic electrons by a charge of 35e, 27 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon with mass 35m e orbiting the center at radius rNuc , and speed bNucc . We approximate the 65 protons by a charge of 65e, with mass 65M p orbiting the center at radius rp , and speed bpc . ZINC-NUCLEUS RADIATION POWER EQUILIBRIUM 65 protons with mass 30 electrons with mass 65M p , charge 65e, and radius rp 35me , charge 35e and radius rNuc 28 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon The nucleus is stable because the power radiated by the accelerating Neutronic electrons towards the Protons, equals the power radiated by the accelerating protons towards the Neutronic electrons. To derive the orbits speeds, radii, frequencies, angular momentums, and energies of the Neutronic electrons, and the protons in the nucleus, we apply Einstein’s mass-energy equation, and Radiation Power Equilibrium between the 35 Neutronic electrons, and the 65 protons. The enigma of Nuclear Forces have never before been resolved. To date there is no explanation why the closely packed positive protons, that repulse each other at extreme forces inversely proportional to the squared distance, stay bonded together, and how the neutral neutrons bond them. The claims that nuclear forces are the “leaking” of the strong forces between quarks that were never directly detected, are speculative if not hallucinated. And remind more of religious arguments, than physics. Here, perceiving the neutron as a mini-Hydrogen Atom, we establish the motion of the protons, and the radiation power equilibrium between nucleonic electrons and protons as the source of the Nuclear Forces. We compute (with numbers, Not Lagrangians) Nuclear Forces, and Energies for the Zinc Nucleus. 29 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 0.5 Radiation Power Equilibrium at the Zinc Atom Next, we assume that the Zinc Atom 30 spectral electrons interact only with the Zinc’s 30 atomic protons, and those 30 protons orbits define the Zinc’s nucleus boundary. The 30 Atomic electrons orbit the 30 atomic Protons that orbit the center. The electrons’ orbitals balance the 30 atomic protons, and bond the Zinc Atom Since the 30 Atomic electrons do not interact with the interior of the nucleus, the 30 Atomic protons appear located at the boundary of the nucleus, orbiting the center at radius rNuc . We approximate the 30 atomic electrons by a charge of 30e, with mass 30m e orbiting the center at radius re , and speed bec . We approximate the 30 atomic protons by a charge of 30e, with mass 30M p orbiting the center at radius rNuc , and speed bpNucc . The Zinc atom is stable because the power radiated by the 30 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon accelerating atomic electrons towards the Atomic Protons, equals the power radiated by the accelerating atomic protons towards the atomic electrons ZINC-ATOM RADIAION POWER EQUILIBRIUM 30 Atomic protons with mass 30M p , and radius rNuc 30 Atomic electrons with mass To derive the orbits speeds, 30m e , and radius re radii, frequencies, angular momentums, and energies of the 30 Atomic electrons, and the 30 Atomic protons in the nucleus, we apply our Radiation Power Equilibrium between the 30 Atomic electrons, and the 30 Atomic protons. Our methods here apply to any other Atom. *********************** 31 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Our computations are not too accurate. Most were done by a hand calculator, and sometimes we approximated the physical quantities. For instance, we use for the speed of light 300, 000, 000 m/sec , and for the Fine Structure Constant 1/137. ********************** We account for relativistic speeds by using the relativistic mass m 1 - b2 , where b = v / c . 32 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon I. HYDROGEN 1. The Hydrogen Electron Quantum of Angular Momentum 1.1 The Hydrogen Electron 1st Orbit Angular Momentum mv1r1 = Proof: The Hydrogen electron 1st orbit Angular Momentum is m w12r12 mv1r1 = w1 = 1 mv12 w1 v12 1 e2 = , we have From m r1 4pe0 r12 = 1 æç 1 e 2 ö÷ ÷÷ ç 2pn1 ççè 4pe0 r1 ÷ø = 1 ( -E1 ) . 2pn1 Since -E1 = hRydberg = hn1 , 33 Gauge Institute Journal, Volume 12, No. 2, May 2016 = H. Vic Dannon 1 hn = . 2pn1 1 It follows that 1.2 The Hydrogen Electron nth orbit Angular Momentum mvnrn = n and that, 1.3 The Hydrogen Electron Angular Momentum Quantum is . 1.4 The Hydrogen Electron 1st Orbit Radius, Speed, and Frequency rH = e0 h 2 , mee 2 p = 5.29177249 ´ 10-11 m vH = e2 c = ac » , 2e0h 137 = 2,189, 781 m/sec 34 Gauge Institute Journal, Volume 12, No. 2, May 2016 nH = H. Vic Dannon h 4p 2merH2 = 6.58472424 ´ 1015 cycles/sec Proof: The force on the Hydrogen 1st orbit electron is vH2 1 e2 = me , rH 4pe0 rH2 e2 1 1 , = (mevHrH )2 4pe0 me rH Since mevHrH = h / 2p , e0 h 2 rH = , mee 2 p vH = h , 2pmerH = h , e0 h 2 2pm e mee 2 p e2 c = = ac » 2e0h 137 = 2,189, 781 m/sec . wH v = H , 2p 2prH 35 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon h 2pmerH = 2prH h = 4p 2merH2 Substituting e0 = 8.854187817 ´ 10-12 Coulomb , (Volt)(meter) h = 6.6260755 ´ 10-34 Joul , m e = 9.1093897 ´ 10-31 Kg , e = 1.60217733 ´ 10-19 , we obtain rH = 5.29177249 ´ 10-11 m , n H = 6.58472424 ´ 1015 cycles/sec . 1.5 The Hydrogen Electron nth Orbit Radius, Speed, and Frequency rn = n 2rH , vn = 1 v , n H wn 1 wH . = 2p n 3 2p Proof: The force on the electron in the nth Orbit in the Hydrogen Atom is 36 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon vn2 1 e2 = me , rn 4pe0 rn2 e2 1 1 , = (mevnrn )2 4pe0 me rn Since mevnrn = n h , 2p e0 h 2 rn = n = n 2rH . 2 p mee 2 vn = n =n h , 2pm ern h 2pm en 2rH = 1 h , n 2pm erH = 1 v , n H wn v = n , 2p 2prn 1 vH n = 2pn 2rH = 1 vH n 3 2prH = 1 wH . n 3 2p 37 , Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 2. Hydrogen Radiation Equilibrium and Proton Quantized Angular Momentum The Hydrogen Electron orbits at angular velocity wn along a circle of radius rn a proton charge located a the center of the orbit. The Hydrogen Proton orbits along a circle of radius rn an electron charge located at the center of the orbit. The electron orbits with angular momentums m wnrn2 = n , determine the proton orbit with angular momentums M Wn rn2 . At equilibrium, the power radiated by the electron onto the proton equals the power radiated by the proton onto the electron. In [Dan4] we showed that the hydrogen atom is electrodynamically stable if and only if the inertia moments of the electron and the proton are equal: mrn2 = M rn2 38 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon The Angular velocities of the proton, and the electron are related by æM Wn = çç çè m wn 1 ÷÷ö4 = ÷ø 4 1836.152701 = 6.546018057 2.1 Hydrogen’s Radiation Equilibrium is equivalent to the Proton’s nth Orbit Quantized Angular Momentum æM mrn2 = M rn2 M rn2Wn = n çç çè m 1 ö4 ÷÷ ÷ø Proof: () The n th orbit of the Proton has Angular Momentum W M rn2 Wn = mrn2 wn n w mrn2 n n 1 æ M ö4 = n çç ÷÷÷ . èç m ø () The force on the Hydrogen proton in the nth orbit is Vn2 1 e2 = Mp , 4pe0 rn2 rn e2 1 1 = (MVn rn )2 , M rn 4pe0 2 Since (MVn rn ) = (M Wn rn2 )2 æ h ÷ö2 = n ç ÷÷ çè 2p ø 2ç 39 M , m Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon e0 h 2 Me 2 p M , m e0 h 2 =n me 2 p m , M rn = n 2 2 = n 2rH = rn m M m . M Squaring both sides, mrn2 = M rn2 . 2.2 The Hydrogen Proton nth Orbit Angular Momentum æM M p rn2Wn = n çç èç m 1 ö4 ÷÷÷ = n(6.546018057) ø 2.3 The Hydrogen Proton Quantum of Angular Momentum is the Angular Momentum of the 1st Proton Orbit M r12W1 = (6.546018057) 40 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 3. Hydrogen Proton nth Orbit Radius, Speed, and Frequency 3.1 Hydrogen Proton 1st Orbit Radius, Speed, & Frequency rH = rH m , M 1 ö4 c æç m ç 137 çè M ÷÷÷ , ø WH w æM = H çç 2p 2p çè m ÷÷ö4 . ÷ø VH = 1 Proof: The force on the proton in the Hydrogen Atom 1st orbit is V12 1 e2 = Mp , r1 4pe0 r12 e2 1 1 = (MV1r1 )2 , 4pe0 M r1 2 Since (MV1r1 ) = (M W1r12 )2 æ h ÷ö2 = çç ÷÷ èç 2p ø r1 = e0 h 2 M pe 2 p 41 M , m M , m Gauge Institute Journal, Volume 12, No. 2, May 2016 = rH h æç M Since MV1r1 = M W1r12 = ç 2p çè m H. Vic Dannon m . M 1 ÷÷ö4 ÷ø h æç M V1 = ç 2p çè m h = 2pm = 1 ÷÷ö4 1 , ÷ø M r 1 M r m H h æç m ç 2pmrH çè M æm = vH çç çè M 1 ö4 ÷÷÷ ø c æç m = ç 137 çè M 1 ÷ö÷4 ÷ø W1 V = 1 , 2p 2pr1 = 1 æm vH çç çè M ö÷4 ÷ ø÷ 2prH m M 42 æM çç m çè m M 1 ö4 ÷÷ ÷ø 1 ÷÷ö4 , ÷ø Gauge Institute Journal, Volume 12, No. 2, May 2016 æM = n H çç çè m H. Vic Dannon 1 ÷÷ö4 , ÷ø where rH = 5.29177249 ´ 10-11 m , n H = 6.58472424 ´ 1015 cycles/sec . 3.2 Hydrogen Proton nth-Orbit Radius, Speed, & Frequency rn = n 2rH m , M 1 æm Vn = vH çç n çè M 1 ÷÷ö4 , ÷ø Wn 1 WH çæ M = ç 2p n 3 2p çè m 1 ö4 ÷÷÷ . ø Proof: The force on the Hydrogen nth orbit proton is Vn2 1 e2 =M , rn 4pe0 rn2 e2 1 1 = (MVn rn )2 , 4pe0 M rn 2 Since (MVn rn ) = (M Wn rn2 )2 æ h ö÷2 = n ç ÷÷ çè 2p ø 2ç 43 M , m Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon e0 h 2 Me 2 p M , m e0 h 2 =n me 2 p m , M rn = n 2 2 = n 2rH m . M 1 h æ M ö4 Since MVn rn = M Wn rn2 = n çç ÷÷÷ 2p çè m ø h æM Vn = n çç 2p çè m h =n 2pm = 1 ö÷4 1 , ÷ ø÷ M rn M 2 n rH m 1 h æç m ç n 2pmrH çè M 1 æm = vH çç n çè M 1 c æç m = ç n 137 çè M Wn V = n , 2p 2prn 44 1 ö÷4 ÷ ø÷ 1 ö÷4 ÷ ø÷ 1 ö4 ÷÷ ø÷ æ çç M m çè m M 1 ö÷4 ÷ , ø÷ Gauge Institute Journal, Volume 12, No. 2, May 2016 = = 45 H. Vic Dannon 1 1 æç m v ç n H çè M ö÷4 ÷ ø÷ 2pn 2rH m M 1 ö4 1 WH æç M ÷ ç ÷÷ n 3 2p çè m ø Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon II. NEUTRON 4. The Neutron’s Electron Quantum of Angular Momentum In [Dan5], we established that the Neutron is a CollapsedHydrogen Atom composed of an electron and a proton: The Neutron’s Electron (to be denoted ne ) has Orbit Radius rne 9.398741807 ´ 10-14 m , Speed vne 51, 558,134 m/sec , bne = 0.171860446 Angular Velocity wne 5.485642074 ´ 1020 radians/sec , Frequency n ne 8.73067052 ´ 1019 cycles/second . The Nucleonic Electron Quantum of Angular Momentum is the Angular Momentum of the electron’s 1st orbit 4.1 Quantum of Neutron’s Electron Angular Momentum 46 Gauge Institute Journal, Volume 12, No. 2, May 2016 me 1- 2 bne H. Vic Dannon vnerne = (0.043132065) Proof: 1 2 1 - bne = 1 1 - (0.171860446)2 = 1.015103413 me 2 1 - bne = vnerne = (1.015103413)(9.1093897)10-31(51, 558,134)(9.398741807)10-14 (1.05457266)10-34 = (0.042490317) . 