Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon Feynman Integral and Convolution Products H. Vic Dannon [email protected] March, 2008. Abstract Feynman tried to express the Propagator of the Schrödinger equation as an Infinite Convolution Product that became known as the Feynman Path Integral. Feynman was not aware of Polya-Laguerre’s Infinite Convolution Products, and did not know that the Schrodinger Propagator cannot be written as an Infinite Convolution Product. Feynman’s construction is the same whether we use one iteration or infinitely many iterations, the limit is superfluous, Schrodinger’s Propagator cannot be decomposed, and Feynman’s Integral remains, as defined, Schrodinger’s Propagator. The Feynman Integral, and approach to Quantum Mechanics, are in fact, the Schrodinger Propagator, and the wave function approach to Quantum Mechanics, renamed after Feynman. Keywords: Feynman Path Integral, Convolution Product, Quantum Mechanics, Schrodinger Propagator. 1 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon 2000 Mathematics subject classification 81S40, 44A35, 81Q05 PACS 31.15.xk; 03.65.-w 2 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon Contents Introduction……………………………………………………………..5 1. Schrodinger’s Propagator of a Free Particle……………….8 1.1 The form of Schrodinger’s Propagator…………………………….8 1.2 The constant for Schrodinger’s Propagator…………………….10 1.3 Schrodinger’s Propagator………………………………………….12 1.4 Born’s Probability for the Free Particle………………………...12 2. Feynman Path Integral for a Free Particle……………….13 3. Schrodinger’s propagator for the harmonic Oscillator..17 3.1 The form of Schrodinger’s Propagator…………………………..17 3.2 The constant for Schrodinger’s Propagator…………………….21 3.3 Schrodinger’s Propagator………………………………………….21 3.4 Born’s Probability for the Harmonic Oscillator….…………….21 3.5 Feynman’s Integral for the Harmonic Oscillator….…………..22 4. Infinite Convolution Products………………………………...23 4.1 The Kernel of an Infinite Convolution Product………………..23 4.2 The Convolution-Kernel Integral Theorem…………………….28 4.3 The Kernel as a Probability Density Function…………………28 4.4 The Convolution Transform……………………………………....29 4.5 The Convolution-Transform Integral Theorem………………..32 3 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon 5. Schrodinger Propagator & Infinite Convolution Product………………………………………………………………33 5.1 Schrodinger Propagator is not an Infinite Convolution Product…………………………………………………………………...34 References……………………………………………………………...36 4 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon Introduction De-Broglie associated with a moving particle a wave, and Schrodinger derived for a particle of mass m moving in the direction of x , free of forces, the wave equation ∂ψ i= ∂ 2 ψ = . ∂t 2m ∂x 2 Born suggested that ψ(x , t ) 2 is the probability to find the particle in the time interval [t, t + dt ] , and in the length interval ⎡ x , x + dx ⎤ . ⎣ ⎦ If the particle is at xa , at time ta , and at xb , at time tb , its Schrodinger’s wave function is given by xa =∞ ψ(xb , tb ) = ∫ K (xb , tb ; xa , ta )ψ(xa , ta )dxa , xa =−∞ where ⎡ ⎤1/2 m i ⎥ exp K (xb , tb ; xa , ta ) = ⎢ ⎢⎣ 2πi=(tb − ta ) ⎥⎦ = t =tb ∫ L (x min , x min , t )dt , t =ta