Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 3 Analytic Trigonometry 15. sin −1 ( −1) Section 3.1 1. Domain: { x x is any real number} ; We are finding the angle θ , − Range: { y − 1 ≤ y ≤ 1} whose sine equals −1 . π π sin θ = −1, − ≤ θ ≤ 2 2 π θ =− 2 π sin −1 ( −1) = − 2 2. Answers may vary. One possibility is { x | x ≥ 1} . 3. [3, ∞ ) 4. True 5. 1; 3 2 16. cos −1 ( −1) We are finding the angle θ , 0 ≤ θ ≤ π , whose cosine equals −1 . cos θ = −1, 0 ≤ θ ≤ π θ =π 1 6. − ; −1 2 7. x = sin y 8. 9. π π ≤θ ≤ , 2 2 cos −1 ( −1) = π π 2 17. tan −1 0 π We are finding the angle θ , − 5 π π < θ < , whose 2 2 tangent equals 0. −1 10. False. The domain of y = sin x is −1 ≤ x ≤ 1 . tan θ = 0, − θ =0 11. True π π <θ < 2 2 −1 tan 0 = 0 12. True 18. tan −1 ( −1) 13. sin −1 0 We are finding the angle θ , − π π ≤ θ ≤ , whose 2 2 We are finding the angle θ , − sine equals 0. sin θ = 0, θ =0 tangent equals −1 . π π − ≤θ ≤ 2 2 tan θ = −1, − π π < θ < , whose 2 2 π π <θ < 2 2 π 4 π tan −1 (−1) = − 4 θ =− −1 sin 0 = 0 14. cos −1 1 We are finding the angle θ , 0 ≤ θ ≤ π , whose cosine equals 1. cos θ = 1, 0 ≤ θ ≤ π θ =0 cos −1 1 = 0 208 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.1: The Inverse Sine, Cosine, and Tangent Functions 19. sin −1 ⎛ 3⎞ 22. sin −1 ⎜⎜ − ⎟⎟ ⎝ 2 ⎠ 2 2 We are finding the angle θ , − 2 . 2 2 sin θ = , 2 π θ= 4 2 π sin −1 = 2 4 π π ≤ θ ≤ , whose 2 2 We are finding the angle θ , − sine equals 20. tan −1 sine equals − − π π ≤θ ≤ 2 2 We are finding the angle θ , − tangent equals 3 , 3 π θ= 6 tan θ = tan −1 3 , 2 π θ =− 3 ⎛ ⎞ 3 π sin −1 ⎜⎜ − ⎟⎟ = − 3 2 ⎝ ⎠ − π π ≤θ ≤ 2 2 ⎛ 3⎞ 23. cos −1 ⎜⎜ − ⎟⎟ ⎝ 2 ⎠ We are finding the angle θ , 0 ≤ θ ≤ π , whose π π < θ < , whose 2 2 3 . 2 3 cos θ = − , 2 5π θ= 6 ⎛ ⎞ 3 5 π cos −1 ⎜⎜ − ⎟⎟ = ⎝ 2 ⎠ 6 3 . 3 − 3 . 2 sin θ = − 3 3 π π ≤ θ ≤ , whose 2 2 cosine equals − π π <θ < 2 2 3 π = 3 6 21. tan −1 3 0 ≤θ ≤ π ⎛ 2⎞ 24. sin −1 ⎜⎜ − ⎟⎟ ⎝ 2 ⎠ π π We are finding the angle θ , − < θ < , whose 2 2 tangent equals 3 . π π tan θ = 3, − < θ < 2 2 π θ= 3 π −1 tan 3= 3 We are finding the angle θ , − sine equals − π π ≤ θ ≤ , whose 2 2 2 . 2 2 , 2 π θ =− 4 ⎛ 2⎞ π sin −1 ⎜⎜ − ⎟⎟ = − 4 ⎝ 2 ⎠ sin θ = − − π π ≤θ ≤ 2 2 209 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry ⎛ ⎛ 3π 39. tan −1 ⎜⎜ tan ⎜ − ⎝ 8 ⎝ 25. sin −1 0.1 ≈ 0.10 26. cos −1 0.6 ≈ 0.93 ( ) ( ) equation f −1 f ( x ) = tan −1 tan ( x ) = x . Since −1 27. tan 5 ≈ 1.37 3π ⎡ π π⎤ is in the interval ⎢ − , ⎥ , we can apply 8 ⎣ 2 2⎦ the equation directly and get ⎛ 3π ⎛ 3π ⎞ ⎞ . tan −1 ⎜⎜ tan ⎜ − ⎟ ⎟⎟ = − 8 ⎝ 8 ⎠⎠ ⎝ − 28. tan −1 0.2 ≈ 0.20 29. cos −1 7 ≈ 0.51 8 30. sin −1 1 ≈ 0.13 8 ⎛ ⎛ 3π 40. sin −1 ⎜⎜ sin ⎜ − ⎝ ⎝ 7 31. tan −1 (− 0.4) ≈ − 0.38 ( 32. tan (− 3) ≈ −1.25 36. sin −1 3 ≈ 0.35 5 ⎛ ⎛ 9π 41. sin −1 ⎜⎜ sin ⎜ ⎝ ⎝ 8 ( ( ⎞⎞ ⎟ ⎟⎟ follows the form of the ⎠⎠ ) ( ) cannot use the formula directly since ) 4π ⎛ directly and get cos −1 ⎜ cos 5 ⎝ ⎞ 4π . ⎟= ⎠ 5 ⎛ ⎛ π ⎞⎞ 38. sin −1 ⎜⎜ sin ⎜ − ⎟ ⎟⎟ follows the form of the ⎝ ⎝ 10 ⎠ ⎠ ) ( 9π is not 8 ⎡ π π⎤ in the interval ⎢ − , ⎥ . We need to find an ⎣ 2 2⎦ ⎡ π π⎤ angle θ in the interval ⎢ − , ⎥ for which ⎣ 2 2⎦ 9π 9π sin = sin θ . The angle is in quadrant III 8 8 so sine is negative. Therefore we want θ to be in quadrant IV so sine will still be negative and be ⎡ π π⎤ in the interval ⎢ − , ⎥ . From the unit circle, ⎣ 2 2⎦ in the interval ⎡⎣0, π ⎤⎦ , we can apply the equation ( ) equation f −1 f ( x ) = sin −1 sin ( x ) = x , but we 4π ⎞ ⎛ 37. cos −1 ⎜ cos ⎟ follows the form of the equation 5 ⎠ ⎝ 4π f −1 f ( x ) = cos −1 cos ( x ) = x . Since is 5 ) ( 3π ⎡ π π⎤ is in the interval ⎢ − , ⎥ , we can apply 7 ⎣ 2 2⎦ the equation directly and get ⎛ ⎛ 3π ⎞ ⎞ 3π . sin −1 ⎜⎜ sin ⎜ − ⎟ ⎟⎟ = − 7 7 ⎠⎠ ⎝ ⎝ 34. cos −1 (− 0.44) ≈ 2.03 2 ≈ 1.08 3 ) − 33. sin −1 (− 0.12) ≈ − 0.12 35. cos −1 ⎞⎞ ⎟ ⎟⎟ follows the form of the ⎠⎠ equation f −1 f ( x ) = sin −1 sin ( x ) = x . Since −1 ( ⎞⎞ ⎟ ⎟⎟ follows the form of the ⎠⎠ ) equation f −1 f ( x ) = sin −1 sin ( x ) = x . Since π ⎡ π π⎤ is in the interval ⎢ − , ⎥ , we can apply 10 ⎣ 2 2⎦ the equation directly and get ⎛ ⎛ π ⎞⎞ π sin −1 ⎜⎜ sin ⎜ − ⎟ ⎟⎟ = − . 10 10 ⎠⎠ ⎝ ⎝ − we see sin 9π π ⎛ π⎞ = sin ⎜ − ⎟ . Since − is in the 8 8 8 ⎝ ⎠ ⎡ π π⎤ interval ⎢ − , ⎥ , we can apply the equation ⎣ 2 2⎦ above and get π ⎛ 9π ⎞ ⎛ π ⎞⎞ −1 ⎛ sin −1 ⎜ sin ⎟ = sin ⎜⎜ sin ⎜ − ⎟ ⎟⎟ = − . 8 8 8 ⎝ ⎠ ⎠⎠ ⎝ ⎝ 210 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.1: The Inverse Sine, Cosine, and Tangent Functions ⎛ ⎛ 5π 42. cos −1 ⎜⎜ cos ⎜ − ⎝ 3 ⎝ ( ⎞⎞ ⎟ ⎟⎟ follows the form of the ⎠⎠ ) ( ⎛ ⎛ 2π 44. tan −1 ⎜⎜ tan ⎜ − ⎝ 3 ⎝ ) ( equation f −1 f ( x ) = cos −1 cos ( x ) = x , but we cannot use the formula directly since − 5π is 3 π⎞ π ⎞⎞ −1 ⎛ ⎟ ⎟⎟ = cos ⎜ cos ⎟ = . 