4.2 The Neutron’s Electron 1st Orbit Radius, Speed, and Frequency rne 9.398741807 ´ 10-14 m = 1.776104665 ´ 10-3 rH vne = = c m/sec 5.909092905 vH 0.043132065 wne w = 1.305362686 ´ 104 H 2p 2p 47 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Proof: The force on the Neutron’s 1st orbit electron is me 2 1 - bne 2 vne 1 e2 , = 2 rne 4pe0 rne 2 æ ö m ÷ e ç e vnerne ÷÷÷ = çç çè 1 - b 2 4pe0 ø÷ ne 2 Since me 1- 1 me 2 1 - bne (bnec )rne = (0.043132065) , 2 bne rne = (0.043132065)2 h 2 e0 2 , ( rH = 5.29177249 ´ 10-11 ) 1 - bne 2 p mee rH = (0.043132065)2 ( ) 1 - (0.171860446)2 rH = 1.776104665 ´ 10-3 rH . vne = = (0.043132065) me r 2 ne 1 - bne (0.043132065) me 1- = 1 , rne 2 bne (0.043132065)2 rH 1 - bn2e 1 0.043132065 m erH vH 48 Gauge Institute Journal, Volume 12, No. 2, May 2016 = 1 v 0.043132065 H = 1 1 c 0.043132065 137 = 1 c 5.909092905 H. Vic Dannon wne v = ne 2p 2prne 1 vH 0.043132065 = 2p(1.776104665) ´ 10-3 rH vH 105 = (4.3132065)(1.776104665) 2prH = 1.305362686 ´ 104 wH 2p 4.3 The Neutron’s Electron nth Orbit Radius, Speed, and Frequency rne,n n 2 (9.398741807)10-14 m = n 2 (1.776104665)10-3 rH vne,n = = 1 c m/sec n 5.909092905 vH 1 n 0.043132065 49 Gauge Institute Journal, Volume 12, No. 2, May 2016 wne,n 2p = 1 n3 H. Vic Dannon 1.305362686 ´ 104 wH cycles/sec . 2p Proof: The force on the Neutron’s nth orbit electron is 2 vne, n me 2 r 1 - bne, n ne,n 1 e2 = , 2 4pe0 rne, n æ ö÷2 ç me e = çç vne,nrne,n ÷÷÷ ç 2 ÷ 4pe0 èç 1 - bne,n ø÷ 2 Since me 2 1 - bne, n 1 me 2 1 - bne, n (bne,nc )rne,n = n(0.043132065) , rne,n = n 2 (0.043132065)2 h 2 e0 2 1 - bne, n , 2 p mee rH = n 2 (0.043132065)2 ( ) 1 - (0.171860446)2 rH = n 2 (1.776104665)10-3 rH . vne,n = = n(0.043132065) me n 2rne,n 2 1 - bne, n 1 n (0.043132065) me 2 1 - bne (0.043132065)2 rH 1 - bn2e 50 1 rne,n , Gauge Institute Journal, Volume 12, No. 2, May 2016 = 1 1 n 0.043132065 m erH vH = 1 1 v n 0.043132065 H = 1 1 1 c n 0.043132065 137 = 1 1 c n 5.909092905 wne v = ne 2p 2prne 1 1 vH n 0.043132065 = 2pn 2 (1.776104665) ´ 10-3 rH = = vH 105 n 3 (4.3132065)(1.776104665) 2prH 1 1 n 3 1.305362686 ´ 104 n H 51 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 5. The Neutron’s Proton Quantum of Angular Momentum In [Dan5], we established that the Neutron is a CollapsedHydrogen Atom composed of an electron and a proton: The Neutron’s Proton (to be denoted np ) has Orbit Radius rnp 2.209505336 ´ 10-15 , Speed Vnp 7, 905,145 m/sec , bnp = 0.02635048394 Angular Velocity Wnp 3.577789504 ´ 1021 radians/sec , Frequency Wnp 2p 5.69422884 ´ 1020 cycles/second . The Neutron’s Electron nth orbit has angular momentum me 2 wne,nrne, n. 2 1 - bne, n The Neutron’s Proton nth orbit has angular momentum Mp 2 1 - bnp, n 2 Wnp,n rnp, n. 52 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon At equilibrium, the power radiated by the electron onto the proton equals the power radiated by the proton onto the electron. Similarly to [Dan5], we obtain that the Neutron is electrodynamically stable if and only if the inertia moments of the nth orbit electron and proton are equal: me 1- 2 bne, n 2 rne, n = Mp 1- 2 bnp, n 2 rnp, n The Angular velocities of the proton, and the electron are related by Wnp,n wne,n æM = çç èç m 1 ÷÷ö4 = ÷ø 4 1836.152701 = 6.546018057 The Neutron’s Proton Quantum of Angular Momentum is the Angular Momentum of its 1st orbit: 5.1 Quantum of Neutron’s Proton Angular Momentum Mp 2 1 - bnp (bnpc )rnp = (0.277126027) 53 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 6. The Neutron’s Proton nth Orbit Radius, Speed, and Frequency 6.1 The Neutron’s Proton 1st Orbit Radius, Speed, and Frequency rnp = 4.181142667 ´ 10-5 rH 2.212565574 ´ 10-15 m Vnp = (3.608466555)vH = 7, 901, 752 m/sec n np = (86, 303)n H = (5.682814561)1020 cycles/sec Proof: The force on the Neutron’s 1st orbit proton is Mp 2 Vnp 2 r 1 - bnp np 1 e2 , = 2 4pe0 rnp æ M ö÷2 ç e p = çç Vnp rnp ÷÷÷ ç 2 ÷ 4pe0 çè 1 - bnp ø÷ 2 1 Mp 2 1 - bnp 54 1 , rnp Gauge Institute Journal, Volume 12, No. 2, May 2016 Since Mp 2 1 - bnp H. Vic Dannon (bnpc )rnp = (0.277126027) , rnp = (0.277126027)2 h 2 e0 2 me 1 - bnp , Mp p mee 2 rH = (0.277126027)2 ( 1 - (0.02635048394)2 1 r ) 1836.152701 = 4.181142667 ´ 10-5 rH . Vnp = = (0.277126027) Mp rnp 2 1 - bnp (0.277126027) Mp 2 1 - bnp = 2 (0.277126027)2 rH 1 - bnp 1 0.277126027 m erH vH = (3.608466555)vH = (3.608466555) 1 c 137 = 7, 901, 752 m/sec 55 me Mp H Gauge Institute Journal, Volume 12, No. 2, May 2016 Wnp 2p = = H. Vic Dannon Vnp 2prnp (3.608466555)vH 2p(4.181142667) ´ 10-5 rH = 105 3.608466555 vH 4.181142667 2prH = (86, 303) WH 2p = (86, 303)(6.58472424)1015 = (5.682814561)1020 6.2 The Neutron’s Proton nth Orbit Radius, Speed, and Frequency rnp,n n 2 (2.212565574)10-15 m = n 2 (4.181142667)10-5 rH Vnp,n = = Wnp,n 2p = 1 n 3 1 7, 901, 752 m/sec n 1 (3.608466555)vH n (5.682814561)1020 cycles/sec 56 Gauge Institute Journal, Volume 12, No. 2, May 2016 = 1 n3 (86, 303) H. Vic Dannon WH . 2p Proof: The force on the Neutron’s nth orbit proton is 2 Vnp, n Mp 2 r 1 - bnp, n np,n 1 e2 = , 2 4pe0 rnp, n æ ö2 M ÷ ç e p Vnp,n rnp,n ÷÷÷ = çç çç 1 - b 2 ÷÷ 4pe0 è ø np,n 2 1 Mp 1 rnp,n , 2 1 - bnp, n Since rnp,n Mp 1- 2 bnp, n (bnp,nc )rnp,n = n(0.277126027) , me h 2 e0 2 = n (0.277126027) 1 - bnp, , n p mee 2 Mp 2 2 rH = n 2 (0.277126027)2 ( 1 - (0.02635048394)2 = n 2 4.181142667 ´ 10-5 rH . Vnp,n = n(0.277126027) æ ö÷ Mp çç rnp,n ÷÷÷ çç 2 ÷ çè 1 - bnp, ø÷ n 57 1 r ) 1836.152701 H Gauge Institute Journal, Volume 12, No. 2, May 2016 n(0.277126027) = Mp 2 1 - bnp = 2 n 2 (0.277126027)2 rH 1 - bnp 1 1 n 0.277126027 m erH vH = 1 (3.608466555)vH n = 1 1 (3.608466555) c n 137 = 1 7, 901, 752 m/sec n Wnp,n 2p H. Vic Dannon = Vnp 2prnp 1 (3.608466555)vH n = 2pn 2 (4.181142667) ´ 10-5 rH = = = = 1 n3 1 n3 1 n 3 1 n 3 105 3.608466555 vH 4.181142667 2prH (86, 303) wH 2p (86, 303)(6.58472424)1015 (5.682814561)1020 58 me Mp Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon III. ZINC NUCLEUS 7. Nucleus Radiation Equilibrium The Zinc Nucleus has A=65 Nucleons: Z = 30 Protons, and A - Z = 35 Neutrons. Each neutron is a mini-Hydrogen atom made of an electron and a proton. The Nucleonic electrons orbitals bond the Protons, and the Neutronic Protons of the Nucleus. The 30 Protons, the 35 Neutronic Protons and the 35 Nucleonic electrons constitute the Zinc Nucleus. The Nucleus electrons at orbit radius rNuc encircle the 65 Protons that orbit the center at radius rp . We approximate the 35 Neutronic electrons by a charge of 35e, with mass 35m e orbiting the center at radius rNuc , and speed bNucc . We approximate the 65 protons by a charge of 65e, 59 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon with mass 65M p orbiting the center at radius rp , and speed bpc . The nucleus is stable because the power radiated by the accelerating Neutronic electrons towards the Protons, equals the power radiated by the accelerating protons towards the Neutronic electrons ZINC-NUCLEUS RADIATION POWER EQUILIBRIUM 65 protons with mass 30 electrons with mass 65M p , charge 65e, and radius rp 35m e , charge 35e and radius rNuc 7.1 The Nucleus Electrons Acceleration 60 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon The electrons are attracted to the protons by the force 35me 2 1 - bNuc a Nuc » 1 (65e )(35e ) , 2 4pe0 rNuc Thus, the electrons accelerate at aNuc » 2 1 - bNuc 1 65e 2 , 2 me 4pe0 rNuc and radiate photons into the Protons fields. 7.2 The Nucleus Electrons Radiation Power (35e )2 6pe0c 3 2 aNuc 2 2 (35e )2 æçç 1 - bNuc 1 65e 2 ÷÷ö » ÷÷ ç 2 me 4pe0 rNuc ÷ø 6pe0c 3 çè 7.3 The 65 Protons Acceleration The 65 Protons of the Nucleus orbit with radius rp , at speed bp , the charge of the Nucleus Electron located at the center. The Protons with mass 65M p , and charge 65e are attracted to the 35 Nucleus electron by the force 65M p 1 - bp2 Ap » 1 (65e )(35e ) 4pe0 rp2 Thus, the protons accelerate by 61 Gauge Institute Journal, Volume 12, No. 2, May 2016 Ap » 1 - bp2 Mp H. Vic Dannon 1 35e 2 , 4pe0 rp2 and radiate photons into the Nucleonic electrons fields. 7.4 The 65 Protons Radiation Power æ 1 - b2 ö÷2 2 (65e ) 2 (65e ) çç 1 35e ÷ p ÷ Ap » ç 3 3ç 2 ÷ ÷ M 4 pe 6pe0c 6pe0c çè p 0 rp ÷ ø 2 2 7.5 Nucleus radiation Equilibrium At equilibrium, the Power radiated by the 35 Nucleus Electrons onto the 65 Protons, equals the Power radiated by the protons onto the Nucleus electrons. 2 æ 1 - b2 ö÷2 æ ö 2 2 2 2 (35e ) çç 1 - bNuc-e 1 65e ÷÷ (65e ) çç 1 35e ÷ p ÷ » ÷ ç ÷ 3ç 2 3ç 2 ÷ ÷ ç m 4 pe M 4 pe ÷ 6pe0c è 6pe0c çè e 0 rNuc-e ø p 0 rp ÷ ø 2 We use » because we assume one orbit for the protons, and one orbit for the electrons, while there are 65 proton orbits, and 35 electron orbits. This Electrodynamics equality leads to a surprisingly purely mechanical relation between the Relativistic Inertia Moments of the electron and the Nucleus: 62 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 7.6 The Zinc Nucleus’ Inertia Moments Balance The Zinc Nucleus is Electrodynamically stable if and only the Inertia Moments of its 1st orbit electron and 65 Protons are related by me 2 1 - bNuc 2 rNuc » 63 Mp 1 - bp2 rp2 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 8. rNuc rp 8.1 The Nucleus Force Balance Mp me e2 1 1 2 bNucrNuc = = bp2rp 65 1 - b 2 35 1 - b 2 107 Nuc p Proof: The Force on the 1st orbit nucleus electron is me 2 1 - bNuc 2 vNuc 1 (65e )(e ) . = 2 4pe0 rNuc rNuc Dividing both sides by c 2 , me 1 e2 2 bNucrNuc = , 2 65 1 - b 2 4 pe c 0 Nuc = = m0 2 e , 4p e2 10 7 The Force on the 1st Orbit Proton is Mp Vp2 1 - bp2 rp = 64 1 (e )(35e ) 4pe0 rp2 . Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Dividing both sides by c 2 , Mp e2 1 bp2rp = , 2 35 1 - b 2 pe c 4 0 p e2 = 107 . Therefore, Mp me 1 e2 1 2 bNuc rNuc = = bp2rp . 7 65 1 - b 2 35 1 - b 2 10 Nuc p rNuc 8.2 2 35bNuc » rp 65bp2 Proof: Dividing the Nucleus Inertia Moments Balance 7.3, me 2 1 - bNuc 2 rNuc » Mp 1 - bp2 rp2 , by the Nucleus Force balance 8.1, 35me 1- 8.3 2 bNuc 2 bNuc-e rNuc » rNuc rp Mp me 65 65M p 1- bp2 bp2rp . ´ 0.99 » 42.5 Gauge Institute Journal, Volume 12, No. 2, May 2016 Proof: me By 2.4, 2 1 - bNuc rNuc » rp H. Vic Dannon Mp 2 rNuc » rp2 , 1 - bp2 2 M p 1 - bNuc . 