is Schrodinger’s Propagator, and x min (t ) is the least-energy-path of the particle. Feynman attempted to express K (xb , tb ; xa , ta ) by what is known as an Infinite Convolution Product. He showed that if the path is partitioned into the segments 5 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon a = x 0, x1, x 2 ...x N = b so that ta = t0 < t1 < t2 < ... < tN = tb , then K (xb , tb ; x N −1, tN −1 ) ∗ K (x N −1, tN −1; x N −2, tN −2 ) ∗ ... ∗ K (x1, t1; xa , ta ) = K (xa , ta ; xb , tb ) , where the symbol ∗ denotes the Convolution Product. This equality fails to yield an Infinite Convolution Product. To obtain a genuine Infinite Convolution Product, the path partition points must be determined by zeros of the Laplace Transform of the Kernel K (xa , ta ; xb , tb ) , and the Kernel has to be generated by basic Non-Schrodinger kernels that depend on those zeros. Feynman’s taking the limit N → ∞ makes no difference, because the equality holds for any natural number N , and the limit process does not obtain any new result. Feynman’s Path Integral amounts to impossible expectations of the Schrodinger Propagator. In the following, we derive the Schrodinger Propagator for a particle in a force-free motion, and for a harmonic oscillator, in order to understand Feynman’s failed attempt to express these Propagators as Infinite Convolution Products. Then, we use Polya-Laguerre theory of Infinite Convolution Products to explain why Feynman’s Path Integral does not exist, 6 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon why Schrodinger’s Propagator need not be renamed after Feynman, and why Feynman’s New approach to Quantum Mechanics is Schrodinger’s Wave Mechanics. 7 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon 1. Schrodinger’s Propagator of a Free Particle Consider a particle of mass m , at the point a , at time ta , moving in a force-free zone, in the direction of x at speed x = dx , and dt arriving at the point b , at time tb . Schrodinger’s wave function is given by xa =∞ ψ(xb , tb ) = ∫ K (xb , tb ; xa , ta )ψ(xa , ta )dxa , xa =−∞ where K (xb , tb ; xa , ta ) is Schrodinger’s Propagator, obtained along the particle’s least-energy-path. We aim to derive the known formula stated in the introduction: 1.1 The Form of Schrodinger’s Operator There is a constant A so that K (xb , tb ; xa , ta ) = 8 1 A e i m 2= (tb −ta ) (xb −x a )2 . Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon Proof: For a particle of mass m moving in the direction of x at speed x = dx , in a force-free zone, Lagrange energy function is dt L free (x , x, t ) = 21 mx 2 . The path of minimal energy, solves the Euler-Lagrange equation d ∂L ∂L − = 0. dt ∂x ∂x Here, d ∂L d = mx = mx , dt ∂x dt ∂L = 0, ∂x and the Euler-Lagrange equation is mx = 0 . Thus, the least-energy-path x min (t ) , has constant velocity x min (t ) = const . Since the particle is at the point a , at time ta , and at the point b , at time tb , x min (t ) = xb − x a tb − ta Hence, the Lagrangian along the path of least energy is 1 2 L free (x min , x min , t ) = mx min 2 9 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon 2 1 ⎛⎜ xb − xa ⎞⎟ = m⎜ ⎟ 2 ⎝⎜ tb − ta ⎠⎟⎟ Therefore, t =tb ∫ t =ta t =tb L free (x min , x min , t )dt = ∫ t =ta = 2 ⎛ x − xa ⎞⎟ m ⎜⎜ b ⎟ dt 2 ⎜⎝ tb − ta ⎠⎟ 1 1 2 2 m ( xb − x a ) tb − ta Thus, Schrodinger’s Propagator is i = t =tb ∫ e t =ta 1 K free (, a ) = A e 1 = A i Lfree (x min,xmin,t )dt m (x −x )2 2=(tb −ta ) b a ., We proceed to determine the constant A . 