3⎠ 3 ⎠⎠ ⎝ ⎛ 2π ⎞ ⎛π ⎞ unit circle, we see tan ⎜ − ⎟ = tan ⎜ ⎟ . Since 3 ⎝ ⎠ ⎝3⎠ π ⎡ π π⎤ is in the interval ⎢ − , ⎥ , we can apply the 3 ⎣ 2 2⎦ equation above and get ⎞⎞ ⎟ ⎟⎟ follows the form of the ⎠⎠ ( 2π is not 3 2π ⎛ 2π ⎞ is in tan ⎜ − ⎟ = tan θ . The angle − 3 ⎝ 3 ⎠ quadrant III so tangent is positive. Therefore we want θ to be in quadrant I so tangent will still be ⎡ π π⎤ positive and in the interval ⎢ − , ⎥ . From the ⎣ 2 2⎦ ⎡⎣ 0, π ⎤⎦ , we can apply the equation above and get ) ) ⎡ π π⎤ in the interval ⎢ − , ⎥ . We need to find an angle ⎣ 2 2⎦ ⎡ π π⎤ θ in the interval ⎢ − , ⎥ for which ⎣ 2 2⎦ 5π ⎛ 5π ⎞ is in cos ⎜ − ⎟ = cos θ . The angle − 3 ⎝ 3 ⎠ quadrant I. From the unit circle, we see π π ⎛ 5π ⎞ is in the interval cos ⎜ − ⎟ = cos . Since 3 3 ⎝ 3 ⎠ ( ( cannot use the formula directly since − angle θ in the interval ⎡⎣0, π ⎤⎦ for which ⎛ ⎛ 4π 43. tan −1 ⎜⎜ tan ⎜ ⎝ 5 ⎝ ) equation f −1 f ( x ) = tan −1 tan ( x ) = x . but we not in the interval ⎡⎣ 0, π ⎤⎦ . We need to find an ⎛ ⎛ 5π cos −1 ⎜⎜ cos ⎜ − ⎝ 3 ⎝ ⎞⎞ ⎟ ⎟⎟ follows the form of the ⎠⎠ ) equation f −1 f ( x ) = tan −1 tan ( x ) = x , but ⎛ ⎛ 2π tan −1 ⎜⎜ tan ⎜ − ⎝ 3 ⎝ 4π we cannot use the formula directly since is 5 ⎡ π π⎤ not in the interval ⎢ − , ⎥ . We need to find an ⎣ 2 2⎦ π⎞ π ⎞⎞ −1 ⎛ ⎟ ⎟⎟ = tan ⎜ tan ⎟ = . 3⎠ 3 ⎠⎠ ⎝ 1⎞ ⎛ 45. sin ⎜ sin −1 ⎟ follows the form of the equation 4⎠ ⎝ 1 f f −1 ( x ) = sin sin −1 ( x ) = x . Since is in 4 the interval ⎡⎣ −1,1⎤⎦ , we can apply the equation ⎡ π π⎤ angle θ in the interval ⎢ − , ⎥ for which ⎣ 2 2⎦ 4π ⎛ 4π ⎞ is in quadrant tan ⎜ ⎟ = tan θ . The angle 5 ⎝ 5 ⎠ II so tangent is negative. Therefore we want θ to be in quadrant IV so tangent will still be negative ⎡ π π⎤ and in the interval ⎢ − , ⎥ . From the unit ⎣ 2 2⎦ ( ) ( ) 1⎞ 1 ⎛ directly and get sin ⎜ sin −1 ⎟ = . 4⎠ 4 ⎝ ⎛ ⎛ 2 ⎞⎞ 46. cos ⎜⎜ cos −1 ⎜ − ⎟ ⎟⎟ follows the form of the ⎝ 3 ⎠⎠ ⎝ π ⎛ 4π ⎞ ⎛ π⎞ circle, we see tan ⎜ ⎟ = tan ⎜ − ⎟ . Since − 5 5 5 ⎝ ⎠ ⎝ ⎠ ⎡ π π⎤ is in the interval ⎢ − , ⎥ , we can apply the ⎣ 2 2⎦ equation above and get ⎛ π ⎛ 4π ⎞ ⎞ ⎛ π ⎞⎞ −1 ⎛ tan −1 ⎜⎜ tan ⎜ ⎟ ⎟⎟ = tan ⎜⎜ tan ⎜ − ⎟ ⎟⎟ = − . 5 5 5 ⎝ ⎠⎠ ⎝ ⎠⎠ ⎝ ⎝ ( ) ( ) equation f f −1 ( x ) = cos cos −1 ( x ) = x . 2 is in the interval ⎡⎣ −1,1⎤⎦ , we can 3 apply the equation directly and get ⎛ 2 ⎛ 2 ⎞⎞ cos ⎜⎜ cos −1 ⎜ − ⎟ ⎟⎟ = − . 3 ⎝ 3 ⎠⎠ ⎝ Since − 211 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry ( ) 47. tan tan −1 4 follows the form of the equation ( ) ( argument of the inverse sine function is ) f f −1 ( x ) = tan tan −1 ( x ) = x . Since 4 is a and that it must lie in the interval ⎡⎣ −1,1⎤⎦ . That is, x−2 −1 ≤ ≤1 5 −5 ≤ x − 2 ≤ 5 −3 ≤ x ≤ 7 The domain of f −1 ( x ) is { x | −3 ≤ x ≤ 7} , or real number, we can apply the equation directly ( ) and get tan tan −1 4 = 4 . ( ) 48. tan tan −1 ( −2 ) follows the form of the equation ( ) ( ) f f −1 ( x ) = tan tan −1 ( x ) = x . Since −2 is a real number, we can apply the equation directly ( ⎡⎣ −3, 7 ⎤⎦ in interval notation. ) and get tan tan −1 ( −2 ) = −2 . 54. 49. Since there is no angle θ such that cos θ = 1.2 , ) cos cos −1 1.2 is not defined. 50. Since there is no angle θ such that sin θ = −2 , the quantity sin −1 ( −2 ) is not defined. Thus, ( ) sin sin −1 ( −2 ) is not defined. ( ) 51. tan tan −1 π follows the form of the equation ( f f −1 ( x ) ) = tan ( tan ( x ) ) = x . −1 that x ≠ Since π is a of the inverse tangent function can be any real number. Thus, the domain of f −1 ( x ) is all real ) and get tan tan −1 π = π . numbers, or ( −∞, ∞ ) in interval notation. 52. Since there is no angle θ such that sin θ = −1.5 , the quantity sin −1 ( −1.5) is not defined. Thus, ( sin sin 53. −1 55. ( −1.5) ) is not defined. f ( x ) = −2 cos ( 3 x ) y = −2 cos ( 3 x ) x = −2 cos ( 3 y ) f ( x ) = 5sin x + 2 cos ( 3 y ) = − y = 5sin x + 2 x = 5sin y + 2 x−2 = f −1 ( x ) 5 The domain of f ( x ) is the set of all real y = sin −1 The domain of f ( x ) is the set of all real numbers, or ( −∞, ∞ ) in interval notation. To numbers, or ( −∞, ∞ ) in interval notation. To −1 ( x) x 2 ⎛ x⎞ 3 y = cos −1 ⎜ − ⎟ ⎝ 2⎠ 1 ⎛ x⎞ y = cos −1 ⎜ − ⎟ = f −1 ( x ) 3 ⎝ 2⎠ 5sin y = x − 2 x−2 sin y = 5 find the domain of f ( 2k + 1) π where k is an integer. To find 2 the domain of f −1 ( x ) we note that the argument real number, we can apply the equation directly ( f ( x ) = 2 tan x − 3 y = 2 tan x − 3 x = 2 tan y − 3 2 tan y = x + 3 x+3 tan y = 2 x+3 y = tan −1 = f −1 ( x ) 2 The domain of f ( x ) is all real numbers such the quantity cos −1 1.2 is not defined. Thus, ( x−2 5 find the domain of f −1 ( x ) we note that the we note that the argument of the inverse cosine function is −x 2 212 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.1: The Inverse Sine, Cosine, and Tangent Functions The domain of f ( x ) is all real numbers such and that it must lie in the interval ⎡⎣ −1,1⎤⎦ . That is, x −1 ≤ − ≤ 1 2 2 ≥ x ≥ −2 −2 ≤ x ≤ 2 The domain of f −1 ( x ) is { x | −2 ≤ x ≤ 2} , or that x ≠ 2 find the domain of f −1 ( x ) we note that the argument of the inverse tangent function can be any real number. Thus, the domain of f −1 ( x ) is all real numbers, or ( −∞, ∞ ) in interval notation. ⎡⎣ −2, 2⎤⎦ in interval notation. 56. 