4 m e 1 - bp2 Even if bNuc = 0.5 , and bp = 0.1 , then, 4 2 1 - bNuc 1 - bp2 we’ll use 0.99 . Then, rNuc rp Mp me ´ 0.99 = 1836.152701 ´ 0.99 42.5 . 2 bNuc 42.5 8.4 8.5 Proof: Wp wNuc 65 2 b 35 p 1 = 35 çæ M p ÷÷ö4 ç ÷ = 4.803464029 65 ççè m e ø÷ Divide the Force Balance, 35m e 2 1 - bNuc 2 3 wNuc rNuc = 66 65M p 1 - bp2 W2prp3 » 0.933 1 . Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon by the Inertia Moments Equilibrium, me 2 1 - bNuc 2 rNuc » Mp 1 - bp2 rp2 . Then, 2 35wNuc rNuc = 65W2p rp Wp wNuc = 35 rNuc 65 rp = 35 æç M p ö÷÷4 ç ÷ 65 ççè m e ø÷ 1 = (0.733799385)(6.546018057) = 4.803464029 . 67 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 9. The Neutronic Electron Energy 9.1 The Neutronic Electron’s Electric Binding Energy in the 1st orbit 1 65e 2 =4pe0 rNuc U electric 65e 2 c =107 rNuc 1 2 9.2 The Neutronic Electron’s Magnetic Energy U magnetic = = 1 4 2 m0rNuce 2n Nuc 1 (4p)2 2 m0vNuc e2 1 rNuc Proof: The current due to the electron’s charge e that turns n Nuc cycles/second is I = en Nuc The Magnetic Energy of this current is [Benson, p.486] 1 LI 2 . 2 By [Fischer, p.97] L = m0 2 prNuc = 12 m0rNuc . 2prNuc 68 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Thus, the magnetic energy due to the electron’s current is 11 m r (en Nuc )2 2 2 0 Nuc 1 4 = 2 m0rNuce 2 n Nuc 1 4 p2 = 1 (4p)2 2 wNuc 2 m0vNuc e2 1 rNuc . 9.3 The Neutronic Electron’s Magnetic Energy in its First Orbit is negligible compared to its Electric Energy Proof: 1 U magnetic U electric = 2 2 1 v e m 0 Nuc rNuc (4p)2 1 65e 2 4 pe0 rNuc = 2 1 1 vNuc 65 4p c 2 = 1 1 2 b 65 4p Nuc Even if bNuc = 0.5 , = 0.25 » 3 ´ 10-4 . 65 ⋅ 4p 9.4 The Neutronic Electron Rotation Energy 69 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon me 1 1 c 2 65e 2 2 vNuc = 2 1 - b2 2 107 rNuc Nuc Proof: From the balance between the Centripetal and Electric forces on the electron in its Neutron orbit, me 2 1 - bNuc 2 vNuc 1 65e 2 , = 2 rNuc 4pe0 rNuc me 1 1 1 65e 2 2 vNuc = . 2 1 - b2 2 4pe0 rNuc Nuc Substituting 1 4p = c 2m0 , and m0 = , e0 107 1 c 2 65e 2 . = 2 107 rNuc 9.5 The Neutronic Electron Total Energy U electron » m ec 2 + 1 1 2 65e 2 c 2 107 rNuc Proof: U electron » mec 2 + 1 107 c2 65e 2 1 c 2 65e 2 rNuc 2 107 rNuc 1 1 2 65e 2 c = mec + . 2 107 rNuc 2 70 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 10. The Protons’ Energy 10.1 The Neutronic Proton Electric Binding Energy 1 35e 2 =4pe0 rp U electric =- 1 107 c2 35e 2 rp 10.2 The Neutronic Proton Magnetic Energy U magnetic = = 1 4 m0 r6pe 2n p2 1 (4 p)2 m0Vp2e 2 1 rp Proof: The current due to the Neutronic Proton charge -e that turns n p cycles/second is I = -en p The Magnetic Energy of this current is [Benson, p.486] 1 LI 2 . 2 By [Fischer, p.97] L = m0 prp2 2prp 71 = 12 m0rp . Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Thus, the magnetic energy due to the Nucleus current is 11 m r (en p )2 22 0 p = 1 4 m0 rpe 2 n p2 1 4 p2 = 1 (4p)2 W2p m0Vp2e 2 1 . rp 10.3 The Neutronic Proton Magnetic Energy in its Orbit is negligible compared to its Electric Energy Proof: 1 U magnetic U electric = 2 2 1 m V e 0 p rp (4 p)2 1 35e 2 4 pe0 rp 2 1 1 Vp = 35 4p c 2 = 1 1 bp2 35 4p » 0.01 » 2.3 ´ 10-5 . 35 ⋅ 4p If bp = 0.01 , 10.4 The Neutronic Proton Rotation Energy 72 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 1 Mp 1 c 2 35e 2 2 V = 2 1-b 2 p 2 107 rp p Proof: From the balance between the Centripetal and Electric forces on the Neutronic Proton in its orbit, Mp Vp2 1 35e 2 = , 4pe0 rp2 1 - bp2 rp 1 Mp 1 1 35e 2 2 v = . 2 1 - b2 p 2 4pe0 rp p Substituting 1 4p = c 2m0 , and m0 = , e0 107 = 1 c 2 65e 2 . 2 107 rp 10.5 The Neutronic Proton Total Energy U Proton 1 1 2 35e 2 c » M pc + rp 2 107 2 Proof: U Proton 35e 2 1 c 2 35e 2 c » M pc + rp 2 107 rp 107 2 = M pc 2 + 1 2 1 1 2 35e 2 c . rp 2 107 73 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 11. The Nucleus Mass-Energy 11.1 The Zinc Nucleus Mass-Energy Balance rp ö÷ 1 1 e2 æ ÷÷ M n - M p - me » 65 ççç 1 + 2 107 rp çè rNuc ÷ø Dm Proof: 30M pc 2 + 35M nc 2 = 65U Proton + 35U Neutronic electron 1 1 2 35e 2 1 1 2 65e 2 2 = 65M pc + 65 c + 35m ec + 35 c . 2 107 rp 2 107 rNuc 2 Dividing by c 2 , 35(M n - M p - me ) » rp ö÷ 1 1 e2 æ ÷÷ . 35 ⋅ 65 ççç 1 + 2 107 rp çè rNuc ø÷ 74 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 12. The Protons’ Orbit Radius 12.1 rp ö÷ 1 1 e 2 æç ÷÷ çç 1 + rp » 65 ⋅ 2 107 Dm èç rNuc ø÷ 12.2 rp 1.436178468 ´ 10-13 Proof: Substituting e = -1.60217733 ´ 10-19 C , M N » 1.674 128 6 ´ 10-27 Kg , M p » 1.672 623 1 ´ 10-27 Kg , m e » 9.109 389 7 ´ 10-31 Kg , 1 1 e2 1 1 (1.60217733)2 ´ 10-38 » 2 107 Dm 2 107 5.9456103 ´ 10-31 0.431742422 ´ 10-7 = 2.15871211 ´ 10-15 . By 4.3, rp rNuc 1 » 0.0223529411 42.5 rp » 65 ´ 2.15871211 ´ 10-15 (1 + 0.0223529411) = 1.436178468 ´ 10-13 . 75 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 12.3 The Zinc Proton 1st Orbit Radius is 65´(Neutron Proton 1st Orbit Radius) Proof: By [Dan5], the Proton Orbit Radius in the Neutron is rp in n = 2.209505336 ´ 10-15 rp rp in n = 1.436178468 ´ 10-13 2.209505336 ´ 10-15 = 64.9999999 . By [Dan5, 8.3, or Dan4, p.21] 12.4 The Hydrogen Proton 1st Orbit Radius is rp in H = 1.221173735 ´ 10-12 12.5 The Hydrogen Proton 1st Orbit Radius is about 8.5´(The Zinc Proton 1st Orbit Radius) Proof: rp in H rp = 1.221173735 ´ 10-12 1.436178468 ´ 10-13 » 8.502938613 . 76 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 13. The Protons’ Speed bp4 13.1 2 2 æ 1 1 e 2 ÷÷ö 2 æç 1 1 e 2 ö÷÷ ç + çç 35 ÷ b - ç 35 ÷ »0 çè 107 M p rp ÷ø p èçç 107 M p rp ø÷ Proof: From the Force Balance, 8.1, Mp 1 - bp bp2 bp4 bp2rp 2 = 35e 2 107 1 e2 1 - bp2 » 35 7 M r 10 p p 1 2 2 æ 1 1 e 2 ö÷÷ 2 æç 1 1 e 2 ö÷÷ ç + çç 35 ÷ b - ç 35 ÷ » 0 . çè 107 M p rp ø÷ p èçç 107 M p rp ø÷ Substituting e = -1.60217733 ´ 10-19 C , M p » 1.672 623 1 ´ 10-27 Kg , rp » 1.436178468 ´ 10-13 35 1 e2 1 (1.60217733)2 ´ 10-38 1 » 35 107 M p rp 107 1.672 623 1 ´ 10-27 1.436178468 ´ 10-13 1 = 3.740095636 ´ 10-4 . 77 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 2 2 ö æ çç 35 1 1 e ÷÷ » 1.398831537 ´ 10-7 çç 107 M r ÷÷ è p pø 13.2 bp4 + 1.398831537 ´ 10-7 bp2 - 1.398831537 ´ 10-7 » 0 Using MAPLE > with(RootFinding): > > 13.3 bp2 = 3.739396286 ´ 10-4 13.4 bp » 0.01933751868 78 Gauge Institute Journal, Volume 12, No. 2, May 2016 13.5 The Zinc Protons Speed Vp 5, 801, 257 m/sec . Proof: Vp = bpc » 0.01933751868c » 5, 801, 257 m/sec . By [Dan5, 9.5], 13.6 The Neutron Proton Speed Vp in N 7, 905,145 m/sec . 13.7 The Neutron Proton Speed is about 1.36´( The Zinc Protons Speed) Proof: Vp-in-N Vp 7, 905,145 5, 801, 257 » 1.362660713 . By [Dan5, 9.6], 13.8 The Hydrogen Proton Speed Vp in H 330, 420 m/sec 79 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 13.9 The Zinc Proton Speed is about 17.5 ´(Hydrogen Proton Speed) Proof: Vp Vp in H 5, 801, 257 330,420 » 17.55722111 . 80 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 14. The 1st Orbit Proton Frequency 14.1 The 1st Orbit Proton Angular Velocity Wp = Proof: Wp = » Vp rp = 4.039370544 ´ 1019 radians/sec Vp rp 5, 801, 257 m/sec 1.436178468 ´ 10-13m = 4.039370544 ´ 1019 radians/sec . 14.2 The 1st Orbit Proton Frequency is Wp 2p Proof: = 6.42885789 ´ 1018 cycles/sec Wp 4.039370544 ´ 1019 radians/sec = 2p 2p = 6.42885789 ´ 1018 cycles/sec . By [Dan5, 10.7], 81 Gauge Institute Journal, Volume 12, No. 2, May 2016 14.3 The Neutron’s Proton Frequency is Wp in n 2p 14.4 = 5.69422884 ´ 1020 cycles/sec The Neutron’s Proton Frequency is 88´(the 1st Orbit Protons Frequency) Wp in n Proof: 2p Wp = 5.69422884 ´ 1020 6.42885789 ´ 1018 2p 88.57294632 . By [Dan5, 10.8] 14.5 The Hydrogen Proton Frequency is Wp in H 2p = 4.30634292 ´ 1016 cycles/sec 14.6 The 1st Orbit Proton Frequency is 149´(Hydrogen Proton’s Frequency) 82 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 Wp Proof: 2p Wp in H = 6.42885789 ´ 1018 4.30634292 ´ 1016 2p 149.2881082 . 83 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 15. The Nucleus Electron Speed from Radiation Equilibrium 15.1 2 bNuc 42.5bp2 2 42.5bp2 Proof: By 8.4, bNuc 65 0.02951452 35 65 35 = 42.5 ⋅ 3.739396286 ´ 10-4 65 35 = 0.02951452 . 15.2 bNuc 0.171797906 15.3 vNuc 51, 539, 372 m/sec Proof: vNuc 0.171797906 ⋅ 300, 000, 000 = 51, 539, 372 m / sec Next, we solve the Force equation for estimates to bNuc , and to vNuc . 84 2 bNuc , and obtain closer Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 16. The Nucleus Electron Speed from the Force Equation 16.1 4 bNuc 2 2 2 ö 2 ö æ æ 65 e 65 e ÷÷ 2 ÷÷ ç + ççç ÷÷ bNuc - çç ÷ »0 7 7 çè 42.5rpm e 10 ø çè 42.5rpme 10 ø÷ Proof: The Force on the Nucleus 1st orbit electron is me 2 1 - bNuc 2 bNuc 2 bNuc rNuc = 65 e2 107 , 65 e 2 2 , 1 - bNuc = 7 rNucm e 10 Squaring both sides, 4 bNuc æ 65 e 2 ÷ö2 æ 65 e 2 ÷ö2 2 ÷÷ bNuc ÷ »0 + ççç - ççç 7 ÷ çè rNucm e 107 ÷÷ø èç rNucm e 10 ø Since rNuc 42.5rp 4 bNuc 2 2 2 ö 2 ö æ æ 65 e 65 e ÷÷ 2 ÷÷ ç + ççç ÷÷ bNuc - çç ÷ » 0 . 7 7 çè 42.5rpm e 10 ø çè 42.5rpm e 10 ø÷ 85 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon e2 65(1.60217733)2 ´ 10-38 107 (42.5rp )m e 107 (42.5)(1.436178 ´ 10-13 )(9.109 389 7 ´ 10-31 ) 65 = 3.0008759 ´ 10-2 . 2 æ 65 ö÷2 e çç -4 ÷ çç 107 (42.5r )m ÷÷ 9.005256346 ´ 10 . è p eø 4 2 bNuc + (9.005256346 ´ 10-4 )bNuc - (9.005256346 ´ 10-4 ) » 0 . 16.2 4 2 bNuc + (9.005256346)10-4 bNuc - (9.005256346)10-4 » 0 2 º x , we seek the zeros of the polynomial Denoting bNuc f (x ) = x 2 + (9.005256346 ´ 10-4 )x - (9.005256346 ´ 10-4 ) between x = 0 , and x = 1 . We used Maple Root-Finding Program. Maple Input and Output follow: > with(RootFinding): > > > 86 Gauge Institute Journal, Volume 12, No. 2, May 2016 2 bNuc 0.02956187425 16.3 2 Compare with 15.1 bNuc 0.02951452 bNuc 0.1719356689 16.4 Compare with 15.2 bNuc 0.171797906 16.5 The Nucleus Electrons Speed vNuc 51, 560,184 m/sec . Compare with 15.3 vNuc 51, 539, 372 m/sec Proof: bNucc 0.1719356689c » 51, 560,184 m/sec . By [Dan5, 11.5], 16.6 The Neutron Electron Speed ve 51, 558,134 m/sec . 