1.2 The Constant for Schrodinger’s Propagator 1 ⎡ ⎤2 1 m ⎥ =⎢ A ⎢⎣ 2πi=(tb − ta ) ⎥⎦ Proof: Schrodinger’s wave function is xa =∞ 1 ψ(xb , tb ) = Ax ∫ K free (xb , tb ; xa , ta )ψ(xa , ta )dxa a =−∞ 10 Gauge Institute Journal, Volume 5, No 2, May 2009 i xa =∞ = 1 Ax e ∫ H. Vic Dannon m (x −x )2 2=(tb −ta ) b a ψ(xa , ta )dxa , a =−∞ Letting tb = ta + δt , x b = x a + δx , we have xa =∞ 1 ψ(xb , ta + δt ) = Ax ∫ e i m (x −x )2 2=(tb −ta ) b a ψ(xb − δx , ta )dxa . a =−∞ Hence, to first order, xa =∞ ∂ψ 1 ψ(xb , ta ) + δt ≈ ∂t Ax ∫ e i a =−∞ m (x −x )2 ∂ψ ⎞⎟ 2=(tb −ta ) b a ⎛⎜ δx ⎟dx . ⎜⎜ ψ(xb , ta ) − ∂x ⎠⎟ a ⎝ Equating coefficients of ψ(xb , ta ) on both sides, we conclude that xa =∞ A= ∫ e i m (x −x )2 2=(tb −ta ) b a dxa xa =−∞ xa =∞ ∫ = e m (x −x )2 2i=(tb −ta ) b a − dxa . xa =−∞ Let ξ = m (x − xb ) . Then, d ξ = 2i=(tb −ta ) a m dx , and 2i=(tb −ta ) a ξ =∞ A= = 2 1 e −ξ d ξ ∫ m 2i=(tb −ta ) ξ =−∞ 1 π ., m 2i=(tb −ta ) 11 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon Substituting the constant A , we obtain Schrodinger’s Propagator, and Born’s probability for the free particle: 1.3 Schrodinger’s Propagator 1 ⎤2 ⎡ m ⎥ K (xb , tb ; xa , ta ) = ⎢ ⎢ 2πi=(t − t ) ⎥ b a ⎦ ⎣ e i m (x −x )2 2=(tb −ta ) b a 1.4 Born’s Probability for the Free Particle P (b, a ) = m . 2π=(tb − ta ) 12 . Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon 2. Feynman Path Integral for a Free Particle Feynman attempted to write K (xb , tb ; xa , ta ) as an Infinite Convolution Product, over the least-energy-path of the free particle. We examine his derivation. Divide the time interval [ta , tb ] into N equal sub-intervals of length Δt = tb − ta , N with Partition points ta = t0 < t1 < t2 < ..... < tN −1 < tN = tb . Consider 1 ⎤2 ⎡ m ⎥ K (x1, t1; x 0, t0 ) = ⎢ ⎢⎣ 2πi=(t1 − t0 ) ⎥⎦ 1 ⎤2 ⎡ m ⎥ K (x 2, t2 ; x1, t1 ) = ⎢ ⎢⎣ 2πi=(t2 − t1) ⎥⎦ 1 ⎤2 ⎡ m ⎥ K (x 3, t3; x 2, t2 ) = ⎢ ⎢⎣ 2πi=(t3 − t2 ) ⎥⎦ 13 e e ⎛ ⎞⎟ ⎜⎜ m ⎟ 2 ( − ) x x ⎜⎜ 0 ⎟⎟⎟⎟ ⎜⎜⎝ 2i=(t1−t0 ) 1 ⎠ ⎛ ⎞⎟ ⎜⎜ m (x2 −x1)2 ⎟⎟⎟⎟ ⎜⎜ ⎜⎜⎝ 2i=(t2 −t1) ⎠⎟ e , , ⎛ ⎞⎟ ⎜⎜ m (x 3 −x2 )2 ⎟⎟⎟⎟ ⎜⎜ ⎜⎜⎝ 2i=(t3 −t2 ) ⎠⎟ , Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon ……………………………………………………………., 1 ⎤2 ⎡ m ⎥ K (x N −1, tN −1; x N −2 , tN −2 ) = ⎢ ⎢ 2πi=(t ⎥ N −1 − tN −2 ) ⎦ ⎣ 1 ⎤2 ⎡ m ⎥ K (x N , tN ; x N −1, tN −1 ) = ⎢ ⎢ 2πi=(t − t ⎥ ) N N −1 ⎦ ⎣ e e ⎛ ⎞⎟ ⎜⎜ m 2 ⎟⎟⎟ ⎜⎜ ( − ) x x N −1 N −2 ⎟⎟⎟ ⎜⎜ 2i=(t ⎜⎝ ⎠ N −1−tN −2 ) ⎛ ⎞⎟ m ⎜⎜⎜ 2 (xN −xN −1) ⎟⎟⎟⎟⎟ ⎜⎜ ⎜⎜⎝ 2i=(tN −tN −1) ⎠⎟ , . Then, K (x 2, t2; x1, t1) ∗ K (x1, t1; x 0, t0 ) x1 =∞ ∫ = K (x 2, t2; x1, t1)K (x1, t1; x 0, t0 )dx 1 x1 =−∞ = m 2πi=(t1 − t0 ) x1 =∞ ∫ e ⎛ ⎞ ⎛ ⎞ m m (x 2 −x1 )2 ⎟⎟⎟ +⎜⎜ (x −x )2 ⎟⎟ ⎜⎜ ⎟⎠ ⎝⎜ 2i= (t1 −t0 ) 1 0 ⎠⎟ ⎜⎝ 2i= (t2 −t1 ) dx1 . x1 =−∞ By [Feyn1, p.357] x =∞ ∫ e α(x 2 − ξ )2 + β (ξ −x1 )2 dξ = x =−∞ −π α+β e αβ (x −x )2 α +β 2 1 Here, −π = α+β ⎛ ⎜⎜ −π2i= ⎜⎜ ⎜ m ⎜⎜ ⎜⎜ ⎝t 1 1 1 2 − t1 + 1 t1 − t 0 14 ⎞⎟2 ⎟⎟ ⎟⎟ ⎟⎟ = ⎟⎟ ⎠⎟ 1 −π2i= ⎛⎜ (t2 − t1)(t1 − t0 ) ⎞⎟2 ⎟⎟ . ⎜ m ⎜⎝ t2 − t 0 ⎠⎟ Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon m m 2i=(t2 − t1 ) 2i=(t1 − t0 ) αβ m = = α+β m m 2i=(t2 − t0 ) + 2i=(t2 − t1 ) 2i=(t1 − t0 ) Substituting in K (x 2, t2; x1, t1) ∗ K (x1, t1; x 0, t0 ) , m −π2i= ⎜⎛ (t2 − t1)(t1 − t0 = ⎜ 2πi=(t1 − t0 ) m ⎜⎝ t2 − t 0 1 ⎤2 ⎡ m ⎥ =⎢ ⎢⎣ 2πi=(t2 − t0 ) ⎥⎦ e 1 ) ⎞2 ⎟⎟ ⎠⎟⎟ e m (x −x )2 2i= (t2 −t0 ) 2 0 ⎛ ⎞⎟ ⎜⎜ m (x2 −x 0 )2 ⎟⎟⎟⎟ ⎜⎜ ⎜⎜⎝ 2i=(t2 −t0 ) ⎠⎟ = K (x 2, t2 ; x 0, t0 ) . Therefore, K (x 3, t3 ; x 2 , t2 ) ∗ K (x 2 , t2 ; x1, t1 ) ∗ K (x1, t1; x 0 , t0 ) = K (x 3 , t3 ; x 2 , t2 ) ∗ K (x 2 , t2 ; x 0 , t0 ) = K (x 3 , t3 ; x 0 , t0 ) Indunctively, K (xb , tb ; x N −1, tN −1 ) ∗ K (x N −1, tN −1; x N −2, tN −2 ) ∗ ... ∗ K (x1, t1; xa , ta ) = K (xb , tb ; xa , ta ) Letting N → ∞ , lim K (xb , tb ; x N −1, tN −1 ) ∗ K (x N −1, tN −1; x N −2, tN −2 ) ∗ ... ∗ K (x1, t1; xa , ta ) N →∞ = K (xb , tb ; xa , ta ) . 15 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon Feynman defined the limit, that is, the already known Schrodinger Propagator, K (xb , tb ; xa , ta ) , as his Path Integral for the free particle. But since equality holds for any natural number N , the limit process makes no difference, and serves no purpose. Therefore, Feynman Path Integral is the Schrodinger Propagator renamed after Feynman. 16 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon 3. Schrodinger’s Propagator for the Harmonic Oscillator For a particle of mass m oscillating harmonically along x , at angular frequency ω , Schrodinger wave function satisfies the equation i= ∂ 2 ψ m 2 2 ∂ψ = + ω x ψ, 2m ∂x 2 2i= ∂t and is given by xa =∞ ψ(xb , tb ) = ∫ K harm (xb , tb ; xa , ta )ψ(xa , ta )dxa , xa =−∞ where K harm (xb , tb ; xa , ta ) is Schrodinger’s Propagator, obtained along the particle’s least-energy-path. We aim to derive the known formula [Feyn1,p.198] for it. 3.1 The Form of Schrodinger’s Propagator There is a constant A so that mω 1 2i= sin ω(tb −ta )((xb +xa )cos ω(tb −ta )−2xbxa ) Kharm (xb , tb ; xa , ta ) = . A e 2 2 Proof: For a particle of mass m oscillating harmonically along x , at angular frequency ω , Lagrange energy function is 17 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon 1 1 Lharm (x , x, t ) = mx 2 − m ω 2x 2 . 2 2 The path of minimal energy, solves the Euler-Lagrange equation d ∂L ∂L − = 0. dt ∂x ∂x Here, d ∂L d = mx = mx , dt ∂x dt ∂L = −m ω 2x , ∂x and the Euler-Lagrange equation is mx + m ω 2x = 0 . Thus, the least-energy-path is x min (t ) = A cos ωt + B sin ωt , If the particle location is xa , at time ta , and xb , at time tb , A cos ωta + B sin ωta = xa A cos ωtb + B sin ωtb = xb . Solving for A , and B , A= xa xb cos ωta cos ωtb sin ωta sin ωtb sin ωta sin ωtb = 18 xa sin ωtb − xb sin ωta sin ω(tb − ta ) Gauge Institute Journal, Volume 5, No 2, May 2009 cos ωta B = cos ωtb cos ωta cos ωtb xa xb sin ωta sin ωtb = H. Vic Dannon −xa cos ωtb + xb cos ωta sin ω(tb − ta ) The Lagrangian along the path of least energy is Lharm (x min , x min , t ) = 1 1 2 2 mx min − m ω 2x min 2 2 = 2 1 ⎡ ⎤ m ⎢ ( −Aω sin ωt + B ω cos ωt ) − ω 2(A cos ωt + B sin ωt )2 ⎥ 2 ⎣ ⎦ = 1 m ω 2 ⎡⎢ (B 2 − A2 )cos 2ωt − 2AB sin 2ωt ⎤⎥ . ⎣ ⎦ 2 Hence, t =tb ∫ Lharm (x min , x min , t )dt = t =ta 1 = m ω2 2 t =tb ∫ t =ta ⎡ (B 2 − A2 )cos 2ωt − 2AB sin 2ωt ⎤ dt ⎢⎣ ⎥⎦ = t =tb 1 m ω ⎡⎢ (B 2 − A2 )sin 2ωt + 2AB cos 2ωt ⎤⎥ ⎣ ⎦t =ta 4 = 1 m ω ⎡⎢ (B 2 − A2 )(sin 2ωtb − sin 2ωta ) ⎣ 4 +2AB(cos 2ωtb − cos 2ωta ) ⎤⎦ 19 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon Substituting 2 2 B −A = 2AB = = xb2 cos 2ωta + xa2 cos 2ωtb − 2xa xb cos w(tb + ta ) sin2 ω(tb − ta ) −xb2 sin 2ωta − xa2 sin 2ωtb + 2xa xb sin w(tb + ta ) sin2 ω(tb − ta ) 1 mω ⎡ (x 2 + x 2 )sin 2ω(t − t ) a b a 4 sin2 ω(tb − ta ) ⎢⎣ b −2xa xb cos w(tb + ta )[sin 2ωtb − sin 2ωta ] +2xa xb sin w(tb + ta )[cos 2ωtb − cos 2ωta ] ⎤⎦ = 1 mω ⎡ (x 2 + x 2 )sin 2ω(t − t ) a b a 4 sin2 ω(tb − ta ) ⎢⎣ b −2xa xb cos w(tb + ta )[2 sin ω(tb − ta )cos ω(tb + ta )] +2xa xb sin w(tb + ta )[−2 sin ω(tb + ta )sin ω(tb − ta )] ⎤⎦ = 1 mω ⎡ (x 2 + x 2 )cos ω(t − t ) − 2x x ⎤ a b a a b ⎥⎦ 2 sin ω(tb − ta ) ⎢⎣ b Therefore, Schrodinger’s Propagator is i 2= sinmωω(t −t )((x +x )cos ω(tb −ta )−2xbxa ) a e 1 Kharm (xb , tb ; xa , ta ) = A b Similarly to the proof of 1.2, we obtain 20 2 b 2 a ., Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon 3.2 The Constant for Schrodinger’s Propagator 1 ⎡ ⎤2 1 mω ⎥ =⎢ A ⎢⎣ 2πi= sin ω(tb − ta ) ⎥⎦ Substituting the constant, we obtain the propagator, and the probability for the harmonic oscillator. 3.3 Schrodinger’s Propagator K harm (xb , tb ; xa , ta ) = 1 ⎤2 ⎡ m ⎥ =⎢ ⎢⎣ 2πi= sin ω(tb − ta ) ⎥⎦ i 2= sinmωω(t −t )((x +x )cos ω(tb −ta )−2xbxa ) e b a 2 b 2 a 3.4 Conditional Probability for the Harmonic Oscillator A particle of mass m , at the point a , at time ta , oscillating harmonically along x , at angular velocity ω , with speed x = dx , dt will arrive at the point b , at time tb with the conditional probability P(b, a ) = mω . 2π= sin ω(tb − ta ) 21 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon 3.5 Feynman Integral for the Harmonic Oscillator Similarly to section 2, Feynman attempted to express Schrodinger’s Propagator for the harmonic oscillator ⎡ mω ⎢ ⎢⎣ 2πi= sin ω(tb ⎤ ⎥ − ta ) ⎥⎦ 1 2 e mω (x b2 +x a2 )cos ω(tb −ta )−2xb xa ) ( 2i= sin ω(tb −ta ) , as an Infinite Convolution Product. Again, applying the limit process to the convolution property for Schrodinger Propagators serves no purpose, and Feynman Path Integral for the harmonic oscillator, is the Propagator renamed after Feynman. 22 Schrodinger Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon 4. Infinite Convolution Products The evolution of Schrodinger’s wave function from time t1 to time t2 , is given by the Convolution ξ =∞ ψ(x , t2 ) = ∫ G (x , t ; ξ,t1 )ψ(ξ, t1 )d ξ , ξ =−∞ where the Schrodinger Propagator G (x , t2, ξ, t1 ) is obtained along the path of least energy. It is a particular case of the Convolution Transform u =∞ F (t ) = ∫ G(t − u )f (u )du , u =−∞ that transforms the function f (u ) into the function F (t ) . Then, the Kernel function G (t ) may be an Infinite Convolution Product of basic kernel functions g1(t ) , g 2(t ) , g 2(t ) … Namely, G(t ) = g1(t ) ∗ g 2(t ) ∗ g 3(t ) ∗ ... Is Schrodinger Propagator such kernel G (t ) ? 