58. f ( x ) = 3sin ( 2 x ) x = cos ( y + 2 ) + 1 x = 3sin ( 2 y ) cos ( y + 2 ) = x − 1 x 3 2 y = sin −1 y + 2 = cos −1 ( x − 1) x 3 y = cos −1 ( x − 1) − 2 The domain of f ( x ) is the set of all real 1 x y = sin −1 = f −1 ( x ) 2 3 The domain of f ( x ) is the set of all real numbers, or ( −∞, ∞ ) in interval notation. To find the domain of f −1 ( x ) we note that the numbers, or ( −∞, ∞ ) in interval notation. To argument of the inverse cosine function is x − 1 and that it must lie in the interval ⎡⎣ −1,1⎤⎦ . That find the domain of f −1 ( x ) we note that the argument of the inverse sine function is is, −1 ≤ x − 1 ≤ 1 0≤ x≤2 The domain of f −1 ( x ) is { x | 0 ≤ x ≤ 2} , or x and 3 that it must lie in the interval ⎡⎣ −1,1⎤⎦ . That is, x −1 ≤ ≤ 1 3 −3 ≤ x ≤ 3 The domain of f −1 ( x ) is { x | −3 ≤ x ≤ 3} , or ⎡⎣ 0, 2 ⎤⎦ in interval notation. 59. x = 3sin ( 2 y + 1) f ( x ) = − tan ( x + 1) − 3 sin ( 2 y + 1) = y = − tan ( x + 1) − 3 x 3 x 3 ⎛x⎞ 2 y = sin −1 ⎜ ⎟ − 1 ⎝3⎠ 2 y + 1 = sin −1 x = − tan ( y + 1) − 3 tan ( y + 1) = − x − 3 y + 1 = tan −1 ( − x − 3) 1 ⎛ x⎞ 1 y = sin −1 ⎜ ⎟ − = f −1 ( x ) 2 ⎝3⎠ 2 y = −1 + tan −1 ( − x − 3) = −1 − tan −1 ( x + 3) = f −1 ( x ) (note here we used the fact that y = tan odd function). f ( x ) = 3sin ( 2 x + 1) y = 3sin ( 2 x + 1) ⎣⎡ −3,3⎦⎤ in interval notation. 57. f ( x ) = cos ( x + 2 ) + 1 y = cos ( x + 2 ) + 1 y = 3sin ( 2 x ) sin ( 2 y ) = ( 2k + 1) π − 1 where k is an integer. To The domain of f ( x ) is the set of all real −1 numbers, or ( −∞, ∞ ) in interval notation. To x is an find the domain of f −1 ( x ) we note that the 213 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry argument of the inverse sine function is 62. 2 cos −1 x = π x and 3 cos −1 x = that it must lie in the interval ⎡⎣ −1,1⎤⎦ . That is, x −1 ≤ ≤ 1 3 −3 ≤ x ≤ 3 The domain of f −1 ( x ) is { x | −3 ≤ x ≤ 3} , or 63. 3cos −1 ( 2 x ) = 2π cos −1 ( 2 x ) = y = 2 cos ( 3x + 2 ) 2π 3 1 2 1 x=− 4 2x = − x 2 ⎛x⎞ 3 y + 2 = cos −1 ⎜ ⎟ ⎝2⎠ ⎛x⎞ 3 y = cos −1 ⎜ ⎟ − 2 ⎝2⎠ ⎧ 1⎫ The solution set is ⎨− ⎬ . ⎩ 4⎭ 64. −6sin −1 ( 3x ) = π 1 ⎛ x⎞ 2 y = cos −1 ⎜ ⎟ − = f −1 ( x ) 3 ⎝2⎠ 3 sin −1 ( 3x ) = − π 6 ⎛ π⎞ 3 x = sin ⎜ − ⎟ ⎝ 6⎠ 1 3x = − 2 1 x=− 6 ⎧ 1⎫ The solution set is ⎨− ⎬ . ⎩ 6⎭ The domain of f ( x ) is the set of all real numbers, or ( −∞, ∞ ) in interval notation. To find the domain of f −1 ( x ) we note that the x 2 and that it must lie in the interval ⎡⎣ −1,1⎤⎦ . That argument of the inverse cosine function is is, x ≤1 2 −2 ≤ x ≤ 2 The domain of f −1 ( x ) is { x | −2 ≤ x ≤ 2} , or −1 ≤ 65. 3 tan −1 x = π tan −1 x = π 3 x = tan ⎡⎣ −2, 2 ⎤⎦ in interval notation. π 3 = 3 The solution set is 61. 4sin −1 x = π π { 3} . 66. −4 tan −1 x = π 4 π 2 4 2 ⎧⎪ 2 ⎫⎪ The solution set is ⎨ ⎬ . ⎩⎪ 2 ⎭⎪ x = sin 2π 3 2 x = cos x = 2 cos ( 3 y + 2 ) sin −1 x = π =0 2 The solution set is {0} . f ( x ) = 2 cos ( 3 x + 2 ) cos ( 3 y + 2 ) = 2 x = cos ⎡⎣ −3,3⎤⎦ in interval notation. 60. π tan −1 x = − = π 4 ⎛ π⎞ x = tan ⎜ − ⎟ = −1 ⎝ 4⎠ The solution set is {−1} . 214 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.1: The Inverse Sine, Cosine, and Tangent Functions 71. Note that θ = 21°18′ = 21.3° . 67. 4 cos −1 x − 2π = 2 cos −1 x 2 cos −1 x − 2π = 0 a. 2 cos −1 x = 2π cos −1 x = π x = cos π = −1 The solution set is {−1} . b. 68. 5sin −1 x − 2π = 2sin −1 x − 3π 3sin −1 x = −π sin −1 x = − c. π 3 3 ⎛ π⎞ x = sin ⎜ − ⎟ = − 2 ⎝ 3⎠ ⎪⎧ 3 ⎪⎫ The solution set is ⎨− ⎬. ⎩⎪ 2 ⎭⎪ b. c. a. π ⎡ cos −1 ( tan ( 23.5 ⋅ 180 ) tan ( 29.75 ⋅ 180π ) ) ⎤ ⎥ D = 24 ⋅ ⎢1 − π ⎢⎣ ⎥⎦ ≈ 13.92 hours or 13 hours, 55 minutes b. π ⎡ cos −1 ( tan ( 0 ⋅ 180 ) tan ( 29.75 ⋅ 180π ) ) ⎤ ⎥ D = 24 ⋅ ⎢1 − π ⎢⎣ ⎥⎦ ≈ 12 hours c. π ⎡ cos −1 ( tan ( 22.8 ⋅ 180 ) tan ( 29.75 ⋅ 180π ) ) ⎤ ⎥ D = 24 ⋅ ⎢1 − π ⎢⎣ ⎥⎦ ≈ 13.85 hours or 13 hours, 51 minutes 73. a. 70. Note that θ = 40°45′ = 40.75° . a. b. c. π ⎛ cos −1 ( tan ( 0 ⋅ 180 ) tan ( 21.3 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜ 1 − ⎜ ⎟ π ⎝ ⎠ ≈ 12 hours π ⎛ cos −1 ( tan ( 22.8 ⋅ 180 ) tan ( 21.3 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜ 1 − ⎜ ⎟ π ⎝ ⎠ ≈ 13.26 hours or 13 hours, 15 minutes 72. Note that θ = 61°10′ ≈ 61.167° . 69. Note that θ = 29°45′ = 29.75° . a. π ⎛ cos −1 ( tan ( 23.5 ⋅ 180 ) tan ( 21.3 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜ 1 − ⎜ ⎟ π ⎝ ⎠ ≈ 13.30 hours or 13 hours, 18 minutes b. π ⎛ cos −1 ( tan ( 23.5 ⋅ 180 ) tan ( 40.75 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜ 1 − ⎜ ⎟ π ⎝ ⎠ ≈ 14.93 hours or 14 hours, 56 minutes c. π ⎛ cos −1 ( tan ( 0 ⋅ 180 ) tan ( 40.75 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜ 1 − ⎜ ⎟ π ⎝ ⎠ ≈ 12 hours π ⎛ cos −1 ( tan ( 23.5 ⋅ 180 ) tan ( 61.167 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜ 1 − ⎜ ⎟ π ⎝ ⎠ ≈ 18.96 hours or 18 hours, 57 minutes π ⎛ cos −1 ( tan ( 0 ⋅ 180 ) tan ( 61.167 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜ 1 − ⎜ ⎟ π ⎝ ⎠ ≈ 12 hours π ⎛ cos −1 ( tan ( 22.8 ⋅ 180 ) tan ( 61.167 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜ 1 − ⎜ ⎟ π ⎝ ⎠ ≈ 18.64 hours or 18 hours, 38 minutes π ⎛ cos −1 ( tan ( 23.5 ⋅ 180 ) tan ( 0 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜1 − ⎜ ⎟ π ⎝ ⎠ ≈ 12 hours π ⎛ cos −1 ( tan ( 0 ⋅ 180 ) tan ( 0 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜1 − ⎜ ⎟ π ⎝ ⎠ ≈ 12 hours π ⎛ cos −1 ( tan ( 22.8 ⋅ 180 ) tan ( 0 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜1 − ⎜ ⎟ π ⎝ ⎠ ≈ 12 hours d. There are approximately 