87 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 16.7 Neutron Electron Speed (Nucleus Electrons Speed) Proof: 51, 558,134 » 1. 51, 560,184 By [Dan5, 11.6], 16.8 The Hydrogen Electron Speed vH a c = 2,189, 781 m/sec . » 1 137 Thus, 16.9 Zinc Nucleus Electron Speed 23.5´(Hydrogen Electron Speed) Proof: 51, 560,184 » 23.5458176 . 2,189, 781 88 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 17. Nucleus Electron 1st Orbit Radius 17.1 1st Orbit Radius of the Zinc Nucleus Electron rNuc » Proof: Substitute 35 2 rp bNuc 6.108688998 ´ 10-12 2 65 bp rp » 1.436178468 ´ 10-13 , bp2 = 3.739396286 ´ 10-4 , 2 bNuc 0.02953836208 . By [Dan5, 12.1], 17.2 Neutron Electron 1st Orbit Radius RN 9.398741807 ´ 10-14 17.3 Zinc Nucleus Electron 1st Orbit Radius is 65´ (Neutron Electron Orbit Radius) Proof: 6.108688998 ´ 10-12 9.398741807 ´ 10-14 = 64.99475274 89 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon By 2.3, 17.4 The Zinc Nucleus Electron Orbit Radius is 42.5´(The Zinc Proton Orbit Radius) 17.5 The Hydrogen Electron Orbit Radius rH = 5.29277249 ´ 10-11 m . 17.6 The Hydrogen Electron Orbit Radius is about 8.7´( Zinc Nucleus Electron Orbit Radius) Proof: 5.29277249 ´ 10-11 6.108688998 ´ 10-12 = 8.664334511 . 90 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 18. 1st Orbit Nucleus Electron Frequency 18.1 The 1st Orbit Zinc Nucleus Electron Angular Velocity wNuc = Proof: wNuc = vNuc = 8.440466361 ´ 1018 radians/sec rNuc vNuc rNuc » 51, 560,184 m/sec 6.108688998 ´ 10-12 m = 8.440466361 ´ 1018 radians/sec . 18.2 The 1st Orbit Nucleus Electron Frequency wNuc = 1.343341943 ´ 1018 cycles/sec 2p Proof: wNuc 8.440466361 ´ 1018 = 2p 2p = 1.343341943 ´ 1018 cycles/sec . 91 Gauge Institute Journal, Volume 12, No. 2, May 2016 18.3 H. Vic Dannon 1st Orbit Neutron Electron Frequency is 65´ (1st Orbit Zinc Nucleus Electron Frequency) Proof: we in n 20 2p = 5.485642074 ´ 10 wNuc 8.440466361 ´ 1018 2p 64.99216796 . 18.4 1st Orbit Hydrogen Electron Frequency we in H = 6.58472424 ´ 1015 2p Proof: we in H = v e in H 2,189,781 m/sec » re in H 5.2977249 ´ 10-11 m = 4.1334366 ´ 1016 radians/sec we in H 4.137304269 ´ 1016 radians/sec = 2p 2p = 6.58472424 ´ 1015 . 18.5 1st Orbit Zinc Nucleus Electron Frequency is 204´(1st Orbit Hydrogen Electron Frequency) 92 Gauge Institute Journal, Volume 12, No. 2, May 2016 Proof: wNuc 18 2p = 1.343341943 ´ 10 we in H 6.58472424 ´ 1015 2p 204.1997296 . 93 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 19. Nucleus Electron Quantum of Angular Momentum We associated with the Zinc Nucleus Electron Orbit Radius rNuc 6.108688998 ´ 10-12 m , Speed vNuc 51, 560,184 m/sec , bNuc 0.1719356689 . To obtain these, we averaged the 35 electrons orbits into one orbit. Now, we will consider that one orbit as the 1st orbit of the electrons in the Nucleus, and construct on it the 2nd, 3rd, 4th,…,orbits. The Zinc Nucleus Electron nth orbit has angular momentum me 1- 2 bNuc, n 2 wNuc,nrNuc, n. The Nucleus Electron Quantum of Angular Momentum is the Angular Momentum of its 1st orbit: 19.1 Zinc Nucleus Electron Quantum of Angular Momentum 94 Gauge Institute Journal, Volume 12, No. 2, May 2016 me 2 1 - bNuc H. Vic Dannon vNucrNuc = (2.761794253) Proof: 1 2 1 - bNuc = 1 1 - (0.1719356689)2 » 1.015116939 me 1= 2 bNuc vNucrNuc = (1.015116939)(9.1093897)10-31(51, 560,184)(6.108688998)10-12 (1.05457266)10-34 = (2.761794253) . 19.2 Angular Momentum of the nth orbit Nucleus electron me 1- 2 bNuc, n vNuc,nrNuc,n = n(2.761794253) 95 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 20. The Nucleus Electron nth Orbit Radius, Speed, and Frequency 20.1 The Zinc Nucleus Electron 1st Orbit Radius, Speed, and Frequency rNuc 6.108688998 ´ 10-12 m = 1 2 (2.761794253)2 1 - bNuc rH 65 = (0.110142785)rH vNuc 51, 560,184 m/sec = 65 v 2.761794253 H = (23.53542445)vH wNuc = 1.343341943 ´ 1018 cycles/sec 2p = 652 (13.21701291)3 96 1 2 1 - bNuc-e vH 2prH Gauge Institute Journal, Volume 12, No. 2, May 2016 = (203.5958043) H. Vic Dannon vH . 2prH Proof: The force on the Nucleus 1st orbit electron is me 2 1 - bNuc 2 vNuc 1 65e 2 = , 2 4pe0 rNuc rNuc 2 æ ö m ÷ 65e ç e = çç vNucrNuc ÷÷÷ çè 1 - b 2 4pe0 ø÷ Nuc 2 Since rNuc me 2 1 - bNuc 1 me 2 1 - bNuc vNucrNuc = (2.761794253) , 2 e 1 2h 2 0 = , (2.761794253) 1 - bNuc p mee 2 65 rH = 1 2 (2.761794253)2 1 - bNuc rH 65 = 1 (2.761794253)2 1 - (0.1719356689)2 rH 65 7.627507496 0.985108179 = (0.110142785)rH . vNuc = (2.761794253) me rNuc 2 1 - bNuc 97 1 rNuc , Gauge Institute Journal, Volume 12, No. 2, May 2016 (2.761794253) = me 2 1 - bNuc = H. Vic Dannon æ1 ö çç (2.761794253)2 1 - b 2 r ÷÷ Nuc H ÷ çè 65 ø 65 2.761794253 m erH vH = 65 v 2.761794253 H = (23.53542445)vH wNuc v = Nuc 2p 2prNuc = = 65 v 2.761794253 H æ1 ö 2 2p çç (2.761794253)2 1 - bNuc rH ÷÷÷ çè 65 ø 652 1 (2.761794253)3 2 1 - bNuc vH 2prH We in H 2p = (203.5958043) vH 2prH 20.2 The Nucleus Electron nth Orbit Radius, Speed, and Frequency 98 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon rNuc,n = n 2rNuc , n 2 (6.108688998 ´ 10-12 )m vNuc,n = 1 v , n Nuc 1 51, 560,184 m/sec n = 1 wNuc , n 3 2p wNuc,n 2p = 1 n 3 (1.343341943)1018 Proof: The force on the Nucleus nth orbit electron is me 2 vNuc, n 2 r 1 - bNuc, n Nuc,n 1 65e 2 = , 2 4pe0 rNuc, n æ ö÷2 ç me 65e = çç vNuc,nrNuc,n ÷÷÷ ç 2 ÷÷ 4pe0 çè 1 - bNuc, ø n 2 Since me 2 1 - bNuc, n rNuc,n = 2 1 - bNuc, n vNuc,nrNuc,n = n(2.761794253) , 1 2 h 2 e0 2 n (2.761794253)2 1 - bNuc, n , 2 65 p mee rH = 1 me 1 2 2 n (2.761794253)2 1 - bNuc, n rH 65 99 1 rNuc,n , Gauge Institute Journal, Volume 12, No. 2, May 2016 = n2 H. Vic Dannon 1 (2.761794253)2 1 - (0.1719356689)2 rH 65 7.627507496 0.985108179 = n 2 (0.110142785)rH , = n 2rNuc . vNuc,n = = n(2.761794253) me rNuc,n 2 1 - bNuc,n n(2.761794253) me 2 1 - bNuc, n = æ n2 ö çç (2.761794253)2 1 - b 2 r ÷÷ Nuc,n H ÷ çè 65 ÷ø 1 65 n 2.761794253 m erH vH wNuc,n 2p = 1 65 v n 2.761794253 H = 1 (23.53542445)vH n = 1 v . n Nuc = v Nuc,n 2prNuc,n 100 Gauge Institute Journal, Volume 12, No. 2, May 2016 = = H. Vic Dannon 1 65 v n 2.761794253 H æ n2 ö 2 2p çç (2.761794253)2 1 - bNuc rH ÷÷÷ çè 65 ÷ø 1 652 1 n 3 (2.761794253)3 2 1 - bNuc vH 2prH We in H 2p = = 1 n3 (203.5958043) vH 2prH 1 wNuc,n n 3 2p 101 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 21. The Nucleus Proton Quantum of Angular Momentum We associated with the Zinc’s Nucleus Proton Orbit Radius rp 1.436178468 ´ 10-13 , Speed Vp 5, 801, 257 m/sec , bp » 0.01933751868 . To obtain these, we averaged the 65 protons orbits into one orbit. Now, we will consider that one orbit as the 1st orbit of the protons in the Nucleus, and construct on it the 2nd, 3rd, 4th,…,orbits. The Nucleus Electron nth orbit has angular momentum me 2 1 - bNuc, n 2 wNuc,nrNuc, n. The Nucleus Proton nth orbit has angular momentum Mp 1- 2 bp, n 2 Wp,n rp, n. The Zinc Nucleus Proton Quantum of Angular Momentum is the Angular Momentum of its 1st orbit: 102 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 21.2 Quantum of Zinc Nucleus Proton Angular Momentum Mp 1- bp2 Vp rp = (13.21701291) Proof: 1 1 - bp2 = 1 1 - (0.01933751868)2 » 1.000187022 Mp 1 - bp2 = Vp rp 1 = (1.000187022)(1.6726231)10-27 (5, 801, 257)(1.436178468)10-13 (1.05457266)10-34 = (13.21701291) . 21.3 The Angular Momentum of the nth orbit proton Mp 1- 2 bp, n Vp,n rp,n = n(13.21701291) 103 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 22. The Nucleus Proton nth Orbit Radius, Speed, and Frequency 22.1 The Zinc Nucleus Proton 1st Orbit Radius, Speed, and Frequency rp 1.436178468 ´ 10-13m = me 1 (13.21701291)2 1 - bp2 (r ) 35 M p p in H = (0.116456295)rp in H Vp 5, 801, 257 m/sec = 1 ö4 æ Mp ÷ 35 çç ÷÷ Vp in H ç 13.21701291 çè me ø÷ = (17.33452434)Vp in H Wp 2p = 6.42885789 ´ 1018 cycles/sec 104 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 3 æ M p ö÷4 35 çç ÷÷ = 3ç ç m (13.21701291) è e ø÷ 2 1 1- bp2 (n p in H ) » (148.85)n p in H Proof: The force on the Nucleus 1st orbit proton is Mp Vp2 1 35e 2 = , 2 2 r pe 4 r 1 - bp p 0 p æ M ö÷2 ç 35e p = çç Vprp ÷÷÷ ç 2 ÷ 4pe0 èç 1 - bp ø÷ 2 1 Mp 1 , rp 1 - bp2 Since rp = Mp 1- bp2 (bpc )rp = (13.21701291) , m 1 h 2 e0 (13.21701291)2 1 - bp2 e , 35 p mee 2 Mp rH = me me 1 , (13.21701291)2 rH 1 - bp2 35 Mp Mp rH = me 1 (13.21701291)2 1 - bp2 r 35 Mp H = 1 1 (13.21701291)2 1 - (0.01933751868)2 rH 35 1836.152701 174.6894303 0.999813012 105 0.02333703 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon = (0.116456295)rH . Vp = (13.21701291) Mp r 2 p 1 - bp = = (13.21701291) æ1 ö çç (13.21701291)2 r 1 - b 2 m e ÷÷ ÷ H p ç M p ø÷ 1 - bp2 çè 35 Mp 35 13.21701291 m erH vH 1 æ M p ÷ö4 35 çç ÷÷ = ç 13.21701291 èç me ÷ø 1 æ ö çç me ÷÷4 v çç M ÷÷ H è pø VH 6.546018057 = (17.33452434)VH 1 ö4 Vp 2prp æ Mp ÷ 35 çç ÷÷ V 13.21701291 ççè me ÷ø H = 2p me 1 r (13.21701291)2 1 - bp2 Mp H 35 3 æ M p ö÷4 35 çç ÷ = ç 3çm ÷ ÷ (13.21701291) è e ø 2 VH prH 1 - bp2 2 1 Wp in H 2p 106 Gauge Institute Journal, Volume 12, No. 2, May 2016 = (148.8500409) H. Vic Dannon Wp in H 2p 22.2 The Zinc Nucleus Proton nth Orbit Radius, Speed, and Frequency rp,n = n 2rp , n 2 (1.436178468 ´ 10-13 )m 1 V , n p Vp,n = 1 5, 801, 257 m/sec n Wp,n 2p = = 1 Wp , n 3 2p 1 n3 6.42885789 ´ 1018 cycles/sec Proof: The force on the Nucleus nth orbit proton is Mp Vp,2 n 2 r 1 - bp, n p,n 1 35e 2 = , 2 4pe0 rp, n æ M ö2 ÷ ç 35e p = çç Vp,n rp,n ÷÷÷ ç 2 ÷ 4pe0 èç 1 - bp,n ø÷ 2 1 Mp 2 1 - bp, n Since Mp 2 1 - bp, n Vp,n rp,n = n(13.21701291) , 107 1 rp,n , Gauge Institute Journal, Volume 12, No. 2, May 2016 rp,n = n 2 H. Vic Dannon 1 h 2 e0 2 me . (13.21701291)2 1 - bp, n 35 Mp p mee 2 rH = n 2 rp Then, Vp,n = n(13.21701291) æ ÷÷ö çç M p rp,n ÷÷ çç 2 ÷ èç 1 - bp,n ø÷ n(13.21701291) = Mp 2 1 - bp, n = æ1 ö 2 me ÷ ÷ ççç n 2 (13.21701291)2 rH 1 - bp, ÷ n çè 35 M p ÷ø 1 35 n (13.21701291) m erH vH 1 æ M p ÷ö4 1 35 çç ÷÷ = n 13.21701291 ççè me ÷ø 1 æ ö çç me ÷÷4 v çç M ÷÷ e in H è pø Vp in H 6.546018057 = 1 (17.33452434)Vp in H n = 1 V n p That is, the proton’s nth orbit speed is at most its 1st orbit speed, 108 Gauge Institute Journal, Volume 12, No. 2, May 2016 bp,n £ bp , 2 1 - bp, n » 1, rp,n » n 2 m 1 (13.21701291)2 rH e 35 Mp = n 2 rp Wp,n 2p = Vp,n 2prp,n 1 Vp n = 2pn 2rp = 1 Wp n 3 2p 109 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 23. Nucleus Radiation Equilibrium is Equivalent to the Proton Quantized Angular Momentum At equilibrium, 23.1 1) the Nucleus is electrodynamically stable if and only if the inertia moments of the nth orbit electron and the nth orbit proton are equal: me 2 1 - bNuc, n 2 rNuc, n = Mp 2 1 - bp, n 2 rp, n 2) The Angular velocities of the proton, and the electron are related by Wp,n wNuc,n 1 = 35 æç M p ö÷÷4 ç ÷ = 4.803464029 65 ççè m e ÷ø 23.2 The nth Orbit Radiation Equilibrium is equivalent to the nth Orbit Quantized Angular Momentum 110 Gauge Institute Journal, Volume 12, No. 2, May 2016 2 m erNuc, n 2 1 - bNuc, n Proof: = H. Vic Dannon 2 M p rp, n 2 1 - bp, n 2 M p rp, n Wp,n 2 1 - bp, n 1 35 æç M p ö÷÷4 = n(2.761794253) ç ÷ 65 ççè m e ÷ø The nth Orbit Radiation Equilibrium is 2 m erNuc, n 1- 2 bNuc, n = 2 M p rp, n 2 1 - bp, n the Proton’s n th orbit has Angular Momentum Mp 2 rp, n Wp,n = 2 1 - bp, n me 2 1-bNuc, n 2 rNuc, n me 2 rNuc, n wNuc,n Wp,n 2 wNuc,n 1 - bNuc, n 1 n (2.761794253) 35 æç M p ö÷÷4 ç ÷ 65 ççè m e ÷÷ø 1 35 æç M p ÷÷ö4 = n(2.761794253) ç ÷ . 