4.1 The Kernel of an Infinite Convolution Product. We denote a complex number by 23 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon z = x + iy . Following the notations of [Hirs1], [Hirs2], and [widd1]. b , and ak ≠ 0 , k = 1, 2, 3,... are real numbers so that 1 a12 + 1 a22 + 1 + ... < ∞ . a32 Consider the basic kernel function ⎧ ⎪ a1ea1 (t −b )−1, a1(t − b) − 1 < 0 ⎪ g1(t ) = ⎨ ⎪ 0, a1(t − b ) − 1 ≥ 0 ⎪ ⎩ ⎧ 1 ⎪ a1 (t −b )−1 ⎪ , a e t < +b ⎪ 1 ⎪ a 1 . =⎪ ⎨ ⎪ 1 ⎪ 0, t ≥ +b ⎪ ⎪ a ⎪ ⎩ 1 The Two-Sided Laplace Transform of g1(t ) is t =∞ L { g1(t )} = ∫ g1(t )e −ztdt t =−∞ t= = 1 +b a1 ∫ a1ea1 (t −b )−1e −ztdt t =−∞ t= = 24 a1 ea1b +1 1 +b a1 ∫ t =−∞ e(a1 −z )tdt Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon 1 (a1 −iz )( +b ) 1 a1 = a b +1 e e 1 a1 − iz a1 = e −biz 1 z 1− a1 e z − a1 . For k = 2, 3, 4...n , consider the basic kernel functions ⎧⎪ a t −1 1 k ⎪ , < a e t ⎪⎪ 2 ⎧⎪a eakt −1, a t − 1 < 0 ak ⎪ 2 k = ⎪⎨ . gk (t ) = ⎨ ⎪⎪ 0, ⎪ 1 akt − 1 ≥ 0 ⎪ ⎩ t ≥ ⎪⎪ 0, ak ⎪⎩ The Two-Sided Laplace Transform of gk (t ) is t =∞ L { gk (t )} = ∫ gk (t )e −ztdt t =−∞ t= = 1 ak ∫ akeakt −1e −ztdt t =−∞ t= = ak e 1 ak ∫ e(ak −z )tdt t =−∞ 1 (ak −z ) ak 1 ak = e e ak − z 25 Gauge Institute Journal, Volume 5, No 2, May 2009 = H. Vic Dannon 1 z 1− ak e z − ak . The Convolution Product of g1(t ) , and g 2(t ) is defined by u1 =∞ g1(t ) ∗ g 2(t ) = ∫ g1(t − u1 )g 2(u1 )du1 u1 =−∞ By the Convolution Theorem, the Two-Sided Laplace Transform of the Convolution Product g1(t ) ∗ g 2(t ) is L { g1(t ) ∗ g 2(t )} = L { g1(t )} × L { g 2(t )} = e −bz 1 z 1− a1 e z − a1 1 z 1− a2 e z − a2 . Similarly, the Two-Sided Laplace Transform of the convolution product g1(t ) ∗ g 2(t ) ∗ ... ∗ gn (t ) is L { g1(t ) ∗ g 2(t ) ∗ ... ∗ gn (t )} = = L { g1(t )} × L { g 2(t )} × ... × L { gn (t )} 26 Gauge Institute Journal, Volume 5, No 2, May 2009 = 1 H. Vic Dannon 1 1 z ebz ⎛ ⎞⎟ a z ⎜⎜ 1 − ⎟e 1 ⎜⎝ a1 ⎠⎟⎟ z ⎛ ⎞ ⎜⎜ 1 − z ⎟⎟e a2 a2 ⎠⎟⎟ ⎝⎜ ... 1 z ⎛ ⎞ ⎜⎜ 1 − z ⎟⎟e an an ⎠⎟⎟ ⎝⎜ The denominator functions z z z ⎛ ⎛ z ⎞ ⎛ z ⎞ z ⎞ En (z ) = ebz ⎜⎜ 1 − ⎟⎟⎟e a1 ⎜⎜ 1 − ⎟⎟⎟e a2 ...⎜⎜ 1 − ⎟⎟⎟e an ⎜⎝ a1 ⎠⎟ ⎝⎜ a2 ⎠⎟ an ⎠⎟ ⎝⎜ are analytic for any complex number z , and converge uniformly [Widd1, p. 173], to the infinite product ⎛ z E (z ) = ebz ⎜⎜ 1 − ⎜⎝ a z z z ⎞⎟ a ⎛ z ⎞ ⎛ z ⎞ ⎟⎟e 1 ⎜⎜ 1 − ⎟⎟⎟e a2 ⎜⎜ 1 − ⎟⎟⎟e a3 ... ⎟ ⎝⎜ a2 ⎠⎟ ⎝⎜ a3 ⎠⎟ 1⎠ on every compact set of the z plane. Thus, E (z ) is analytic for any complex number z . Therefore, for −∞ < t < ∞ , the Infinite Convolution Product G (t ) = g1(t ) ∗ g 2(t ) ∗ g 3(t ) ∗ .... is the Inverse Two-Sided Laplace Transform z =i ∞ ⎧ 1 ⎪ 1 ⎫ ⎪ ⎪ L−1 ⎪ ⎨ ⎬= ⎪ ⎪ ⎪ ⎩ E (z ) ⎪ ⎭ 2πi 1 = 2π ∫ z =−i ∞ y =∞ ∫ y =−∞ 27 1 zt e dω . E (z ) 1 iyt e dy E (iy ) Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon Rather than evaluate directly the Infinite Convolution Product, as Feynman attempted, we evaluate the Two-Sided Laplace Transforms L { g1(t )} , L { g 2(t )} , L { g 3(t )} …, and invert their product. This follows from the Convolution-Kernel Integral Theorem: 4.2 The Convolution-Kernel Integral Theorem G (t ) = g1(t ) ∗ g 2(t ) ∗ g 3(t ) ∗ .... = L−1 { L { g1(t )} L { g 2(t )} L { g 3(t )} ...