12 hours of daylight every day at the equator. π ⎛ cos −1 ( tan ( 22.8 ⋅ 180 ) tan ( 40.75 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜ 1 − ⎜ ⎟ π ⎝ ⎠ ≈ 14.83 hours or 14 hours, 50 minutes 215 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 74. Note that θ = 66°30′ = 66.5° . a. b. c. 2π (2710) 39.65 = , so 24 t 24(39.65) t= ≈ 0.05589 hours ≈ 3.35 minutes 2π (2710) Therefore, a person atop Cadillac Mountain will see the first rays of sunlight about 3.35 minutes sooner than a person standing below at sea level. and π ⎛ cos −1 ( tan ( 23.5 ⋅ 180 ) tan ( 66.5 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜ 1 − ⎜ ⎟ π ⎝ ⎠ ≈ 24 hours π ⎛ cos −1 ( tan ( 0 ⋅ 180 ) tan ( 66.5 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜ 1 − ⎜ ⎟ π ⎝ ⎠ ≈ 12 hours ⎛ 34 ⎞ ⎛6⎞ 76. θ ( x ) = tan −1 ⎜ ⎟ − tan −1 ⎜ ⎟ . ⎝ x ⎠ ⎝x⎠ ⎛ 34 ⎞ ⎛ 6⎞ a. θ (10 ) = tan −1 ⎜ ⎟ − tan −1 ⎜ ⎟ ≈ 42.6° 10 ⎝ ⎠ ⎝ 10 ⎠ If you sit 10 feet from the screen, then the viewing angle is about 42.6° . ⎛ 34 ⎞ ⎛ 6⎞ θ (15 ) = tan −1 ⎜ ⎟ − tan −1 ⎜ ⎟ ≈ 44.4° ⎝ 15 ⎠ ⎝ 15 ⎠ If you sit 15 feet from the screen, then the viewing angle is about 44.4° . ⎛ 34 ⎞ ⎛ 6 ⎞ θ ( 20 ) = tan −1 ⎜ ⎟ − tan −1 ⎜ ⎟ ≈ 42.8° ⎝ 20 ⎠ ⎝ 20 ⎠ If you sit 20 feet from the screen, then the viewing angle is about 42.8° . π ⎛ cos −1 ( tan ( 22.8 ⋅ 180 ) tan ( 66.5 ⋅ 180π ) ) ⎞⎟ D = 24 ⋅ ⎜1 − ⎜ ⎟ π ⎝ ⎠ ≈ 22.02 hours or 22 hours, 1 minute d. The amount of daylight at this location on the winter solstice is 24 − 24 = 0 hours. That is, on the winter solstice, there is no daylight. In general, for a location at 66°30 ' north latitude, it ranges from around-the-clock daylight to no daylight at all. 75. Let point C represent the center of Earth, and arrange the figure so that segment CQ lies along the x-axis (see figure). b. Let r = the row that result in the largest viewing angle. Looking ahead to part (c), we see that the maximum viewing angle occurs when the distance from the screen is about 14.3 feet. Thus, 5 + 3(r − 1) = 14.3 5 + 3r − 3 = 14.3 y P D (x,y) s C θ 2710 mi x Q (2710,0) 3r = 12.3 r = 4.1 Sitting in the 4th row should provide the largest viewing angle. At the latitude of Cadillac Mountain, the effective radius of the earth is 2710 miles. If point D(x, y) represents the peak of Cadillac Mountain, then the length of segment PD is 1 mile 1530 ft ⋅ ≈ 0.29 mile . Thus, point 5280 feet D( x, y ) = (2700, y ) lies on a circle with radius r = 2710.29 miles. Thus, x 2710 cos θ = = r 2710.29 ⎛ 2710 ⎞ θ = cos −1 ⎜ ⎟ ≈ 0.01463 radians ⎝ 2710.29 ⎠ Finally, s = rθ = 2710(0.01463) ≈ 39.65 miles , 216 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.2: The Inverse Trigonometric Functions [Continued] c. Set the graphing calculator in degree mode ⎛ 34 ⎞ ⎛6⎞ and let Y1 = tan −1 ⎜ ⎟ − tan −1 ⎜ ⎟ : ⎝ x ⎠ ⎝ x⎠ 90° 1 1 ; b = ; The area is: 2 2 ⎛1⎞ ⎛ 1⎞ sin −1 b − sin −1 a = sin −1 ⎜ ⎟ − sin −1 ⎜ − ⎟ ⎝2⎠ ⎝ 2⎠ a=− b. = = 0 6 ⎛ π⎞ −⎜− ⎟ ⎝ 6⎠ π square units 3 79. Here we have α1 = 41°50 ' , β1 = −87°31' , 50 0° Use MAXIMUM: 90° π α 2 = 21°18' , and β 2 = −157°51' . Converting minutes to degrees gives ( ) ( ) 31 α1 = 41 56 ° , β1 = −87 60 ° , α 2 = 21.3° , and β 2 = −157.85° . Substituting these values, and 50 r = 3960 , into our equation gives d ≈ 4251 miles. The distance from Chicago to Honolulu is about 4251 miles. (remember that S and W angles are negative) a = 0 ; b = 3 ; The area is: 80. Here we have α1 = 21°18' , β1 = −157°51' , α 2 = −37°47 ' , and β 2 = 144°58' . Converting minutes to degrees gives α1 = 21.3° , 0 0° The maximum viewing angle will occur when x ≈ 14.3 feet. 77. a. tan −1 b − tan −1 a = tan −1 3 − tan −1 0 = = b. a=− π 3 π 3 ( Section 3.2 π ⎛ π⎞ = −⎜− ⎟ 4 ⎝ 6⎠ 5π = square units 12 ⎧ π⎫ 1. Domain: ⎨ x x ≠ odd multiples of ⎬ , 2⎭ ⎩ Range: { y y ≤ −1 or y ≥ 1} 3 ; The area is: 2 ⎛ 3⎞ −1 sin −1 b − sin −1 a = sin −1 ⎜⎜ ⎟⎟ − sin 0 ⎝ 2 ⎠ 2. True a = 0; b = = π 3 π 3 ) r = 3960 , into our equation gives d ≈ 5518 miles. The distance from Honolulu to Melbourne is about 5518 miles. (remember that S and W angles are negative) 3 ; b = 1 ; The area is: 3 = ) 29 β 2 = 144 30 ° . Substituting these values, and square units ⎛ 3⎞ tan −1 b − tan −1 a = tan −1 1 − tan −1 ⎜⎜ − ⎟⎟ ⎝ 3 ⎠ 78. a. ( β1 = −157.85° , α 2 = −37 47 ° , and 60 −0 3. − 2 5 =− 2 5 5 4. x = sec y , ≥ 1 , 0 , π −0 square units 5. 2 2 ⎛ π 2⎞ −1 ⎜ cos ( tan 1) = cos = ⎟ 4 2 ⎠ ⎝ 6. False 217 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 7. True ⎡ ⎛ 1 ⎞⎤ 12. tan ⎢sin −1 ⎜ − ⎟ ⎥ ⎝ 2 ⎠⎦ ⎣ 8. True Find the angle θ , − ⎛ 2⎞ 9. cos ⎜⎜ sin −1 ⎟⎟ 2 ⎝ ⎠ Find the angle θ , − equals 1 equals − . 2 π π ≤ θ ≤ , whose sine 2 2 1 sin θ = − , 2 π θ =− 6 2 . 2 2 π π , − ≤θ ≤ 2 2 2 π θ= 4 π 2⎞ 2 ⎟⎟ = cos = 2 ⎠ 4 2 sin θ = ⎛ cos ⎜⎜ sin −1 ⎝ 1 , 2 π θ= 3 equals 1 , 2 π θ= 3 ⎡ ⎛ 1 ⎞⎤ 14. cot ⎢sin −1 ⎜ − ⎟ ⎥ ⎝ 2 ⎠⎦ ⎣ Find the angle θ , − ⎡ ⎛ 3 ⎞⎤ 11. tan ⎢cos −1 ⎜⎜ − ⎟⎟ ⎥ ⎝ 2 ⎠ ⎦⎥ ⎣⎢ Find the angle θ , 0 ≤ θ ≤ π, whose cosine θ= π π ≤ θ ≤ , whose sine 2 2 1 equals − . 2 1 π π sin θ = − , − ≤ θ ≤ 2 2 2 π θ =− 6 ⎡ −1 ⎛ 1 ⎞ ⎤ ⎛ π⎞ cot ⎢sin ⎜ − ⎟ ⎥ = cot ⎜ − ⎟ = − 3 ⎝ 2 ⎠⎦ ⎝ 6⎠ ⎣ 3 . 