65 ççè m e ÷ø 111 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon IV. ZINC ATOM 24. Zinc Atom Radiation Equilibrium The Zinc Nucleus has A=65 Nucleons: Z = 30 Protons, and A - Z = 35 Neutrons. The 30 Atomic electrons orbitals balance the 30 atomic protons, and bond the Zinc Atom The 30 Atomic electrons orbit the 30 atomic Protons that orbit the center at radius re . Since the 30 Atomic electrons do not interact with the interior of the nucleus, the 30 Atomic protons appear located at the boundary of the nucleus, orbiting the center at radius rNuc . We approximate the 30 atomic electrons by a charge of 30e, with mass 30m e orbiting the center at radius re , and speed bec . We approximate the 30 atomic protons by a charge of 30e, 112 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon with mass 30M p orbiting the center at radius rNuc , and speed bpNucc . The Zinc atom is stable because the power radiated by the accelerating atomic electrons towards the Atomic Protons, equals the power radiated by the accelerating atomic protons towards the atomic electrons ZINC-ATOM RADIAION POWER EQUILIBRIUM 30 Atomic protons with mass 30M p , and radius rNuc 30 Atomic electrons with mass 30m e , and radius re 24.1 The Atomic Electrons Acceleration The Atomic electrons are attracted to the Atomic protons by the force 113 Gauge Institute Journal, Volume 12, No. 2, May 2016 30me 1 - be2 ae » H. Vic Dannon 1 (30e )(30e ) , 4pe0 re2 Thus, the Atomic electrons accelerate at ae » 1 - be2 1 (30e )2 , 30me 4pe0 re2 and radiate photons into the Atomic Protons fields. 24.2 The Atomic Electrons Radiation Power is 2 æ ö 2 2 (30e ) 2 (30e ) çç 1 - be 1 (30e ) ÷÷ ae » ÷ ç 6pe0c 3 6pe0c 3 çè 30m e 4pe0 re2 ø÷÷ 2 2 24.3 The Atomic Protons Acceleration The Atomic protons orbit the charge of 30 Atomic Electrons, located at the center of a circle of Radius rNuc , at speed bpNuc . The Nucleus mass of 30M p + 35M n , and charge 30e is attracted to the Atomic electrons by the force 30M p + 35M n 2 1 - bpNuc Ap&n » 1 (30e )(30e ) , 2 4pe0 rNuc The Nucleus accelerate towards the Atomic electrons at, Ap&n » 2 1 - bpNuc 1 (30e )2 , 2 30M p + 35M n 4pe0 rNuc 114 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon and radiates photons into the Atomic electrons fields. 24.4 The Atomic Protons Radiation Power 2 (30e ) 6pe0c 3 2 Ap&n æ ö2 2 2 1 b ÷ (30e ) çç 1 (30e ) ÷ pNuc » ç ÷÷÷ 2 6pe0c 3 ççè 30M p + 35M n 4pe0 rNuc ÷ø 2 24.5 Zinc Atom Radiation Equilibrium At equilibrium, the Power radiated by the Atomic Electrons onto the Atomic Protons, equals the Power radiated by the Atomic Protons onto the Atomic electrons. 2 ö2 2 æ 2 2ö 2 æ 2÷ 1 b ç 1 b (30e ) çç 1 (30e ) ÷÷ (30e ) ç 1 (30e ) ÷ pNuc e ÷÷ » ÷ ç ç ÷ 2 4pe0 re2 ø÷ 6pe0c 3 èç m e 6pe0c 3 èçç 30M p + 35M n 4pe0 rNuc ÷ø÷ 2 We use » because we assume one orbit for the Atomic protons, and one orbit for the Atomic electrons, while there are 30 proton orbits, and 30 electron orbits. This Electrodynamics equality leads to a surprisingly purely mechanical relation between the Relativistic Inertia Moments of the Atomic electrons and the Nucleons: 24.6 The Zinc Atom Inertia Moments Balance The Zinc Atom is Electrodynamically stable if and only the Inertia 115 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Moments of its 30 electrons and 65 Nucleons are related by 30m e 1- be2 re2 » 30M p + 35M n 1- 116 2 bpNuc rN2uc Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 25. re rNuc 25.1 The Zinc Atom Force Balance 30m e 1- Proof: b 2r 2 e e be = (30e )2 10 7 = 30M p + 35M n 1- 2 bpNu c The Force on an Atomic electron is v e2 1 30e 2 = . 2 2 r 4 pe r 1 - be e 0 e me Dividing both sides by c 2 , be2 1 30e 2 = , 2 2 2 r 4 c r pe 1 - be e 0 e me = = 30m e 1- be2re be2 117 m0 30e 2 , 4p re2 1 30e 2 107 re2 = , (30e )2 107 . 2 bpNuc rNuc Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon The Force on the Nucleons is 2 30M p + 35M n VpNuc rNuc 2 1 - bpNuc 1 (30e )2 = 2 4pe0 rNuc Dividing both sides by c 2 , 2 30M p + 35M n bpNuc rNuc 2 1 - bpNuc = = 30M p + 35M n 1- 2 bpNuc (30e )2 1 2 4pe0c 2 rNuc 1 (30e )2 2 107 rNuc 2 bpNuc rNuc = , (30e )2 107 , . Therefore, 30m e 1- be2re be2 = (30e )2 10 re » 25.2 7 30M p + 35M n = 2 1 - bpNuc rNuc 2 bpNuc 2 bpNuc rNuc . be2 Proof: Divide the Nucleus Inertia Moments Balance 23.3, 30m e 1- be2 re2 » 30M p + 35M n 1- by the Force balance 24.1, 118 2 bpNu c rN2uc , Gauge Institute Journal, Volume 12, No. 2, May 2016 30m e 1 - be2 be2re = re 25.3 rNuc H. Vic Dannon 30M p + 35M n 2 1 - bpNuc 30M p + 35M n » 30m e 4 2 bpNuc rNuc . 1 - be2 2 1 - bpNuc , Proof: From the Inertia Moments Balance, 23.3, 30m e 1 - be2 re rNuc » re2 » 2 1 - bpNu c 30M p + 35M n 30m e re 25.4 30M p + 35M n » rNuc Mp me + 4 rN2uc , 1 - be2 2 1 - bpNuc . 7 Mn 6 me 63 . Proof: assuming electrons’ speed, and Nucleus speed, much smaller than light speed, 4 1 - be2 2 1 - bpNuc Therefore, 119 » 1. Gauge Institute Journal, Volume 12, No. 2, May 2016 re rNuc H. Vic Dannon Mp » me + 7 Mn 6 me 7 1836.152701 + 1838.683662 6 = = 63.09741389 . re 3.848474069 ´ 10-10 m 25.5 Proof: re 63rNuc 63(6.108688998 ´ 10-12 m) = 3.848474069 ´ 10-10 m 25.6 Proof: WpNuc we 1 æ M p 7 M ö÷4 n÷ = ççç + ÷ = 7.937253933 çè me 6 me ø÷ Divide the Force Balance, 30m e 1 - be2 we2re3 = 30M p + 35M n 2 1 - bpNuc 3 W2pNucrNuc by the Inertia Moments Equilibrium, 30m e 1- be2 re2 » 30M p + 35M n 1- 120 2 bpNu c rN2uc . Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Then, we2re = W2pNucrNuc WpNuc we = re rNuc 1 æM 7 M n ö÷÷4 = ççç p + ÷ çè m e 6 m e ø÷ = 7.937253933 . 121 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 26. The Nucleus Speed 26.1 The Nucleus Speed 30 65 bpNuc » 1 Mp me + bNuc 35 M n 30 m e Proof: Dividing the Atom Force Balance 24.1, 30M p + 35M n 2 bpNuc 1- 2 bpNuc rNuc = (30e )2 107 , by the Nucleus Force Balance, 8.1, me 1- 2 bNuc 65e 2 2 bNuc rNuc = 10 7 , we have 1 30M p + 35M n 302 2 1 - bpNuc 2 bpNuc 2 bpNuc rNuc = me 1 2 bNuc rNuc 65 1 - b 2 Nuc 30 1 = 65 30M p + 35M n 2 1 - bpNuc 1- 2 bNuc 2 , bNuc 30m e bpNuc » 30 65 1 Mp me + 4 35 M n 30 me 122 2 1 - bpNuc 1- 2 bNuc bNuc Gauge Institute Journal, Volume 12, No. 2, May 2016 Since 4 2 1 - bpNuc » 1, 2 1 - bNuc bpNuc » 30 65 1 Mp me + 35 M n 30 m e bNuc . bpNuc = 0.001854083888 26.2 Proof: H. Vic Dannon bpNuc » 30 65 1 bNuc M 35 n 0.1719356689 + 30 me me Mp 0.01078359 = 0.001854083888 . 26.3 Proof: VpNuc 556, 225 m/sec VpNuc 0.001854083888 ⋅ 300, 000, 000 = 556, 225 m / sec 123 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 27. The Atomic Electrons Speed from Radiation Equilibrium be2 27.1 Mp me + 7 Mn 2 b 6 me pNuc 2 63bpNuc Proof: be2 » re rNuc bp2Nuc Mp me + 7 Mn 2 b 6 me pNuc 2 63bpNuc . 27.2 27.3 be be 4 Mp me 30 65 + 7 Mn b 6 m e pNuc 1 4 Mp 35 M n + 30 m e me 124 bNuc Gauge Institute Journal, Volume 12, No. 2, May 2016 re Proof: be rNuc 30 65 rNuc 4 bpNuc re » Mp me + 30 65 1 Mp me 35 M n 30 m e 1 4 Mp me + 35 M n 30 m e + 35 M n 30 me be » 30 65 bNuc . 1 bNuc Mp 35 M n 0.1719356689 + 30 m e me .67936622 4 1 63 = 0.014716334 . 27.5 bNuc be = 0.014716334 27.4 Proof: H. Vic Dannon v e = 4, 414, 900 Proof: v e = 0.014716334 ⋅ 300, 000, 000 = 4, 414, 900 m/sec . 125 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 28. The Atomic Electron Speed from the Force Equation 28.1 2 2 2 ö 2 ö æ æ e e 30 30 ÷÷ b 2 - ç ÷÷ » 0 be4 + ççç çç ÷ e 7 7 ÷ çè 63rNucm e 10 ÷÷ø èç 63rNucm e 10 ø Proof: The Force on the Atomic 1st orbit electron is me 1be2 = be2 be2re = 30 e2 107 , 30 e 2 1 - be2 , 7 rem e 10 Squaring both sides, be4 æ 30 e 2 ö÷2 æ 30 e 2 ö÷2 2 ç ÷÷ be - çç ÷ + çç çèç r m 107 ø÷÷ » 0 7 çè rem e 10 ø÷ e e where re 3.848474069 ´ 10-10 m . 30 e 2 30(1.60217733)2 10-38 107 reme 107 (3.848474069)10-10 (9.109 389 7)10-31 = (2.196668758)10-4 . 126 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon æ 30 e 2 ÷ö2 ÷ 4.825353632 ´ 10-8 . ççç 7 ÷ ÷ çè 10 rem e ø be4 + (4.825353632 ´ 10-8 )be2 - (4.825353632 ´ 10-8 ) » 0 . 28.2 be4 + (4.825353632)10-8 be2 - (4.825353632)10-8 » 0 Denoting be2 º x , we seek the zeros of the polynomial f (x ) = x 2 + (4.825353632 ´ 10-8 )x - (4.825353632 ´ 10-8 ) between x = 0 , and x = 1 . We used Maple Root-Finding Program. Maple Input and Output follow: > with(RootFinding): > > 28.3 be2 0.0002196427503 127 Gauge Institute Journal, Volume 12, No. 2, May 2016 be 0.01482034920 28.4 Compare with 26.4 be 0.014716334 28.5 The Atomic Electrons Speed v e 4, 446,105 m/sec . Compare with 26.5 v e = 4, 414, 900 m/sec Proof: v e = bec (0.01482034920)c » 4, 446,105 m/sec . By [Dan5, 11.6], 28.6 The Hydrogen Electron Speed vH a c = 2,189, 781 m/sec . » 28.7 1 137 Zinc Atomic Electron Speed 2´(Hydrogen Electron Speed) Proof: 4, 446,105 » 2.03038797 . 2,189, 781 128 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 29. Atomic Electron 1st Orbit Radius 29.1 1st Orbit Radius of the Atomic Electron re » rNuc 2 bpNuc be2 3.903068097 ´ 10-10 m compare with 24.5, re 3.848474069 ´ 10-10 m Proof: Substitute rNuc » 6.108688998 ´ 10-12 , 2 bpNuc 3.437627064 ´ 10-6 , be2 0.0002196427503 . By [Dan5, 12.1], 29.2 Neutron Electron 1st Orbit Radius RN 9.398741807 ´ 10-14 29.3 Zinc Atomic Electron 1st Orbit Radius is 4153´ (Neutron Electron Orbit Radius) Proof: 3.903068097 ´ 10-10 9.398741807 ´ 10-14 = 4,152.755951 129 Gauge Institute Journal, Volume 12, No. 2, May 2016 29.2 The Hydrogen Electron Orbit Radius rH = 5.29277249 ´ 10-11 m . 