} ⎧ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ y =∞ ⎪ ⎪ ⎪ ⎪ 1 1 1 1 iyt ⎪ ⎪ = × × × e dy . , ... ⎨ ⎬ ∫ iby iy iy ⎪ ⎪ 2π e ⎛ ⎪ y =−∞ ⎪ iy ⎞⎟ a1 ⎛⎜ iy ⎞⎟ a2 ⎪ ⎪ ⎜ 1 − ⎟⎟e 1 − ⎟⎟e ⎪ ⎪ ⎜ ⎜ ⎪ ⎪ ⎜ ⎟ ⎜ ⎟ a a ⎝ ⎠ ⎝ ⎠ ⎪ ⎪ 1 2 ⎩ ⎭ 4.3 The Kernel G (t ) as a Probability Density Function − a1 < x < a1 , In the strip 1 e bz × 1 ⎛ ⎞ ⎜⎜ 1 − z ⎟⎟e ⎜⎝ a1 ⎠⎟⎟ z a1 × 1 ⎛ ⎞ ⎜⎜ 1 − z ⎟⎟e a2 ⎠⎟⎟ ⎝⎜ z a2 × 28 1 ⎛ ⎞ ⎜⎜ 1 − z ⎟⎟e a3 ⎠⎟⎟ ⎝⎜ z a3 × ... = Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon = L { g1(t ) ∗ g 2(t ) ∗ g 3(t ) ∗ ....} t =∞ = ∫ { g1(t ) ∗ g2(t ) ∗ g3(t ) ∗ ....}e−ztdt t =−∞ At z = 0 , t =∞ ∫ { g1(t ) ∗ g2(t ) ∗ g3(t ) ∗ ...}dt = t =−∞ 1 E (0) =1 Also, g1(t ) ∗ g 2(t ) ∗ g 3(t ) ∗ ... ≥ 0 , because for any n , g1(t ) ∗ g 2(t ) ∗ ... ∗ gn (t ) ≥ 0 . Thus, G (t ) is a probability density function. It is shown (in [Hirs1], [Widd1]) that its Mean is b, and its Variance is 1 a12 4.4 + 1 a22 + 1 a32 + ... . The Convolution Transform The convolution of G (t ) with an integrable function f (t ) ∈ L1 is the Convolution Transform determined by the sequencea1, a2 , a 3 ,. , 29 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon F (t ) = G(t ) ∗ f (t ) u =∞ ∫ = G(t − u )f (u )du u =−∞ u =∞ = f (t − u ) ⎡⎣ g1(u ) ∗ g 2(u ) ∗ g 3(u ) ∗ ... ⎤⎦ du . ∫ u =−∞ The following examples were derived from [Hirs1, p.79]. Laplace ak G (t ) 1, 2, 3.. t −et t e −e ∗ e−e Laplace Stieltjes ν =1 2 −5 2 −1 , , 2 , −3 2 2 , 3 5 τ =∞ 1 Γ(1 − z ) ee Iterated Φ(ξ ) E (z ) ∫ τ =0 ⎛ τ =∞ ⎞ ⎜⎜ e −τ / θϕ(τ )d τ ⎟⎟ 1 e −ξθd θ ⎟ ∫ ⎜⎜ ∫ ⎠⎟ θ θ=0 ⎝ τ =0 θ =∞ 1 t [Γ(1 − z )]2 1 t/2 1 Stieltjes e t /2 − e −t /2 [Γ(z )Γ(1 − z )]2 1 1 z Γ(z )Γ(1 − z ) ν = 2 ... − 2, −1, 1, 2.. (e t /2 Meijer ν = 0 ) 1 Stieltjes ν >0 +e −t /2 2 ⎛ν Γ⎜ ⎜⎝ 2 < 1 ∫ 2 e K ν (e ) Γ ( 1 + ν − z ∫ ⎞ − z⎟ ⎟⎠ τ =0 ∫ 30 ϕ(τ ) ν (ξ + τ ) dτ dτ ξτK 0(ξτ )ϕ(τ )d τ τ =0 τ =∞ z +1 )( 2 τ =∞ 1 − ν − z Γ 2 ϕ(τ ) τ =0 ( ξ + τ ) 2 ⎡ ⎛ 1 − z ⎞⎤ ⎟⎟ ⎥ ⎢ Γ ⎜⎜ ⎢⎣ ⎜⎝ 2 ⎠⎟ ⎥⎦ t ϕ(τ ) dτ ξ+τ log ξ − log τ ϕ(τ )d τ ξ−τ τ =∞ 2z +1 Meijer −1 < ν τ =0 τ =0 τ =∞ ⎞ ⎛ν + z ⎟Γ⎜ ⎟⎠ ⎝⎜ 2 t e K 0 (e ) t ∫ Γ(ν ) (e t /2 + e −t /2 )ν t ∫ τ =∞ Iterated Stieltjes τ =∞ 1 Γ(iz )Γ(1 − iz ) e t /2 + e−t /2 e−ξτϕ(τ )d τ 2 ) ∫ τ =0 ξτK ν (ξτ )ϕ(τ )d τ Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon To see how the Convolution Transform F (t ) of t f (u ) with the Kernel e te −e is the Laplace Transform Φ(ξ ) of ϕ(τ ) , write u =∞ ∫ F (t ) = e t −ue−e t −u f (u )du . u =−∞ Multiply both sides by e −t . Then, u =∞ ∫ e −t F (t ) = e−e t −u f (u )e −udu . u =−∞ Put τ = e −u . Then, 1 u = log , τ d τ = −e −udu , and τ =0 ∫ e −t F (t ) = τ =∞ t 1 e −e τ f (log )( −d τ ) τ τ =∞ = ∫ τ =0 t 1 e −e τ f (log )d τ . τ Denote e t = ξ . Then, 1 F (log ξ ) = ξ Φ(ξ ) τ =∞ 1 −ξτ e f (log )d τ . ∫ τ τ =0 ϕ(τ ) Thus, 31 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon τ =∞ Φ(ξ ) = ∫ e −ξτϕ(τ )d τ . τ =0 We obtain the Convolution Transform, similarly to the way we obtain the Convolution-Kernel Integral Theorem, by applying the Two-Sided Laplace Integral Theorem, 4.5 The Convolution-Transform Integral Theorem F (t ) = ( g1(t ) ∗ g 2(t ) ∗ g 3(t ) ∗ .... ) ∗ f (t ) = L−1 {( L { g1(t )} L { g2(t )} L { g 3(t )} ... ) L { f (t )} } ⎧⎛ ⎞⎟ ⎪⎜ ⎪ ⎟ ⎜ ⎪⎜ y =∞ ⎪ ⎟⎟ ⎜⎜ 1 ⎪ ⎟ 1 1 1 = × × ... ⎟⎟⎟ L { f (t )}}e iytdy , ⎨⎪⎜⎜ iby × ∫ iy iy ⎪⎜⎜ e 2π ⎛ ⎟⎟⎟ y =−∞ ⎪ iy ⎞⎟ a1 ⎛⎜ iy ⎞⎟ a2 ⎪ ⎜ ⎜ ⎟⎟ ⎪⎜ ⎜⎜ 1 − ⎟⎟e ⎜⎜ 1 − ⎟⎟e ⎪⎜ ⎟ ⎜ a a ⎝ ⎝ ⎠ ⎝ ⎠ ⎠ ⎪ ⎩ 1 2 32 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon 5. Schrodinger Propagator and