2 3 , 2 0 ≤θ ≤ π 1⎞ π ⎛ sec ⎜ cos −1 ⎟ = sec = 2 2 3 ⎝ ⎠ 0 ≤θ ≤ π cos θ = − 1 . 2 cos θ = π 1⎞ 3 ⎛ sin ⎜ cos −1 ⎟ = sin = 2⎠ 3 2 ⎝ equals − π π ≤θ ≤ 2 2 1⎞ ⎛ 13. sec ⎜ cos −1 ⎟ 2⎠ ⎝ Find the angle θ , 0 ≤ θ ≤ π, whose cosine 1 . 2 cos θ = − ⎡ 3 ⎛ 1 ⎞⎤ ⎛ π⎞ tan ⎢sin −1 ⎜ − ⎟ ⎥ = tan ⎜ − ⎟ = − 2 6 3 ⎝ ⎠⎦ ⎝ ⎠ ⎣ 1⎞ ⎛ 10. sin ⎜ cos −1 ⎟ 2⎠ ⎝ Find the angle θ , 0 ≤ θ ≤ π, whose cosine equals π π ≤ θ ≤ , whose sine 2 2 0 ≤θ ≤ π 5π 6 ⎡ ⎛ 3 ⎞⎤ 5π 3 tan ⎢cos −1 ⎜⎜ − =− ⎟⎟ ⎥ = tan 2 6 3 ⎝ ⎠ ⎥⎦ ⎣⎢ 218 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.2: The Inverse Trigonometric Functions [Continued] ( ) 15. csc tan −1 1 Find the angle θ , − π π < θ < , whose tangent 2 2 equals 1. tan θ = 1, θ= ( − π 4 ) csc tan −1 1 = csc ( 16. sec tan −1 3 π Find the angle θ , − π π <θ < 2 2 1 sin θ = − , 2 π θ =− 6 π π < θ < , whose tangent 2 2 θ= ( π π π <θ < 2 2 equals − 3 ) sec tan −1 3 = sec 3 . 2 π =2 3 cos θ = − θ= 17. sin ⎡⎣ tan −1 (−1) ⎤⎦ Find the angle θ , − equals −1 . θ =− − π π <θ < 2 2 2 ⎛ π⎞ sin ⎣⎡ tan −1 (−1) ⎦⎤ = sin ⎜ − ⎟ = − 2 ⎝ 4⎠ equals − 5π 6 2 . 2 cos θ = − ⎡ ⎛ 3 ⎞⎤ 18. cos ⎢sin −1 ⎜⎜ − ⎟⎟ ⎥ ⎢⎣ ⎝ 2 ⎠ ⎥⎦ equals − 0 ≤θ ≤ π ⎛ 5π ⎞ 2⎞ ⎛ 21. cos −1 ⎜ cos ⎟ = cos −1 ⎜⎜ − ⎟⎟ 4 ⎠ ⎝ ⎝ 2 ⎠ Find the angle θ , 0 ≤ θ ≤ π, whose cosine π 4 Find the angle θ , − 3 2 ⎡ ⎛ 3 ⎞⎤ 5π =2 csc ⎢ cos −1 ⎜⎜ − ⎟⎟ ⎥ = csc 6 ⎢⎣ ⎝ 2 ⎠ ⎥⎦ π π < θ < , whose tangent 2 2 tan θ = −1, π π ≤θ ≤ 2 2 ⎡ ⎛ 3 ⎞⎤ 20. csc ⎢ cos −1 ⎜⎜ − ⎟⎟ ⎥ ⎝ 2 ⎠ ⎦⎥ ⎣⎢ Find the angle θ , 0 ≤ θ ≤ π, whose cosine 3. − − ⎡ ⎛ 1 ⎞⎤ ⎛ π⎞ 2 3 sec ⎢sin −1 ⎜ − ⎟ ⎥ = sec ⎜ − ⎟ = 2 3 ⎝ ⎠⎦ ⎝ 6⎠ ⎣ ) tan θ = 3, π π ≤ θ ≤ , whose sine 2 2 1 equals − . 2 = 2 4 Find the angle θ , − equals ⎡ ⎛ 1 ⎞⎤ 19. sec ⎢sin −1 ⎜ − ⎟ ⎥ ⎝ 2 ⎠⎦ ⎣ 2 , 2 0 ≤θ ≤ π 3π 4 5π ⎞ 3π −1 ⎛ cos ⎜ cos ⎟ = 4 ⎠ 4 ⎝ θ= π π ≤ θ ≤ , whose sine 2 2 3 . 2 3 π π , − ≤θ ≤ 2 2 2 π θ =− 3 ⎡ ⎛ 3 ⎞⎤ ⎛ π⎞ 1 cos ⎢sin −1 ⎜⎜ − ⎟⎟ ⎥ = cos ⎜ − ⎟ = ⎝ 3⎠ 2 ⎢⎣ ⎝ 2 ⎠ ⎥⎦ sin θ = − 219 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 2π ⎞ ⎛ 22. tan −1 ⎜ tan ⎟ = tan −1 − 3 3 ⎠ ⎝ π π Find the angle θ , − < θ < , whose tangent 2 2 equals − 3 . π π tan θ = − 3, − < θ < 2 2 π θ =− 3 π 2 π ⎛ ⎞ tan −1 ⎜ tan ⎟=− 3 ⎠ 3 ⎝ ( ) 1⎞ ⎛ 25. tan ⎜ sin −1 ⎟ 3⎠ ⎝ 1 1 Let θ = sin −1 . Since sin θ = and 3 3 π π − ≤ θ ≤ , θ is in quadrant I, and we let 2 2 y = 1 and r = 3 . Solve for x: x2 + 1 = 9 x2 = 8 x = ± 8 = ±2 2 Since θ is in quadrant I, x = 2 2 . ⎡ ⎛ 7π ⎞⎤ 1 23. sin −1 ⎢sin ⎜ − ⎟ ⎥ = sin −1 2 ⎣ ⎝ 6 ⎠⎦ π π Find the angle θ , − ≤ θ ≤ , whose sine 2 2 1 equals . 2 1 π π sin θ = , − ≤ θ ≤ 2 2 2 π θ= 6 ⎡ ⎛ 7π ⎞ ⎤ π sin −1 ⎢sin ⎜ − ⎟⎥ = ⎣ ⎝ 6 ⎠⎦ 6 1⎞ y 1 2 2 ⎛ tan ⎜ sin −1 ⎟ = tan θ = = ⋅ = x 2 2 2 3⎠ 4 ⎝ 1⎞ ⎛ 26. tan ⎜ cos −1 ⎟ 3⎠ ⎝ 1 1 . Since cos θ = and 0 ≤ θ ≤ π , 3 3 θ is in quadrant I, and we let x = 1 and r = 3 . Solve for y: 1 + y2 = 9 Let θ = cos −1 y2 = 8 y = ± 8 = ±2 2 Since θ is in quadrant I, y = 2 2 . ⎡ ⎛ π ⎞⎤ 1 24. cos −1 ⎢ cos ⎜ − ⎟ ⎥ = cos −1 2 ⎣ ⎝ 3 ⎠⎦ Find the angle θ , 0 ≤ θ ≤ π, whose cosine equals 1⎞ y 2 2 ⎛ =2 2 tan ⎜ cos −1 ⎟ = tan θ = = x 3 1 ⎝ ⎠ 1 . 2 1 cos θ = , 2 π θ= 3 ⎡ ⎛ π ⎞⎤ π cos −1 ⎢ cos ⎜ − ⎟ ⎥ = ⎣ ⎝ 3 ⎠⎦ 3 1⎞ ⎛ 27. sec ⎜ tan −1 ⎟ 2⎠ ⎝ 0 ≤θ ≤ π Let θ = tan −1 1 1 . Since tan θ = and 2 2 π π < θ < , θ is in quadrant I, and we let 2 2 x = 2 and y = 1 . Solve for r: 22 + 1 = r 2 − r2 = 5 r= 5 θ is in quadrant I. 1⎞ r 5 ⎛ sec ⎜ tan −1 ⎟ = sec θ = = x 2⎠ 2 ⎝ 220 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.2: The Inverse Trigonometric Functions [Continued] ⎛ 2⎞ 28. cos ⎜⎜ sin −1 ⎟ 3 ⎟⎠ ⎝ Let θ = sin −1 31. sin ⎡⎣ tan −1 (−3) ⎤⎦ Let θ = tan −1 (−3) . Since tan θ = −3 and π π < θ < , θ is in quadrant IV, and we let 2 2 x = 1 and y = −3 . Solve for r: 1+ 9 = r2 2 2 . Since sin θ = and 3 3 − π π ≤ θ ≤ , θ is in quadrant I, and we let 2 2 y = 2 and r = 3 . Solve for x: x2 + 2 = 9 − r 2 = 10 r = ± 10 x =7 2 Since θ is in quadrant IV, r = 10 . y sin ⎡⎣ tan −1 (−3) ⎤⎦ = sin θ = r 10 3 10 −3 = ⋅ =− 10 10 10 x=± 7 Since θ is in quadrant I, x = 7 . ⎛ 2⎞ x 7 cos ⎜⎜ sin −1 ⎟⎟ = cos θ = = 3 r 3 ⎝ ⎠ ⎡ ⎛ 2 ⎞⎤ 29. cot ⎢sin −1 ⎜⎜ − ⎟⎟ ⎥ ⎢⎣ ⎝ 3 ⎠ ⎥⎦ ⎛ 2⎞ 2 Let θ = sin −1 ⎜⎜ − and ⎟⎟ . Since sin θ = − 3 3 ⎝ ⎠ π π − ≤ θ ≤ , θ is in quadrant IV, and we let 2 2 y = − 2 and r = 3 . Solve for x: x2 + 2 = 9 ⎡ ⎛ 3 ⎞⎤ 32. cot ⎢ cos −1 ⎜⎜ − ⎟⎟ ⎥ ⎝ 3 ⎠ ⎥⎦ ⎣⎢ ⎛ 3⎞ 3 Let θ = cos −1 ⎜⎜ − and ⎟⎟ . Since cos θ = − 3 ⎝ 3 ⎠ 0 ≤ θ ≤ π , θ is in quadrant II, and we let x = − 3 and r = 3 . Solve for y: 3 + y2 = 9 y2 = 6 x2 = 7 y=± 6 x=± 7 Since θ is in quadrant II, y = 6 . Since θ is in quadrant IV, x = 7 . ⎡ ⎛ x 2 ⎞⎤ 7 2 14 ⋅ =− cot ⎢sin −1 ⎜⎜ − ⎟⎟ ⎥ = cot θ = = y 3 2 2 2 − ⎝ ⎠ ⎦⎥ ⎣⎢ ⎡ ⎛ 3 ⎞⎤ x cot ⎢cos −1 ⎜⎜ − ⎟⎟ ⎥ = cot θ = y ⎢⎣ ⎝ 3 ⎠ ⎥⎦ = 30. csc ⎡⎣ tan −1 (− 2) ⎤⎦ Let θ = tan −1 ( − 2) . Since tan θ = − 2 and 6 = −1 2 ⋅ 2 2 =− 2 2 ⎛ 2 5⎞ 33. sec ⎜⎜ sin −1 ⎟ 5 ⎟⎠ ⎝ π π − < θ < , θ is in quadrant IV, and we let 2 2 x = 1 and y = − 2 . Solve for r: 1+ 4 = r2 Let θ = sin −1 2 5 2 5 . Since sin θ = and 5 5 π π ≤ θ ≤ , θ is in quadrant I, and we let 2 2 y = 2 5 and r = 5 . Solve for x: − r =5 2 r=± 5 Since θ is in quadrant IV, r = 5 . csc ⎡⎣ tan −1 (− 2) ⎤⎦ = csc θ = − 3 r 5 5 = =− y −2 2 221 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 39. csc −1 (−1) x 2 + 20 = 