29.3 The Zinc Electron 1st Orbit Radius is about 7´( Hydrogen Electron Orbit Radius) Proof: 3.903068097 ´ 10-10 5.29277249 ´ 10-11 = 7.367442007 . 130 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 30. 1st Orbit Atomic Electron Frequency 30.1 The 1st Orbit Zinc Atomic Electron Angular Velocity we in Zinc = we = Proof: we = » ve = 1.139130779 ´ 1016 radians/sec re ve re 4, 446,105 m/sec 3.903068097 ´ 10-10 m = 1.139130779 ´ 1016 radians/sec . 30.2 The 1st Orbit Atomic Electron Frequency we = 1.81298294 ´ 1015 cycles/sec 2p Proof: we 1.139130779 ´ 1016 = 2p 2p = 1.81298294 ´ 1015 cycles/sec . 131 Gauge Institute Journal, Volume 12, No. 2, May 2016 30.3 H. Vic Dannon 1st Orbit Neutron Electron Frequency is 30,258´ (1st Orbit Zinc Atomic Electron Frequency) Proof: we in n 5.485642074 ´ 1020 2p = we in Zinc 1.81298294 ´ 1015 2p 30, 258 . 30.4 1st Orbit Hydrogen Electron Frequency we in H = 6.58472424 ´ 1015 2p Proof: we in H = v e in H 2,189,781 m/sec » re in H 5.2977249 ´ 10-11 m = 4.1334366 ´ 1016 radians/sec we in H 4.137304269 ´ 1016 radians/sec = 2p 2p = 6.58472424 ´ 1015 . 30.5 1st Orbit Hydrogen Electron Frequency is 3.6´(1st Orbit Zinc Atomic Electron Frequency) 132 Gauge Institute Journal, Volume 12, No. 2, May 2016 Proof: we in H 6.58472424 ´ 1015 2p = we in Zinc 1.81298294 ´ 1015 2p 3.631983564 . 30.6 The 1st Orbit Atomic Proton Frequency WpNuc,n 2p Proof: WpNuc,n 2p » 1 n3 1 n 3 1 n 3 1 n 63 3 (1.439010597)1016 cycles/sec we 2p 63(1.81298294)1015 cycles/sec (1.439010597)1016 cycles/sec . 133 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 31. Atomic Electron Quantum of Angular Momentum We associated with the Zinc Atomic Electron Orbit Radius re 3.903068097 ´ 10-10 m , Speed v e 4, 446,105 m/sec , be 0.01482034920 . To obtain these, we averaged the 30 Atomic electrons orbits into one orbit. Now, we will consider that one orbit as the 1st orbit of the electrons in the Nucleus, and construct on it the 2nd, 3rd, 4th,…,orbits. The Zinc Atomic Electron nth orbit has Angular Momentum me 1 - be,2 n WpNuc,n we,n we,nre,2n , 1 æ M p 7 M ö÷4 n÷ = ççç + ÷ = 7.937253933 . çè m e 6 me ø÷ 134 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon The Atomic Electron Quantum of Angular Momentum is the Angular Momentum of its 1st orbit: 31.1 Zinc Atomic Electron Quantum of Angular Momentum me 1 - be2 v ere = (14.99154238) Proof: 1 1 - be2 = 1 1 - (0.01482034920)2 » 1.000109839 me 1 - be2 = v ere = (1.000109839)(9.1093897)10-31(4, 446,105)(3.903068097)10-10 (1.05457266)10-34 = (14.99154238) . 31.2 Angular Momentum of the nth orbit Atomic Electron me 1 - be,2 n v e,nre,n = n(14.99154238) 135 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 32. The Atomic Electron nth Orbit Radius, Speed, and Frequency 32.1 The Zinc Atomic Electron 1st Orbit Radius, Speed, and Frequency re 3.903068097 ´ 10-10 m = 1 (14.99154238)2 1 - be2rH 30 = (7.490721986)rH v e 4, 446,105 m/sec = 30 v 14.99154238 H = (2.001128319)vH we = 1.81298294 ´ 1015 cycles/sec 2p = 302 (14.99154238)3 136 vH 1 - be2 2prH 1 Gauge Institute Journal, Volume 12, No. 2, May 2016 = (0.267147589) H. Vic Dannon vH . 2prH Proof: The force on the Nucleus 1st orbit electron is v e2 1 30e 2 = , 4pe0 re2 1 - be2 re me 2 æ ö m ÷ 30e ç e = çç v ere ÷÷÷ çè 1 - b 2 4pe0 ÷ø e 2 Since me 1 - be2 1 me 1 - be2 v ere = (14.99154238) , 2 e 1 2h 0 re = (14.99154238) 1 - be2 , 30 p mee 2 rH = 1 (14.99154238)2 1 - be2rH 30 = 1 (14.99154238)2 1 - 0.0002196427503 rH 30 0.999890172 224.7463429 = (7.490721986)rH . ve = (14.99154238) me r 2 e 1 - be 137 1 , re Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon (14.99154238) = æ ö çç 1 (14.99154238)2 1 - b 2r ÷÷ e H÷ ø 1 - b 2 çè 30 me e = 30 14.99154238 m erH vH = 30 v 14.99154238 H = (2.001128319)vH we v = e 2p 2pre = = 30 v 14.99154238 H æ1 ö 2p çç (14.99154238)2 1 - be2rH ÷÷÷ çè 30 ø 302 vH 2prH 1 - be2 1 (14.99154238)3 we in H 2p = (0.267147589) vH 2prH 32.2 The Nucleus Electron nth Orbit Radius, Speed, and Frequency 138 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon re,n = n 2re , n 2 (3.903068097 ´ 10-10 )m 1 v , n e v e,n = 1 4, 446,105 m/sec n = 1 we , n 3 2p we,n 2p = 1 n 3 (1.81298294)1015 cycles/sec Proof: The force on the Nucleus nth orbit electron is me v e,2 n 1 - be,2 n re,n 1 30e 2 = , 4pe0 re,2n æ ö÷2 ç me 30e = çç v e,nre,n ÷÷÷ ç ÷÷ 4pe0 çè 1 - be,2 n ø 2 me Since 1 - be,2 n re,n = 1 - be,2 n v e,nre,n = n(14.99154238) , 1 2 h 2 e0 n (14.99154238)2 1 - be,2 n , 2 30 p mee rH = 1 me 1 2 n (14.99154238)2 1 - be,2 n rH 30 139 1 re,n , Gauge Institute Journal, Volume 12, No. 2, May 2016 = n2 1 (14.99154238)2 1 - 0.0002196427503 rH 30 0.999890172 224.7463429 = n 2 (7.490721986)rH , = n 2re . v e,n = = n(14.99154238) me re,n 2 1 - be,n n(14.99154238) me 1 - be,2 n = æ 2 ö çç n (14.99154238)2 1 - b 2 r ÷÷ e,n H ÷ ÷ø çè 30 1 30 n 14.99154238 m erH vH we,n 2p = 1 30 v n 14.99154238 H = 1 (2.001128319)vH n = 1 v . n e = v e,n 2pre,n 140 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 = = 1 30 v n 14.99154238 H æ n2 ö 2p çç (14.99154238)2 1 - be2rH ÷÷÷ çè 30 ø÷ 302 1 vH prH 1 - be2 2 1 n 3 (14.99154238)3 we in H 2p = = 1 n3 (0.267147589) vH 2prH 1 we,n n 3 2p 141 H. Vic Dannon Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 33. The Atomic Proton Quantum of Angular Momentum We associated with the Zinc Atomic Proton Orbit Radius rNuc 6.108688998 ´ 10-12 m , bpNuc 0.001854083888 , Speed VpNuc = bpNucc 556, 225 m/sec . To obtain these, we averaged the 30 Atomic protons orbits into one orbit, at the boundary of the Nucleus. The 30 atomic electrons react to the net charge of the 30 Atomic Protons as if the Atomic Protons where orbiting the nucleus at it boundary at radius rNuc . We will consider that one orbit as the 1st orbit of the Atomic protons, and construct on it the 2nd, 3rd, 4th,…,orbits. The Zinc Atomic Proton nth orbit has Angular Momentum Mp 2 1 - bpNuc, n VpNuc,nrNuc,n . The Atomic Proton Quantum of Angular Momentum is the Angular Momentum of its 1st orbit: 142 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 33.1 Zinc Atomic Proton Quantum of Angular Momentum Mp 1- 2 bpNuc VpNucrNuc » (53.89157159) Proof: 1 2 1 - bpNuc = 1 1 - (0.001854083888)2 » 1.000001719 Mp 2 1 - bpNuc = VpNucrNuc = (1.000001719)(1.6726231)10-27 (556, 225)(6.108688998)10-12 -34 (1.05457266)10 = (53.89157159) . 33.2 Angular Momentum of the nth orbit Atomic Electron Mp 2 1 - bpNuc, n VpNuc,nrNuc,n » n(53.89157159) 143 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 34. Atomic Radiation Equilibrium is Equivalent to the Proton Quantized Angular Momentum At equilibrium, 34.1 1) the Nucleus is electrodynamically stable if and only if the inertia moments of the nth orbit electron and the nth orbit proton are equal: 30m e 1 - be,2 n re,2n = 30M p + 35M n 2 1 - bpNuc, n 2 rNuc, n 2) The Angular velocities of the proton, and the electron are related by WpNuc,n we,n 1 æ M p 7 M ÷ö4 n÷ = ççç + ÷ = 7.937253933 çè me 6 me ÷ø 144 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 34.2 The Atomic nth Orbit Radiation Equilibrium is equivalent to the Proton’s nth Orbit Quantized Angular Momentum 30m e 1- be,2 n re,2n = 30M p + 35M n 1- 2 bpNuc, n 2 rNuc, n 1 Proof: Mp 2 1 - bpNuc, n 2 rNuc, n WpNuc,n æ M p 7 M ö÷4 n÷ = n(14.99154238) ççç + ÷ çè m e 6 m e ÷ø The nth Orbit Radiation Equilibrium is 30m e 1- be,2 n re,2n = 30M p + 35M n 1- 2 bpNuc, n 2 rNuc, n the Proton’s n th orbit has Angular Momentum Mp 2 rNuc, n WpNuc,n = 2 1 - bpNuc, n me 1-be,2 n me re,2n we,n WpNuc,n we,n 1 - be,2 n 1 n (14.99154238) re,2n æ M p 7 M ö÷4 çç n÷ çç m + 6 m ÷÷÷ è e e ø 1 æ M p 7 M ÷ö4 n÷ = n(14.99154238) ççç + ÷ . çè me 6 me ÷ø 145 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon V. NUCLEAR FORCES 35. Nucleus Zero Point Energy The electrical binding energy will exist at temperature zero, where all thermal motions cease, and is called Zero Point Energy. If the protons’ motion is neglected, the Zero Point Energy is the electrons’ total binding energy. 35.1 1 1 (35e )(65e ) 1 æç a wNuc ö÷ ÷ = h ç (35)(65) 2 4pe0 rNuc 2 çè bNuc 2p ø÷÷ -U Electrons Binding Proof: 1 1 (35e )(65e ) 1 e2 c = (35)(65) w 2 4pe0 rNuc 2 4pe0c wNucrNuc Nuc a = 1/ bNuc 1 æç a wNuc ö÷ ÷. h ç (35)(65) 2 çè bNuc 2p ø÷÷ 35.2 The Nucleus electrons’ orbit has photon’s energy 1 æ a wNuc ö÷ ÷. - h çç (35)(65) bNuc 2p ø÷÷ 2 çè 146 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 35.3 The Nucleus Ground state Energy is Zero Point Energy 1 æç a wNuc ö÷ ÷. h ç (35)(65) 2 çè bNuc 2p ø÷÷ 35.4 Nucleus Zero Point Energy 1 a w -268, 285 eV - (35)(65) 2 bNuc Nuc 1 e2 -268, 498 eV (35)(65) 8pe0 rNuc Proof: = 1 a (35)(65) = w 2 bNuc Nuc 1 1 / 137 é (6.5821220)10-16 eV ù 8.440466361 ´ 1018 (35)(65) úû 2 (0.1719356689) êë = 268, 285.5172 eV 1 e2 (35)(65) = 8pe0 rNuc 1 c2 (1.60217733)2 10-38 eV (35)(65) Joul = 2 107 (6.108688998)10-12 (1.60217733)10-19 Joul = 268, 498.2722 eV 147 Gauge Institute Journal, Volume 12, No. 2, May 2016 35.5 H. Vic Dannon The Zero Point Energy Frequency 2 268,498 eV 1.298451396 ´ 1020 cycles/second h (35)(65) Proof: 2 a wNuc (1.297990381)1020 cycles/sec bNuc 2p 268,498 eV 268,498 eV =2 h 4.1356692 ´ 10-15 eV 1.298451396 ´ 1020 cycles/second (35)(65) a wNuc 1 / 137 (1.343341943)1018 (35)(65) bNuc 2p (0.171860446) (1.297990381)1020 cycles/sec 35.6 Zinc Nucleus Zero Point Energy is 35´(Neutron’s Zero Point Energy) Proof: 268, 498 35 . 7, 671 35.7 Zinc Nucleus Zero Point Energy is 19,743´(Hydrogen’s Zero Point Energy) Proof: 268, 498 19, 742.5 . 13.6 148 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 36. Nucleus Nuclear Energy Binding Most of binding is due to the Nucleus orbiting protons, and the Protons’ binding Energy is the actual Zero Point Energy. 36.1 Nucleus Nuclear Energy Binding 1 (35e )(65e ) 1 1 c 2 (35e )(65e ) 1 a = = (35)(65) Wp 2 107 rp 2 bp 2 4pe0 rp Proof: 1 (35e )(65e ) 1 1 e2 c = (35)(65) Wp 2 4pe0 rp 2 4pe0c Wp rp a = 1/ bp 1 a (35)(65) Wp . 