Download Home Exercise

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
BGU Physics Dept. Introduction to Mathematical Methods in Physics
Home Exercise
Complex Numbers
1. Solve the following equations:
(a) z 2 − 5z + 10 = 0
(b) 4z 3 − 6z 2 + 3z = 0
solution
(a) z1 =
5
2
+ 2i, z2 = z1 =
(b) z1 = 0, z2 =
3
4
√
+i
12
8 ,
5
2
− 2i
z3 =
3
4
√
−i
12
8
2. For z = 4i and w = 2 − 3i, calculate
(a) z + w
(b) z − w
(c) z · w
(d)
z
w
(e) z ∗ w − zw∗
(f) w2
(g) ln(w)
√
(h) 1 + z + w
solution
(a) z + w = 2 + i
(b) z − w = 2 − 7i
(c) z · w = 12 + 8i
(d)
z
w
=
12
13
+
8
13 i
(e) z ∗ w − zw∗ = −24
(f) w2 = 5 − 12i
(g) ln(w) = ln(13)
+ i tan−1 − 32 + 2πn
2
√
√
(h) 1 + z + w = ± 4 10 (cos(θ/2) + i sin(θ/2)) θ = tan−1 (1/3)
3. Calculate
(a) Re(e4+3i )
(b) Im(22i+3 )
solution
(a) e4
1
(b) 22i+3 = e(3+2i) ln 2 = e3 ln 2 ei2 ln 2 ⇒ Im(2i+3 ) = e2 ln 2 = eln 4 = 4
4. (a) Show that cos(4θ) = 8 cos4 (θ) − 8 cos2 (θ) + 1
q √
(b) Use the above result to prove that cos π8 = 2+4 2
solution
(a)
cos(4θ) + i sin(4θ) = (cos θ + i sin θ)4
= cos4 θ + 4i cos3 θ sin θ − 6 cos2 θ sin2 θ − 4i cos θ sin3 θ + sin4 θ
cos(4θ) = Re(cos(4θ) + i sin(4θ)) = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ
= cos4 θ − 6 cos2 θ(1 − cos2 θ) + (1 − cos2 θ)2 = 8 cos4 θ − 8 cos2 θ + 1
(b) For θ =
π
8
we have
π π π = 0 = 8 cos4
− 8 cos2
+1
cos
2
8
8
Let x = cos2 π8 to obtain:
8x2 − 8x + 1 = 0
s
√
π 2+ 2
x = cos
=
8
4
5. Using euler theorem and the multiplication eiθ eiφ , find trigonometric identities for:
(a) sin2 (θ)
(b) sin(θ + φ)
(c) cos(θ + φ)
solution
(a)
2
sin (θ) =
eiθ − e−iθ
2i
2
=−
1 − cos(2θ)
1 2iθ
e + e−2iθ − 2 =
4
2
(b) + (c)
cos(θ + φ) + i sin(θ + φ) = ei(θ+φ) = eiθ eiφ = (cos θ + i sin θ) (cos φ + i sin φ)
= cos θ cos φ − sin θ sin φ + i (cos θ sin φ + sin θ cos φ)
cos(θ + φ) = cos θ cos φ − sin θ sin φ
sin(θ + φ) = cos θ sin φ + sin θ cos φ
2
if any typos or corrections found please let me know: Ben Yellin [email protected]
3
Related documents