25 π π ≤θ ≤ , 2 2 θ ≠ 0 , whose cosecant equals −1 . π π csc θ = −1, − ≤ θ ≤ , θ ≠ 0 2 2 π θ =− 2 π −1 csc (−1) = − 2 x2 = 5 We are finding the angle θ , − x=± 5 Since θ is in quadrant I, x = 5 . ⎛ 2 5⎞ r 5 sec ⎜⎜ sin −1 = 5 ⎟⎟ = sec θ = = 5 ⎠ x 5 ⎝ 1⎞ ⎛ 34. csc ⎜ tan −1 ⎟ 2⎠ ⎝ Let θ = tan −1 1 1 . Since tan θ = and 2 2 40. csc −1 2 π π < θ < , θ is in quadrant I, and we let 2 2 x = 2 and y = 1 . Solve for r: 22 + 1 = r 2 π π ≤θ ≤ , 2 2 θ ≠ 0 , whose cosecant equals 2 . π π csc θ = 2, − ≤ θ ≤ , θ ≠ 0 2 2 π θ= 4 π −1 csc 2= 4 We are finding the angle θ , − − r2 = 5 r= 5 θ is in quadrant I. 1⎞ r 5 ⎛ csc ⎜ tan −1 ⎟ = csc θ = = = 5 2 y 1 ⎝ ⎠ 41. sec −1 2 3 3 ⎛ 3π ⎞ 2⎞ π ⎛ 35. sin −1 ⎜ cos ⎟ = sin −1 ⎜⎜ − ⎟⎟ = − 4 ⎠ 4 ⎝ ⎝ 2 ⎠ We are finding the angle θ , 0 ≤ θ ≤ π , θ ≠ 7π ⎞ ⎛ ⎛ 1 ⎞ 2π 36. cos −1 ⎜ sin ⎟ = cos −1 ⎜ − ⎟ = 6 ⎝ ⎠ ⎝ 2⎠ 3 whose secant equals 2 3 , 3 π θ= 6 sec θ = 37. cot −1 3 We are finding the angle θ , 0 < θ < π, whose cotangent equals cot θ = 3, 3. 0 <θ < π sec −1 π 6 π 3= 6 θ= cot −1 π , 2 2 3 . 3 0 ≤ θ ≤ π, θ ≠ π 2 2 3 π = 3 6 42. sec −1 ( − 2 ) We are finding the angle θ , 0 ≤ θ ≤ π , θ ≠ whose secant equals −2 . 38. cot −1 1 We are finding the angle θ , 0 < θ < π, whose cotangent equals 1. cot θ = 1, 0 < θ < π π θ= 4 π −1 cot 1 = 4 sec θ = − 2, 0 ≤ θ ≤ π, θ ≠ π , 2 π 2 2π 3 2 π sec −1 ( − 2 ) = 3 θ= 222 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.2: The Inverse Trigonometric Functions [Continued] ⎛ 3⎞ 43. cot −1 ⎜⎜ − ⎟⎟ ⎝ 3 ⎠ We are finding the angle θ , 0 < θ < π, whose cotangent equals − 46. csc −1 5 = sin −1 We seek the angle θ , − 3 , 3 2π θ= 3 ⎛ ⎞ 3 2π cot −1 ⎜⎜ − ⎟⎟ = 3 ⎝ ⎠ 3 0 <θ < π ⎛ 2 3⎞ 44. csc −1 ⎜⎜ − ⎟ 3 ⎟⎠ ⎝ 2 3 , 3 π θ =− 3 ⎛ 2 3⎞ π csc −1 ⎜⎜ − ⎟⎟ = − 3 ⎠ 3 ⎝ − π 1 2 We seek the angle θ , 0 ≤ θ ≤ π , whose tangent 47. cot −1 2 = tan −1 π π We are finding the angle θ , − ≤ θ ≤ , 2 2 2 3 θ ≠ 0 , whose cosecant equals − . 3 csc θ = − π ≤ θ ≤ , whose sine 2 2 1 1 equals . Now sin θ = , so θ lies in 5 5 1 quadrant I. The calculator yields sin −1 ≈ 0.20 , 5 which is an angle in quadrant I, so csc−1 5 ≈ 0.20 . 3 . 3 cot θ = − 1 5 1 1 . Now tan θ = , so θ lies in 2 2 1 quadrant I. The calculator yields an −1 ≈ 0.46 , 2 which is an angle in quadrant I, so cot −1 ( 2 ) ≈ 0.46 . equals π π ≤θ ≤ , θ ≠ 0 2 2 1 4 We seek the angle θ , 0 ≤ θ ≤ π , whose cosine 45. sec −1 4 = cos −1 ⎛ 1⎞ 48. sec −1 (−3) = cos −1 ⎜ − ⎟ ⎝ 3⎠ We seek the angle θ , 0 ≤ θ ≤ π , whose cosine 1 1 . Now cos θ = , so θ lies in quadrant 4 4 1 I. The calculator yields cos −1 ≈ 1.32 , which is 4 an angle in quadrant I, so sec−1 ( 4 ) ≈ 1.32 . equals 1 1 equals − . Now cos θ = − , θ lies in 3 3 quadrant II. The calculator yields ⎛ 1⎞ cos −1 ⎜ − ⎟ ≈ 1.91 , which is an angle in ⎝ 3⎠ quadrant II, so sec−1 ( − 3) ≈ 1.91 . 223 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry ⎛ 1⎞ 49. csc −1 ( −3) = sin −1 ⎜ − ⎟ ⎝ 3⎠ We seek the angle θ , − π 2 ≤θ ≤ π 2 ⎛ 1 ⎞ 52. cot −1 ( −8.1) = tan −1 ⎜ − ⎟ ⎝ 8.1 ⎠ We seek the angle θ , 0 ≤ θ ≤ π , whose tangent , whose sine 1 1 , so θ lies in . Now tan θ = − 8.1 8.1 quadrant II. The calculator yields ⎛ 1 ⎞ tan −1 ⎜ − ⎟ ≈ −0.12 , which is an angle in ⎝ 8.1 ⎠ quadrant IV. Since θ is in quadrant II, equals − 1 1 equals − . Now sin θ = − , so θ lies in 3 3 quadrant IV. The calculator yields ⎛ 1⎞ sin −1 ⎜ − ⎟ ≈ −0.34 , which is an angle in ⎝ 3⎠ quadrant IV, so csc−1 ( −3) ≈ −0.34 . θ ≈ −0.12 + π ≈ 3.02 . Thus, cot −1 ( −8.1) ≈ 3.02 . ⎛ 3⎞ ⎛ 2⎞ 53. csc −1 ⎜ − ⎟ = sin −1 ⎜ − ⎟ ⎝ 2⎠ ⎝ 3⎠ ⎛ 1⎞ 50. cot −1 ⎜ − ⎟ = tan −1 (− 2) ⎝ 2⎠ We seek the angle θ , 0 ≤ θ ≤ π , whose tangent equals −2 . Now tan θ = −2 , so θ lies in quadrant II. The calculator yields tan −1 ( − 2 ) ≈ −1.11 , which is an angle in We seek the angle θ , − ) 1 . Now tan θ = − 1 2 , θ ≠0, ⎛ 4⎞ ⎛ 3⎞ 54. sec −1 ⎜ − ⎟ = cos −1 ⎜ − ⎟ ⎝ 3⎠ ⎝ 4⎠ We are finding the angle θ , 0 ≤ θ ≤ π , θ ≠ π , 2 3 3 whose cosine equals − . Now cos θ = − , so 4 4 θ lies in quadrant II. The calculator yields ⎛ 3⎞ cos −1 ⎜ − ⎟ ≈ 2.42 , which is an angle in ⎝ 4⎠ ⎛ 4⎞ quadrant II, so sec −1 ⎜ − ⎟ ≈ 2.42 . ⎝ 3⎠ , so θ lies in 5 5 quadrant II. The calculator yields ⎛ 1 ⎞ tan −1 ⎜ − ⎟ ≈ −0.42 , which is an angle in 5⎠ ⎝ quadrant IV. Since θ is in quadrant II, θ ≈ −0.42 + π ≈ 2.72 . Therefore, ( π 2 2 . Now sin θ = − , so θ 3 3 lies in quadrant IV. The calculator yields ⎛ 2⎞ sin −1 ⎜ − ⎟ ≈ −0.73 , which is an angle in ⎝ 3⎠ ⎛ 3⎞ quadrant IV, so csc−1 ⎜ − ⎟ ≈ −0.73 . ⎝ 2⎠ ⎛ 1 ⎞ 51. cot −1 − 5 = tan −1 ⎜ − ⎟ 5⎠ ⎝ We seek the angle θ , 0 ≤ θ ≤ π , whose tangent equals − 2 ≤θ ≤ whose sine equals − quadrant IV. Since θ lies in quadrant II, θ ≈ −1.11 + π ≈ 2.03 . Therefore, ⎛ 1⎞ cot −1 ⎜ − ⎟ ≈ 2.03 . ⎝ 2⎠ ( π ) cot −1 − 5 ≈ 2.72 . 