2 bp 36.2 Nucleus Nuclear Energy Binding is 42.5(Nucleus Zero Point Energy Binding) Proof: 1 1 e2 (35)(65) rp 2 4pe0 1 1 e2 (35)(65) 2 4pe0 rNuc = rNuc 42.5 rp 149 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 36.3 Nucleus Nuclear Energy Binding is 0.977´(Nucleus Total Energy Binding) Proof: 36.4 1 0.977 . 1 + (1 / 42.5) 1 a - (35)(65) Wp = -11, 415, 889 eV bp 2 1 e2 (35)(65) -11, 420, 788 eV 8pe0 rp Proof: 1 a (35)(65) Wp = 2 bp 1 1 / 137 é (6.5821220)10-16 eV ù (4.039370544)1019 = (35)(65) úû 2 (0.01933751868) êë = 11, 415, 888.78 eV 1 e2 (35)(65) 8pe0 rp 1 c2 (1.60217733)210-38 eV (35)(65) Joul 2 107 (1.436178468)10-13 (1.60217733)10-19 Joul = 11, 420, 788.42 eV 150 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 36.5 Hydrogen’s Nuclear Binding Energy 1 e2 1 1 æ a ÷ö 1 æ ac ö = ççç WH ÷÷ = çç ÷÷÷ ÷ø 2 çè rH ÷ø 2 4pe0 rH 2 çè bp in H Proof: 1 e2 1 1 e2 c 1 æ a ÷ö = WH ÷÷ . WH = ççç ÷ø 2 4pe0 rH 2 4pe0c WHrH 2 èç bp in H a = 36.6 WH = 1/ bp in H 1 æç ac ö÷ ç ÷. 2 çè rH ø÷÷ 1 ö4 vH æç M p ÷ 17 ç ÷÷÷ » (2.708286845)10 radians/sec ç rH çè me ø 1 Proof: æ M p ö÷4 ÷ WH = wH ççç çè m ø÷÷ e v /r H H 1 1 c 137 (1836.152701)4 = -11 (5.29277249)10 = (2.708286845)1017 . 36.7 1 æ ac ö - çç ÷÷÷ = -590 eV 2 çè rH ø÷ 151 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 1 e2 -590 eV 8pe0 rH 1 c 1 ac 1é -16 137 ù = ê (6.5821220)10 eV ú û (1.221173735)10-12 2 rH 2ë = 590.1455881 eV . 1 e2 1 c 2 (1.60217733)2 10-38 eV Joul = 2 107 (1.221173735)10-12 8pe0 rH (1.60217733)10-19 Joul = 590.3990381 eV . 36.8 Nucleus Nuclear Energy Binding is 19349´(Hydrogen’s Nuclear Energy Binding) Proof: 11, 415, 889 eV 19, 349 . 590 eV 152 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 37. Nuclear Force and Zero Point Energy Force 37.1 Zinc Nucleus Nuclear Force is 1836´(Zinc Nucleus Zero Point Energy Force) Proof: 1 1 e2 (35)(65) 2 4pe0 rp2 1 1 e2 (35)(65) 2 2 4pe0 rNuc æ r ö÷2 Mp = ççç Nuc ÷÷ » 1836 . çè rp ø÷ me 37.2 Zinc Atomic Nuclear Force is 3969´(Zinc Atomic Zero Point Energy Force) Proof: 1 1 e2 (30)(30) 2 2 4pe0 rNuc e2 1 1 (30)(30) 2 4pe0 re2 æ re ö÷2 ÷ 3969 . = çç çè r ÷÷ø Nuc (63)2 153 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 37.3 Zinc Nucleus Nuclear Force is 7,287,084´(Zinc Atomic Zero Point Energy Force) Proof: 1 1 e2 (35)(65) 2 4pe0 rp2 e2 1 1 (30)(30) 2 4pe0 re2 2 2 (35)(65) çæ re ÷ö æç rNuc ö÷÷ ÷ ç = ç ÷ 7, 287, 084 . (30)(30) çè rNuc ÷÷ø çèç rp ÷ø (63)2 1836 37.4 Zinc Nuclear Force 694,938,230´(Hydrogen’s Nuclear Force) Proof: 1 (35e )(65e ) 4pe0 rp2 1 e2 4pe0 rH2 æ r ÷ö2 ç = (35)(65)çç H ÷÷÷ . çè rp ÷ø By [Dan4, 4.4], rH » 1.221173735 ´ 10-12 æ 1.221173735 ´ 10-12 ö÷2 ÷ = (35)(65)ççç çè 2.209505336 ´ 10-15 ø÷÷ 694, 938, 230 . 154 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 38. Gamma Rays Origin is Neutron’s Protons Soft X Rays are photons at frequencies 1018 cycles/sec . The Zinc Nucleus Electron Frequency wNuc = 1.343341943 ´ 1018 cycles/sec 2p is in the range of soft X-rays. And also the Zinc Nucleus Proton Frequency Wp 2p = 6.42885789 ´ 1018 cycles/sec is in the range of soft X-rays. Hard X Rays start at 1019 cycles/sec The Neutron’s Electron Frequency wne = 8.73067052 ´ 1019 cycles/sec , 2p is in the range of Hard X Rays. Gamma Rays start at 155 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 1020 cycles/sec The Neutron’s Proton Frequency Wnp 2p 5.69422884 ´ 1020 cycles/second , is in the range of Gamma Rays. Thus, the existence of Gamma rays Radiation proves that the Neutron is a condensed Hydrogen Atom, composed of an electron, and a proton. That is, 38.1 a Neutron’s Proton excited from its orbit into a higher orbit, returns to a lower Neutron’s Orbit, and emits a Gamma Ray Photon 156 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 39. The Nuclear Binding Energy 39.1 The Zinc Nuclear Electric Binding Energy 35(M n - M p - m e )c 2 = 11.689515233 MeV Proof: From the Nucleus Mass-Energy Equation, 5.1, the source of the Electric Binding Energy rp ö÷ 1 1 (65e )(35e ) 2 æç ÷÷ c çç 1 + çè rp rNuc ÷ø 2 107 is the Nuclear Binding Energy 35(M n - M p - m e )c 2 = 35(5.9456103 ´ 10-31 )(3 ´ 108 )2 Joul Dm = 1.872867245 ´ 10-12 Joul Since Joule = 1015 MeV , 160, 2177 = 11.89515233 MeV . 39.2 The Hydrogen Atom Electric Binding Energy rp ö÷ 1 c 2 e 2 æç ÷÷ = 604.1773234eV çç 1 + 2 107 rp çè RH ø÷ 157 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Proof: Substituting from [Dan4, p.21], RH r = = 42.8503524 rp r rp = 1.221173735 ⋅ 10-12 rp ö÷ 1 9 ⋅ 1016 (1.602177331)2 10-38 1 c 2 e 2 æç 1 ÷÷ = çç 1 + (1 + ) 2 107 rp çè RH ø÷ 2 107 1.221173735 ⋅ 10-12 42.8503524 1.02333703 = 9.679990114 ´ 10-17 J = 9.679990114 ´ 10-17 ´ (6.241507649)1018 eV = 604.1773234eV . 39.3 The Zinc Nuclear (Electric) Binding Energy is 19,688 (Hydrogen Electric Binding Energy) Proof: 11,895,152.33 eV = 19, 688.18072 . 604.1773234 eV 158 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 40. The Atomic Binding Energy 40.1 The Zinc Atomic Electric Binding Energy r ö 1 1 (30e )(30e ) 2 æç c ç 1 + Nuc ÷÷÷ çè 2 107 rNuc re ÷ø Proof: The Zinc Atomic Binding Energy is the Electric energy that binds the 30 electrons to the 30 protons, r ö 1 1 (30e )(30e ) 2 æç c ç 1 + Nuc ÷÷÷ . çè re ÷ø 2 107 rNuc 40.2 The Zinc Nuclear Binding Energy is greater than 108 ´(The Zinc Atomic Binding Energy) rp ÷ö 1 1 (65e )(35e ) 2 æç ÷÷ c 1 + ç çç ÷ (65)(35) r rp r 2 107 è Nuc ø Nuc Proof: > = 108.3152778 . rNuc ÷ö (30)(30) rp 1 1 (30e )(30e ) 2 æç c ç1 + ÷ çè 2 107 rNuc re ÷÷ø 42.85 >1 159 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 41. Nuclear Forces versus Atomic Forces The force between the Nucleus electrons and Protons is enormous compared to the force between the Atomic electrons and protons: 41.1 Force on a Zinc Nucleus Proton 2,142 (Force on a Zinc Atomic Proton) Proof: A Zinc Nucleus Proton is attracted to the 35 Neutronic Electrons by 1 (e)(35e) . 4pe0 rp2 A Zinc Atomic Proton is attracted to the 30 Atomic Electrons by 1 (e )(30e ) . 2 4pe0 rNuc 1 (e )(35e ) 4pe0 rp2 2 æ ö 35 ç rNuc ÷÷ çç = ÷ 2142 . 1 (e )(30e ) 30 çè rp ø÷÷ 2 4pe0 rNuc 1836 160 Gauge Institute Journal, Volume 12, No. 2, May 2016 41.2 H. Vic Dannon Force on a Zinc Nucleus Electron is 8845 (Force on a Zinc Atomic Electron) Proof: A Neutronic Electron is attracted to the 65 Protons by 1 (e )(65e ) . 2 4pe0 rNuc An Atomic Electron is attracted to the 30 Atomic Protons by 1 (30e )(e ) . 4pe0 re2 1 (65e )(e ) 2 4pe0 rNuc 2 65 æç re ö÷÷ = ç ÷ 8600 . 1 (30e )(e ) 30 ççè rNuc ø÷ 4pe0 re2 (63)2 161 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon VI. SUMMARY OF NUMERICAL RESULTS Hydrogen Proton nth Orbit Radius rH,n = n 2rH me » n 2 (1.221173735)10-12 m Mp 1 Speed VH,n 1 c æç m e ÷÷ö4 1 = çç ÷÷ » 334, 528 m/sec n 137 çè M p ø n 1 c æ ö WH,n 1 137 ç M p ÷÷4 1 = çç » Frequency 4.311097293 ´ 1016 cycles/sec ÷ 3 3 2p n 2prH çè m e ÷ø n 1 æ M p ÷ö4 2 ÷÷ = n(6.546018057) Angular Momentum M p rn Wn = n ççç çè m e ÷ø Quantum of Angular Momentum (6.546018057) Neutron’s Electron nth Orbit Radius rne,n n 2 (9.398741807)10-14 m = n 2 (1.776104665)10-3 rH Speed vne,n = 1 51, 558,134 m/sec n vH 1 n 0.043132065 162 Gauge Institute Journal, Volume 12, No. 2, May 2016 Frequency wne,n 2p H. Vic Dannon 8.73067052 ´ 1019 cycles/sec 1 = n3 1.305362686 ´ 104 me Angular Momentum 1- 2 bne, n wH cycles/sec . 2p vne,nrne,n = n(0.043132065) Quantum of Angular Momentum (0.043132065) Neutron’s Proton nth Orbit Radius rnp,n n 2 (2.209505336)10-15 , Speed Vnp,n Frequency Wnp 2p 1 7, 905,145 m/sec , n 5.69422884 ´ 1020 cycles/second . Mp Angular Momentum 1- 2 bnp, n (bnp,nc )rnp,n = n(0.277126027) Quantum of Angular Momentum (0.277126027) The Zinc Nucleus 1) is at Radiation Power Equilibrium me 1- 2 bNuc 2 rNuc » 163 Mp 1- bp2 rp2 Gauge Institute Journal, Volume 12, No. 2, May 2016 2) Mp me 1 e2 1 2 bNucrNuc = = bp2rp 65 1 - b 2 35 1 - b 2 107 Nuc p rNuc 3) rp 65bp2 Mp rNuc rp me » 42.5 2 bNuc 42.5 5) 7) » 2 35bNuc 4) 6) H. Vic Dannon Wp wNuc 65 2 b 35 p 1 35 æç M p ÷÷ö4 ç ÷ » 4.803464029 65 ççè m e ÷ø rp ÷ö 1 1 e 2 æç ÷÷ 65 çç 1 + Mass-Energy M n - M p - me » 7 2 10 rp çè rNuc ÷ø Dm Zinc Nucleus Proton nth Orbit Orbit Radius Speed Frequency rp,n n 2 (1.436178468)10-13 Vp,n Wp,n 2p = 1 n 3 1 5, 801, 257 m/sec n 6.42885789 ´ 1018 cycles/sec 164 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Mp Angular Momentum Vp,n rp,n = n(13.21701291) 2 1 - bp, n Quantum of Angular Momentum (13.21701291) Nucleus Radiation Equilibrium Quantized Angular Momentum Zinc Nucleus Electron nth Orbit Orbit Radius rNuc,n » n 2 rp,n 35 2 bNuc,n n 2 (6.108688998)10-12 2 65 bp,n vNuc,n Speed 1 51, 560,184 m/sec n Neutron Electron Speed Frequency wNuc,n 2p Angular Momentum = 1 n 3 1.343341943 ´ 1018 cycles/sec me 1- vNuc,nrNuc,n = n(2.761794253) 2 bNuc, n Quantum of Angular Momentum (2.761794253) The Zinc Atom 1) is at Radiation Power Equilibrium 30m e 1 - be2 re2 » 30M p + 35M n 1 - bp2Nuc 165 2 rNuc Gauge Institute Journal, Volume 12, No. 2, May 2016 2) 30me 1- be2re be2 = be2 re 4) = 107 re 3) rNuc » 30M p + 35M n 2 1 - bpNuc 2 bpNuc rNuc rNuc 2 bpN uc Mp » me + 7 Mn » 63 6 me 1 30 2 bNuc 63 65 be2 5) 6) (30e )2 H. Vic Dannon 1 æ M p 7 M ö÷4 n÷ + = ççç ÷ » çè m e 6 m e ø÷ WpNuc we 63 » 7.937253933 Zinc Atomic Electron nth Orbit Orbit Radius 1 4, 446,105 m/sec n v e,n Speed Frequency re,n n 2 (3.903068097)10-10 m we,n 2p Angular Momentum = 1 n 3 1.81298294 ´ 1015 cycles/sec me 1 - be,2 n 166 v e,nre,n = n(14.99154238) Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Quantum of Angular Momentum (14.99154238) Zinc Atomic Proton nth Orbit rNuc,n n 2 (6.108688998)10-12 Orbit Radius Speed Frequency VpNuc,n WpNuc,n 2p Angular Momentum 1 n 3 1 556, 225 m/sec n (1.439010597)1016 cycles/sec Mp 1- 2 bpNuc, n VpNuc,nrNuc,n » n(53.89157159) Quantum of Angular Momentum (53.89157159) Atomic Radiation Equilibrium Quantized Angular Momentum Zinc Nucleus Zero Point Energy 1 a - (35)(65) w -268, 285 eV 2 bNuc Nuc - 1 e2 (35)(65) -268, 498 eV 8pe0 rNuc 19,743´(Hydrogen’s Zero Point Energy) The Zinc Nucleus Zero Point Energy Frequency 167 Gauge Institute Journal, Volume 12, No. 2, May 2016 2 H. Vic Dannon 268,498 eV 1.298451396 ´ 1020 cycles/sec h (35)(65) a wNuc (1.297990381)1020 cycles/sec bNuc 