Infinite Convolution Product Feynman attempted to express the Schrodinger Propagator as an Infinite Convolution Product over the least energy path of the particle. To that end he divided the time interval [ta , tb ] into N equal subintervals, and by the properties of the Gaussian had K (tN , tN −1 ) ∗ K (tN −1, tN −2 ) ∗ ... ∗ K (t1, t0 ) = K (b, a ) , where, for the force-free particle, 1 ⎤2 ⎡ m ⎥ K (tk , tk −1 ) = ⎢ ⎢⎣ 2πi=(tk − tk −1 ) ⎥⎦ e ⎛ ⎞⎟ ⎜⎜ m 2 (xk −xk −1 ) ⎟⎟⎟⎟ ⎜⎜ ⎜⎝ 2i=(tk −tk −1 ) ⎠⎟ . As N → ∞ , the finite convolution product becomes infinite, but its limit is the same K (b, a ) . Indeed, Schrodinger’s Propagator is not an Infinite Convolution Product. An Infinite Convolution Product requires a sequence of real numbers a1, a2, a3,... with 1 a12 + 33 1 a22 + 1 a32 + ... < ∞ , Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon that are roots of the analytic infinite product E (z ) . But the Schrodinger Propagator K (b, a ) , is a kernel G (ξ ) with no roots, and its Two-Sided Laplace Transform 1 , is such that E (z ) E (z ) has no roots either. Therefore, G (ξ ) is not an Infinite Convolution Product. 5.1 Schrodinger’s propagator is not an Infinite Convolution Product Denote xb − xa ≡ ξ , and K (b, a ) = G (ξ ) Then, 1 = E (z ) has no roots. L {G(ξ )} Thus, the Schrodinger Propagator is not an Infinite Convolution Product, and the Infinite Convolution Method cannot be applied to the Feynman Integral. Proof: Denote m = −c . 2=(tb − ta ) Then, 1 ⎤2 ⎡ m ⎥ K (b, a ) = ⎢ ⎢⎣ 2πi=(tb − ta ) ⎥⎦ e ⎛ ⎞⎟ ⎜⎜ m (xb −xa )2 ⎟⎟⎟⎟ ⎜⎜ ⎜⎜⎝ 2i=(tb −ta ) ⎠⎟ = c c −i ξ 2 πi e Therefore, the Two-Sided Laplace Transform of K (b, a ) is 34 Gauge Institute Journal, Volume 5, No 2, May 2009 L { K (b, a )} = = H. Vic Dannon ξ =∞ −c ξ2 −z ξ c ∫ e i e dξ πi ξ =−∞ c πi ξ =∞ −(c /i )ξ ∫ e 2 (ez ξ + e−z ξ )d ξ ξ =0 By [Haan, Table 26, formula 14], ∞ ∫ e−q x (e2px + e−2px )dx = 2 2 0 Identifying q = 1 2 2 π e p /q . q c / i , p = z / 2 , we have =e i z2 4c . Hence, z2 −i 1 E (z ) = = e 4c has no zeros. , L { K (b, a )} Feynman’s construction of his Path Integral is erroneous because the Schrödinger Propagator K (b, a ) cannot be decomposed into an Infinite Convolution Product. The Feynman Integral is precisely the Schrodinger Propagator, and Feynman’s New approach to Quantum Mechanics is Schrodinger’s Wave Mechanics. 35 Gauge Institute Journal, Volume 5, No 2, May 2009 H. Vic Dannon References [Feyn1] Feynman and Hibbs, “Quantum Mechanics and Path Integrals” McGraw-Hill, 1965. [Feyn2]. Feynman, R. P., “Space time Approach to Non-relativistic Quantum Mechanics”, in “Selected Papers on Quantum Electrodynamics” edited by Julian Schwinger, Dover, 1958. p. 321. [Haan] De Haan, D. Bierens, “Nouvelles Tables D’Integrales Definies”, Edition of 1867 – Corrected. Hafner Publishing. [Hirs1] Hirschman, I., and Widder, D., The Convolution Transform, Princeton University Press, 1955. [Hirs2] Hirschman, I., and Widder, D., “The Laplace Transform, The Stieltjes Transform, and their Generalizations”, in “Studies in Real and Complex Analysis”. Edited by Hirschman, I.. Published by Mathematical Association of America, 1965 [Widd1] Widder D., “An introduction to Transform Theory”, Academic Press, 1971. 36