224 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.2: The Inverse Trigonometric Functions [Continued] ⎛ 3⎞ ⎛ 2⎞ 55. cot −1 ⎜ − ⎟ = tan −1 ⎜ − ⎟ 2 ⎝ ⎠ ⎝ 3⎠ We are finding the angle θ , 0 ≤ θ ≤ π , whose 59. Let θ = sin −1 u so that sin θ = u , − −1 ≤ u ≤ 1 . Then, ( 2 2 . Now tan θ = − , so θ 3 3 lies in quadrant II. The calculator yields ⎛ 2⎞ tan −1 ⎜ − ⎟ ≈ −0.59 , which is an angle in ⎝ 3⎠ quadrant IV. Since θ is in quadrant II, ⎛ 3⎞ θ ≈ −0.59 + π ≈ 2.55 . Thus, cot −1 ⎜ − ⎟ ≈ 2.55 . ⎝ 2⎠ ) = = ) 1 1 . Now tan θ = − , so θ 10 10 lies in quadrant II. The calculator yields ⎛ 1 ⎞ tan −1 ⎜ − ⎟ ≈ −0.306 , which is an angle in ⎝ 10 ⎠ quadrant IV. Since θ is in quadrant II, ( θ≠ ( π 2 57. Let θ = tan u so that tan θ = u , − −∞ < u < ∞ . Then, ( 2 <θ < 2 1 − sin 2 θ 1− u2 sin 2 θ 1 − cos 2 θ = cos θ cos θ = 1− u2 u ) sin sec −1 u = sin θ = sin 2 θ = 1 − cos 2 θ = 1− 1 sec θ 2 = sec2 θ − 1 sec 2 θ u2 −1 u 62. Let θ = cot −1 u so that cot θ = u , 0 < θ < π , −∞ < u < ∞ . Then, 1 sin cot −1 u = sin θ = sin 2 θ = csc2 θ 1 1 = = 2 1 + cot θ 1+ u2 , ( ) 1 1 cos tan u = cos θ = = sec θ sec 2 θ 1 1 = = 2 1 + tan θ 1+ u2 −1 ) 58. Let θ = cos −1 u so that cos θ = u , 0 ≤ θ ≤ π , −1 ≤ u ≤ 1 . Then, ( , sin θ = = π 2 , u ≥ 1 . Then, ) π cos θ u π 61. Let θ = sec −1 u so that sec θ = u , 0 ≤ θ ≤ π and θ ≈ −0.306 + π ≈ 2.84 . So, cot −1 − 10 ≈ 2.84 . −1 = 2 ≤θ ≤ ) ⎛ 1 ⎞ 56. cot −1 − 10 = tan −1 ⎜ − ⎟ ⎝ 10 ⎠ We are finding the angle θ , 0 ≤ θ ≤ π , whose tangent equals − sin θ 2 60. Let θ = cos −1 u so that cos θ = u , 0 ≤ θ ≤ π , −1 ≤ u ≤ 1 . Then, sin θ tan cos −1 u = tan θ = cos θ ( ( sin θ cos θ tan sin −1 u = tan θ = tangent equals − π ) sin cos −1 u = sin θ = sin 2 θ = 1 − cos 2 θ = 1 − u 2 225 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 63. Let θ = csc−1 u so that csc θ = u , − π 2 ≤θ ≤ π 2 , 68. u ≥ 1 . Then, ( ) cos csc−1 u = cos θ = cos θ ⋅ = sin θ = cot θ sin θ sin θ cot θ cot 2 θ csc 2 θ − 1 = = csc θ csc θ csc θ 52 + y 2 = 132 25 + y 2 = 169 u2 −1 = u y 2 = 144 y = ± 144 = ±12 Since θ is in quadrant I, y = 12 . 64. Let θ = sec−1 u so that sec θ = u , 0 ≤ θ ≤ π and θ≠ π ( 2 , u ≥ 1 . Then, ) cos sec −1 u = cos θ = ⎛ 5⎞ y 12 ⎛ 5 ⎞⎞ ⎛ f ⎜ g −1 ⎜ ⎟ ⎟ = sin ⎜ cos −1 ⎟ = sin θ = = 13 ⎠ r 13 ⎝ 13 ⎠ ⎠ ⎝ ⎝ 1 1 = sec θ u ⎛ 69. g −1 ⎜ ⎝ −1 65. Let θ = cot u so that cot θ = u , 0 < θ < π , −∞ < u < ∞ . Then, 1 1 tan cot −1 u = tan θ = = cot θ u ( ) π ( ⎛ 7π f⎜ ⎝ 4 2 70. , u ≥ 1 . Then, −1 ) ⎛ ⎛ 5π ⎞ ⎞ 5π ⎞ −1 ⎛ f −1 ⎜ g ⎜ ⎟ ⎟ = sin ⎜ cos ⎟ 6 ⎠ ⎝ ⎝ ⎝ 6 ⎠⎠ ⎛ π 3⎞ = sin −1 ⎜⎜ − ⎟⎟ = − 3 ⎝ 2 ⎠ tan sec u = tan θ = tan θ 2 = sec2 θ − 1 = u 2 − 1 ⎛ ⎛ ⎛ 3 ⎞⎞ ⎛ 3 ⎞⎞ 71. h ⎜ f −1 ⎜ − ⎟ ⎟ = tan ⎜ sin −1 ⎜ − ⎟ ⎟ 5 ⎝ ⎠⎠ ⎝ 5 ⎠⎠ ⎝ ⎝ 3 ⎛ 3⎞ Let θ = sin −1 ⎜ − ⎟ . Since sin θ = − and 5 ⎝ 5⎠ ⎛ 12 ⎞ ⎛ 12 ⎞ ⎞ ⎛ 67. g ⎜ f −1 ⎜ ⎟ ⎟ = cos ⎜ sin −1 ⎟ 13 ⎠ ⎝ 13 ⎠ ⎠ ⎝ ⎝ 12 12 and Let θ = sin −1 . Since sin θ = 13 13 π ≤θ ≤ π π ≤ θ ≤ , θ is in quadrant IV, and we let 2 2 y = −3 and r = 5 . Solve for x: − π , θ is in quadrant I, and we let 2 2 y = 12 and r = 13 . Solve for x: − 7π ⎞ ⎞⎞ −1 ⎛ ⎟ ⎟ = cos ⎜ sin ⎟ 4 ⎠ ⎠⎠ ⎝ ⎛ 2 ⎞ 3π = cos −1 ⎜⎜ − ⎟⎟ = ⎝ 2 ⎠ 4 66. Let θ = sec−1 u so that sec θ = u , 0 ≤ θ ≤ π and θ≠ ⎛ 5⎞ ⎛ 5 ⎞⎞ ⎛ f ⎜ g −1 ⎜ ⎟ ⎟ = sin ⎜ cos −1 ⎟ 13 13 ⎝ ⎠⎠ ⎝ ⎠ ⎝ 5 5 and Let θ = cos −1 . Since cos θ = 13 13 0 ≤ θ ≤ π , θ is in quadrant I, and we let x = 5 and r = 13 . Solve for y: x 2 + (−3) 2 = 52 x 2 + 122 = 132 x 2 + 9 = 25 x 2 + 144 = 169 x 2 = 16 x = ± 16 = ±4 Since θ is in quadrant IV, x = 4 . ⎛ ⎛ ⎛ 3 ⎞⎞ ⎛ 3 ⎞⎞ h ⎜ f −1 ⎜ − ⎟ ⎟ = tan ⎜ sin −1 ⎜ − ⎟ ⎟ 5 ⎝ ⎠ ⎝ 5 ⎠⎠ ⎝ ⎠ ⎝ y −3 3 = tan θ = = =− x 4 4 x 2 = 25 x = ± 25 = ±5 Since θ is in quadrant I, x = 5 . ⎛ 12 ⎞ x 5 ⎛ 12 ⎞ ⎞ ⎛ g ⎜ f −1 ⎜ ⎟ ⎟ = cos ⎜ sin −1 ⎟ = cos θ = = 13 ⎠ r 13 ⎝ 13 ⎠ ⎠ ⎝ ⎝ 226 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.2: The Inverse Trigonometric Functions [Continued] ⎛ 75. g −1 ⎜ ⎝ ⎛ ⎛ ⎛ 4 ⎞⎞ ⎛ 4 ⎞⎞ 72. h ⎜ g −1 ⎜ − ⎟ ⎟ = tan ⎜ cos −1 ⎜ − ⎟ ⎟ 5 ⎝ ⎠⎠ ⎝ 5 ⎠⎠ ⎝ ⎝ 4 ⎛ 4⎞ Let θ = cos −1 ⎜ − ⎟ . Since cos θ = − and 5 ⎝ 5⎠ 0 ≤ θ ≤ π , θ is in quadrant II, and we let x = −4 and r = 5 . Solve for y: (−4) 2 + y 2 = 52 ⎛ 4π ⎞ ⎞ ⎛ 4π ⎞ ⎞ −1 ⎛ f ⎜− ⎟ ⎟ = cos ⎜ sin ⎜ − ⎟⎟ 3 ⎝ ⎠⎠ ⎝ ⎝ 3 ⎠⎠ = cos −1 ⎛ 76. g −1 ⎜ ⎝ ⎛ 5π f ⎜− ⎝ 6 ⎞⎞ ⎛ 5π −1 ⎛ ⎟ ⎟ = cos ⎜ sin ⎜ − ⎠⎠ ⎝ ⎝ 6 y =9 2 y = ± 9 = ±3 Since θ is in quadrant II, y = 3 . ⎛ ⎛ ⎛ 1 ⎞⎞ ⎛ 1 ⎞⎞ 77. h ⎜ g −1 ⎜ − ⎟ ⎟ = tan ⎜ cos −1 ⎜ − ⎟ ⎟ ⎝ 4 ⎠⎠ ⎝ 4 ⎠⎠ ⎝ ⎝ 1 ⎛ 1⎞ Let θ = cos −1 ⎜ − ⎟ . Since cos θ = − and 4 4 ⎝ ⎠ 0 ≤ θ ≤ π , θ is in quadrant II, and we let x = −1 and r = 4 . Solve for y: (−1) 2 + y 2 = 42 ⎛ ⎛ ⎛ 4 ⎞⎞ ⎛ 4 ⎞⎞ h ⎜ g −1 ⎜ − ⎟ ⎟ = tan ⎜ cos −1 ⎜ − ⎟ ⎟ ⎝ 5 ⎠⎠ ⎝ 5 ⎠⎠ ⎝ ⎝ y −3 3 = tan θ = = =− x 4 4 ⎛ ⎛ 12 ⎞ ⎞ 12 ⎞ ⎛ 73. g ⎜ h −1 ⎜ ⎟ ⎟ = cos ⎜ tan −1 ⎟ 5⎠ ⎝ ⎝ ⎝ 5 ⎠⎠ 12 12 and Let θ = tan −1 . Since tan θ = 5 5 π 1 + y 2 = 16 y 2 = 15 y = ± 15 π Since θ is in quadrant II, y = 15 . ≤ θ ≤ , θ is in quadrant I, and we let 2 2 x = 5 and y = 12 . Solve for r: ⎛ ⎛ ⎛ 1 ⎞⎞ ⎛ 1 ⎞⎞ h ⎜ g −1 ⎜ − ⎟ ⎟ = tan ⎜ cos −1 ⎜ − ⎟ ⎟ ⎝ 4 ⎠⎠ ⎝ 4 ⎠⎠ ⎝ ⎝ r 2 = 52 + 122 = tan θ = r 2 = 25 + 144 = 169 r = ± 169 = ±13 Now, r must be positive, so r = 13 . ⎛ ⎛ 12 ⎞ ⎞ 12 ⎞ x 5 ⎛ g ⎜ h −1 ⎜ ⎟ ⎟ = cos ⎜ tan −1 ⎟ = cos θ = = 5 5 13 r ⎝ ⎠ ⎝ ⎝ ⎠⎠ 74. π ≤θ ≤ π y 15 = = − 15 x −1 ⎛ ⎛ ⎛ 2 ⎞⎞ ⎛ 2 ⎞⎞ 78. h ⎜ f −1 ⎜ − ⎟ ⎟ = tan ⎜ sin −1 ⎜ − ⎟ ⎟ 5 ⎝ ⎠⎠ ⎝ 5 ⎠⎠ ⎝ ⎝ 2 ⎛ 2⎞ Let θ = sin −1 ⎜ − ⎟ . Since sin θ = − and 5 ⎝ 5⎠ ⎛ ⎛ 5 ⎞⎞ 5⎞ ⎛ f ⎜ h −1 ⎜ ⎟ ⎟ = sin ⎜ tan −1 ⎟ 12 ⎠ ⎝ ⎝ ⎝ 12 ⎠ ⎠ 5 5 and Let θ = tan −1 . Since tan θ = 12 12 − ⎞⎞ ⎟⎟ ⎠⎠ ⎛ 1 ⎞ 2π = cos −1 ⎜ − ⎟ = ⎝ 2⎠ 3 16 + y 2 = 25 − 3 π = 2 6 π π ≤ θ ≤ , θ is in quadrant IV, and we let 2 2 y = −2 