2p Zinc Nucleus Nuclear Binding Energy 1 a - (35)(65) Wp = -11, 415, 889 eV 2 bp e2 1 (35)(65) -11, 420, 788 eV 8pe0 rp 42.5´(Nucleus Zero Point Energy Binding) 19349´(Hydrogen’s Nuclear Energy Binding) Zinc Nucleus Nuclear Force 1836´(Zinc Nucleus Zero Point Energy Force) 7,287,084´(Zinc Atomic Zero Point Energy Force) 694,938,230´(Hydrogen’s Nuclear Force) Zinc Atomic Nuclear Force 3969´(Zinc Atomic Zero Point Energy Force) Zinc Nuclear Binding Energy 168 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon 19,688 (Hydrogen Binding Energy) 108 ´(The Zinc Atomic Binding Energy) Force on a Zinc Nucleus Proton 2,142 (Force on a Zinc Atomic Proton) Force on a Zinc Nucleus Electron 8845 (Force on a Zinc Atomic Electron) 169 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon References [Arabatzis] Theodore Arabatzis “Representing Electrons, A Biographical Approach to Theoretical Entities” U. of Chicago Press, 2006. [Beiser] Arthur Beiser “Concepts of Modern Physics” Fifth Edition, McGraw Hill, 1995. [Benson], Benson Walter, Harris John, Stocker Horst, Lutz Holger, “Handbook of Physics”, Springer, 2002. [Blackwood], Oswald Blackwood, Elmer Hutchisson, Thomas Osgood, Arthur Ruark, Wilfred St. Peter, George Scott, Archie Worthing, “An Outline of Atomic Physics” Second Edition, Wiley, 1937 [Bohm] David Bohm, “The Special Theory of Relativity” Routledge, 1996. [Bohr] Niels Bohr, “The Theory of Spectra and Atomic Constitution” Second Edition, Cambridge University Press, 1924. [Born1] Max Born, “Atomic Physics” Blackie, 7th Edition, 1961. [Born2] Max Born, “The Mechanics of the Atom” Frederic Ungar, 1927. [Burden], Richard Burden, and Douglas Faires, “Numerical Analysis”, Fourth Edition, PWS-KENT, 1989. [Burkhardt] Charles Burkhardt & Jacob Leventhal, “Topics in Atomic Physics”, Springer, 2006. [Boorse], Henry Boorse & Lloyd Motz, “The World of the Atom” Basic Books, 1966. [Cagnac] Cagnac & Pebay-Peyroula, “Modern Atomic Physics: Fundamental Principles”, Halsted Press, 1975. [Castelfranchi], Gaetano, Castelfranchi, “Recent Advances in Atomic Physics” Churchill, 1932. 170 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon [Chandrasekhar] S. Chandrasekhar, “Newton’s Principia for the Common Reader” Clarendon Press, Oxford, 1995. [Crowther] James Arnold Crowther, “Ions, Electrons, and Ionizing Radiation”, Eighth Edition, Edward Arnold, 1949. [CRC] “CRC Handbook of Chemistry and Physics” CRC, 1995. [Dan1], H. Vic Dannon, “Wave-Particle Duality: de Broglie Waves and Uncertainty” Gauge Institute Journal Of Math and Physics, Vol. 2, No. 4, November 2006. [Dan2], H. Vic Dannon, “Photon’s Spin, Diffraction, and Radius. The One Photon Hypothesis, and Stopped Photon” Gauge Institute Journal Of Math and Physics, Vol. 9, No. 1, February 2013. [Dan3], H. Vic Dannon, “Zero Point Energy and the Charge-Radiation Equation in Bohr’s Atom” Gauge Institute Journal Of Math and Physics, Vol. 8, No. 4, November 2012. [Dan4], H. Vic Dannon, “Radiation Equilibrium, Inertia Moments, and the Nucleus Radius in the Electron-Proton Atom” Gauge Institute Journal Of Math and Physics, Vol. 10, No. 3, August 2014. [Dan5], H. Vic Dannon, “The Neutron as a Collapsed Hydrogen Atom: Zero Point Energy & Nuclear Binding Energy, X Rays & Gamma Rays, Nuclear Forces & Bonding, Neutronic Electrons Orbitals, and Neutron Stars ” Gauge Institute Journal Of Math and Physics, Vol. 11, No. 3, August 2015. [de Broglie], Louis de Broglie, “Heisenberg’s Uncertainties and the Probabilistic Interpretation of Wave Mechanics” Kluwer Academic, 1990. [Dushman], Saul Dushman, “Fundamentals of Atomic Physics” McGraw-Hill, 1951. 171 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon [Feynman] Richard Feynman, “The Feynman Lectures of Physics”, Edison Wesley, 1965. [Finkelnburg] Wolfgang Finkelnburg, “Structure of Matter” Springer, & Academic Press, 1964. [Fischer] Fischer-Cripps, A., C., “The Physics Companion”, IoP, 2003. [Friedman] Francis Friedman & Leo Sartori, “The Classical Atom”, AddisonWesley, 1965. [Gil] Victor Gil, “Orbitals in Chemistry: A Modern Guide for Students” Cambridge, 2000. [Goldwasser] Edwin Goldwasser, “Optics, Waves, Atoms, and Nuclei”, Benjamin, 1965. [Graetz], Leo Graetz, “Recent Developments in Atomic Theory”, Dutton, 1922. [Grigoriev], Igor S. Grigoriev, and Evgenii Z. Meilikhov, “Handbook of Physical Constants”, CRC, 1997. [Grimsehl], Grimsehl, “A Textbook of Physics, Vol. V, Physics of the Atom” Blackie, 1935. [Haken], Hermann Haken & Hans Christoph Wolf, “The Physics of Atoms and Quanta, Introduction to Experiments and Theory” Fifth Edition, Springer, 1996. [Harnwell], Gaylord Harnwell & William Stephens, “Atomic Physics, An Atomic Description of Physical Phenomena”, McGraw-Hill, 1955. [Hoag] Barton Hoag & S. Korff, “Electron and Nuclear Physics”, Third Edition, Van Nostrand, 1948. [Hochstrasser], Robin Hochstrasser, “Behavior of Electrons in Atoms”, Benjamin, 1964. [Jones], Jones, “Atomic Physics”, Chapman & Hall, 1997. 172 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon [Kondratyev] Victor Kondratyev, “The Structure of Atoms and Molecules”, Noordhoff, 1964. [Kovetz] Attay Kovetz, “Electromagnetic Theory”, Oxford, 2000. [Kramers], H. Kramers & Helge Holst, “The Atom and the Bohr Theory of its Structure” Knopf, 1923 [Kumar] Raj Kumar, “Atomic and Molecular Physics”, Campus, 2003. [Lieb] Elliott Lieb, Robert Seiringer, “The Stability of Matter in Quantum Mechanics” Cambridge, 2010. [Lindsay] Robert Bruce Lindsay, “Physical Mechanics”, Second Edition, Van Nostrand, 1950. [Liverhant] Salomon Liverhant, “Outline of Atomic Physics”, Regents, 1966. [Loeb] Leonard Loeb, “Atomic Structure”, Wiley, 1938. [Lothian], Lothian, “Electrons in Atoms” Butterworths, 1963. [Mac Gregor] Malcolm Mac Gregor “The Enigmatic Electron” Kluwer, 1992 [Marion] Jerry Marion; Mark Heald, “Classical Electromagnetic Radiation”, Second Edition, Academic Press, 1980. [Mackintosh], Ray Mackintosh, Jim Al-Khalili, Bjorn Jonson, Teresa Pena, “Nucleus: A trip into the Heart of Matter” Second Edition, Johns Hopkins, 2011. [Millikan] Robert Andrews Millikan, “Electrons (+ and -), Protons, Photons, Neutrons, Mesotrons, and Cosmic Rays” U. of Chicago, Revised Edition, 1947. [Morrison] Michael Morrison, Thomas Estle, Neal lane, “Quantum States of Atoms, Molecules, and Solids”, Prentice-Hall, 1976. [Noble] B. Noble, “Numerical Methods:1 Iteration Programming and Algebraic Equations” Oliver & Boyd, 1964. 173 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon [Osgood] Thomas Osgood, Arthur Ruark, Elmer Hutchisson, “Atoms, Radiation & Nuclei: 1964 Edition of An Outline of Atomic Physics”, Wiley, 1964. [Panofsky] Wolfgang Panofsky; Melba Phillips, “Classical Electricity and Magnetism”, Second Edition, Addison Wesley, 1962. [Peaslee] Peaslee, “Elements of Atomic Physics”, Prentice Hall, 1955. [Parker] Sybil P. Parker, “McGraw-Hill Encyclopedia of Physics”, Second Edition, McGraw-Hill, 1993. [PDG] Particle Data Group, at LBNL, and CERN (1) July 2010 PARTICE PHYSICS BOOKLET, IOP Publishing(2) Physical Review D, Particles, Fields, Gravitation, and Cosmology, July 2012, Part I, Review of Particle Physics, Volume 86, Number 1, American Physical Society. [Polyanin] Andrei Polyanin; Alexei Chernoutsan, “A Concise Handbook of Mathematics, Physics, and Engineering Sciences”, CRC, 2011. [Poole] Charles P. Poole, “The Physics Handbook Fundamentals and Key Equations”, Wiley, 1998. [Richardson], O.W. Richardson, “The Electron Theory of Matter” Second Edition, Cambridge University Press, 1916. [Rindler], Wolfgang Rindler, “Relativity Special, General, and Cosmological”, Oxford, 2001. [Routh] Edward, John Routh “A Treatise on Dynamics of a Particle”, Stechert, 1898. [Simulik], Volodimir Simulik, editor, “What is the Electron” Aperion, 2005. [Skinner], Ray Skinner, “Relativity for Scientists and Engineers”, Dover, 1982. [Smith] Glenn S. Smith, “An Introduction to Classical Electromagnetic 174 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon Radiation” Cambridge, 1997. [Spiegel] Spiegel, Murray, “Theoretical Mechanics” McGraw Hill, 1967. [Stannard], Russell Stannard, “Relativity”, Sterling, 2008. [Thomson1] J. J. Thomson, “Beyond the Electron” Cambridge U. Press, 1928. [Thomson2] G. P. Thomson, “Conduction of Electricity Through Gases” Volume I, Cambridge U. Press, 1928. [Thomson3] John Thomson, “An Introduction to Atomic Physics” Methuen, 1934. [Tolansky] S. Tolansky, “Introduction to Atomic Physics”, Fourth Edition, Longmans, 1956. [Savelyev] I. Savelyev, “Physics A general Course, Volume III, Quantum Optics, Atomic Physics, Solid State Physics, Physics of the Atomic Nucleus, And Elementary Particles”, MIR, 1981. [Ruark] Arthur Ruark, Harold Urey, “Atoms, Molecules, and Quanta” Dover, 1964. [Semat] Henry Semat, “Introduction to Atomic and Nuclear Physics”, Fourth Edition, Holt, Reinhart, Winston, 1962. [Wagoner] Robert Wagoner, “Production of Fractional Charge” in “Near Zero: New Frontiers of Physics” edited by J.D. Fairbank, B.S. Deaver, C.W.F. Everitt, and P. F. Michelson, Freeman, 1988 [Wehr] Russell Wehr, James Richards, Thomas Adair, “Physics of the Atom”, Fourth Edition, [Willmott] Willmott, “Atomic Physics”, Wiley, 1975. [Woan] Woan, Graham, “The Cambridge Handbook of Physics Formulas”, Cambridge 2000. 175 Gauge Institute Journal, Volume 12, No. 2, May 2016 H. Vic Dannon [Woodgate] G. Woodgate, “Elementary Atomic Structure”, Second Edition, Oxford, 1980. [Yang] Fujia Yang, Joseph Hamilton, “Modern Atomic and Nuclear Physics”, Revised Edition, World Scientific, 2010. http://en.wikipedia.org/wiki/Lorentz_transformation http://en.wikipedia.org/wiki/Relativity_theory http://en.wikipedia.org/wiki/Neutron http://en.wikipedia.org/wiki/Nuclear_force http://en.wikipedia.org/wiki/Nuclear_structure http://en.wikipedia.org/wiki/X_ray http://en.wikipedia.org/wiki/Proton http://en.wikipedia.org/wiki/Electron http://en.wikipedia.org/wiki/Hydrogen_atom http://en.wikipedia.org/wiki/Bohr_model http://en.wikipedia.org/wiki/Nucleon http://en.wikipedia.org/wiki/Electromagnetic_spectrum http://upload.wikimedia.org/wikipedia/commons/8/8a/Electromagn etic-Spectrum.png 176