and r = 5 . Solve for x: − x 2 + (−2)2 = 52 x 2 + 4 = 25 , θ is in quadrant I, and we let 2 2 x = 12 and y = 5 . Solve for r: x 2 = 21 x = ± 21 Since θ is in quadrant IV, x = 21 . ⎛ ⎛ ⎛ 2 ⎞⎞ ⎛ 2 ⎞⎞ h ⎜ f −1 ⎜ − ⎟ ⎟ = tan ⎜ sin −1 ⎜ − ⎟ ⎟ ⎝ 5 ⎠⎠ ⎝ 5 ⎠⎠ ⎝ ⎝ r 2 = 122 + 52 r 2 = 144 + 25 = 169 r = ± 169 = ±13 Now, r must be positive, so r = 13 . ⎛ ⎛ 5 ⎞⎞ 5⎞ y 5 ⎛ f ⎜ h −1 ⎜ ⎟ ⎟ = sin ⎜ tan −1 ⎟ = sin θ = = 12 ⎠ r 13 ⎝ ⎝ ⎝ 12 ⎠ ⎠ = tan θ = y −2 2 21 = =− x 21 21 227 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 79. a. b. Since the diameter of the base is 45 feet, we 45 = 22.5 feet. Thus, have r = 2 ⎛ 22.5 ⎞ θ = cot −1 ⎜ ⎟ = 31.89° . ⎝ 14 ⎠ θ = cot −1 81. a. ⎛ 2x ⎞ ⎜ 2 y + gt 2 ⎟⎟ ⎝ ⎠ The artillery shell begins at the origin and lands at the coordinates ( 6175, 2450 ) . Thus, r h ⎛ θ = cot −1 ⎜ the diameter is 2 ( 27.32 ) = 54.64 feet. The artilleryman used an angle of elevation of 22.3° . From part (b), we get h = ≈ cot −1 ( 2.437858 ) ≈ 22.3° r . cot θ b. sec θ = θ = cot x sec θ ( 6175 ) sec ( 22.3° ) = t 2.27 = 2940.23 ft/sec 82. Let. y = cot −1 x = cos −1 −10 r h x +1 10 − r r → h= h cot θ Here we have θ = 50.14° and r = 4 feet. 4 = 4.79 feet. The Thus, h = cot ( 50.14° ) π 2 Note that the range of y = cot −1 x is ( 0, π ) , so tan −1 1 will not work. x 83. y = sec −1 x = cos −1 bunker will be 4.79 feet high. θTG x 2 3π 2 cot θ = c. v0 t x v0 = Since the diameter of the base is 6.68 feet, 6.68 = 3.34 feet. Thus, we have r = 2 ⎛ 3.34 ⎞ θ = cot −1 ⎜ ⎟ = 50.14° ⎝ 4 ⎠ −1 2 ⋅ 6175 ⎜ 2 ⋅ 2450 + 32.2 2.27 2 ( ) ⎝ 122 = 61 feet. 2 r 61 h= = ≈ 37.96 feet. cot θ 22.5 /14 Thus, the height is 37.96 feet. b. ⎞ ⎟ ⎟ ⎠ r → r = h cot θ h Here we have θ = 31.89° and h = 17 feet. Thus, r = 17 cot ( 31.89° ) = 27.32 feet and The radius is 80. a. 2x 2 y + gt 2 θ = cot −1 ⎜ cot θ = c. cot θ = π −1 ⎛ 4.22 ⎞ = cot ⎜ ⎟ = 54.88° ⎝ 6 ⎠ From part (a) we have θUSGA = 50.14° . For steep bunkers, a larger angle of repose is required. Therefore, the Tour Grade 50/50 sand is better suited since it has a larger angle of repose. −5 0 1 x 5 228 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.3: Trigonometric Identities 84. y = csc −1 x = sin −1 _π 1 x 13. 2 −10 10 − _π 2 85 – 86. Answers will vary. sin θ + cos θ cos θ − sin θ + cos θ sin θ 2 sin θ + sin θ cos θ + cos θ ( cos θ − sin θ ) = sin θ cos θ sin 2 θ + sin θ cos θ + cos 2 θ − cos θ sin θ = sin θ cos θ sin 2 θ + cos 2 θ + sin θ cos θ − cos θ sin θ = sin θ cos θ 1 = sin θ cos θ Section 3.3 1 1 1 + cos v + 1 − cos v + = 1 − cos v 1 + cos v (1 − cos v )(1 + cos v ) 1. True = 14. 2 1 − cos 2 v 2 = sin 2 v 2. True 3. identity; conditional 4. −1 15. 5. 0 7. False 8. True 9. tan θ ⋅ csc θ = sin θ 1 1 ⋅ = cos θ sin θ cos θ 10. cot θ ⋅ sec θ = cos θ 1 1 ⋅ = sin θ cos θ sin θ 12. sin θ cos θ sin θ + 2sin θ cos θ + cos 2 θ − 1 = sin θ cos θ 2 sin θ + cos 2 θ + 2sin θ cos θ − 1 = sin θ cos θ 1 + 2sin θ cos θ − 1 = sin θ cos θ 2sin θ cos θ = sin θ cos θ =2 2 6. True 11. ( sin θ + cos θ )( sin θ + cos θ ) − 1 16. cos θ 1 + sin θ cos θ (1 + sin θ ) ⋅ = 1 − sin θ 1 + sin θ 1 − sin 2 θ cos θ (1 + sin θ ) = cos 2 θ 1 + sin θ = cos θ ( tan θ + 1)( tan θ + 1) − sec2 θ tan θ tan θ + 2 tan θ + 1 − sec2 θ = tan θ 2 tan θ + 1 + 2 tan θ − sec 2 θ = tan θ 2 sec θ + 2 tan θ − sec 2 θ = tan θ 2 tan θ = tan θ =2 2 sin θ 1 − cos θ sin θ (1 − cos θ ) ⋅ = 1 + cos θ 1 − cos θ 1 − cos 2 θ sin θ (1 − cos θ ) = sin 2 θ 1 − cos θ = sin θ 229 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 17. 3sin 2 θ + 4sin θ + 1 ( 3sin θ + 1)( sin θ + 1) = sin 2 θ + 2sin θ + 1 ( sin θ + 1)( sin θ + 1) = 18. 1 − cos 2 u sin u = 1 − cos 2 u 26. sin u csc u − cos 2 u = sin u ⋅ 3sin θ + 1 sin θ + 1 = sin 2 u ( cos θ + 1)( cos θ − 1) cos 2 θ − 1 = 2 cos θ ( cos θ − 1) cos θ − cos θ = 27. (sec θ − 1)(sec θ + 1) = sec 2 θ − 1 = tan 2 θ 28. (csc θ − 1)(csc θ + 1) = csc 2 θ − 1 = cot 2 θ cos θ + 1 cos θ 19. csc θ ⋅ cos θ = 1 cos θ ⋅ cos θ = = cot θ sin θ sin θ 20. sec θ ⋅ sin θ = 1 sin θ ⋅ sin θ = = tan θ cos θ cos θ 29. (sec θ + tan θ )(sec θ − tan θ ) = sec 2 θ − tan 2 θ = 1 30. (csc θ + cot θ )(csc θ − cot θ ) = csc2 θ − cot 2 θ = 1 31. cos 2 θ (1 + tan 2 θ ) = cos 2 θ ⋅ sec2 θ 1 = cos 2 θ ⋅ cos 2 θ =1 21. 1 + tan 2 (−θ ) = 1 + (− tan θ ) 2 = 1 + tan 2 θ = sec2 θ 22. 1 + cot 2 (−θ ) = 1 + (− cot θ ) 2 = 1 + cot 2 θ = csc2 θ 32. (1 − cos 2 θ )(1 + cot 2 θ ) = sin 2 θ ⋅ csc2 θ 1 = sin 2 θ ⋅ 2 sin θ =1 ⎛ sin θ cos θ ⎞ 23. cos θ (tan θ + cot θ ) = cos θ ⎜ + ⎟ ⎝ cos θ sin θ ⎠ ⎛ sin 2 θ + cos 2 θ ⎞ = cos θ ⎜ ⎟ ⎝ cos θ sin θ ⎠ 33. (sin θ + cos θ ) 2 + (sin θ − cos θ ) 2 = sin 2 θ + 2sin θ cos θ + cos 2 θ 1 ⎛ ⎞ = cos θ ⎜ ⎟ ⎝ cos θ sin θ ⎠ 1 = sin θ = csc θ + sin 2 θ − 2sin θ cos θ + cos 2 θ = 2sin 2 θ + 2 cos 2 θ = 2(sin 2 θ + cos 2 θ ) = 2 ⋅1 =2 ⎛ cos θ sin θ ⎞ 24. sin θ (cot θ + tan θ ) = sin θ ⎜ + ⎟ ⎝ sin θ cos θ ⎠ ⎛ cos 2 θ + sin 2 θ ⎞ = sin θ ⎜ ⎟ ⎝ sin θ cos θ ⎠ 34. tan 2 θ cos 2 θ + cot 2 θ sin 2 θ sin 2 θ cos 2 θ 2 cos θ ⋅ + ⋅ sin 2 θ cos 2 θ sin 2 θ = sin 2 θ + cos 2 θ = 1 ⎛ ⎞ = sin θ ⎜ ⎟ ⎝ sin θ cos θ ⎠ 1 = cos θ = sec θ =1 35. sec 4 θ − sec2 θ = sec 2 θ (sec2 θ − 1) = (tan 2 θ + 1) tan 2 θ = tan 4 θ + tan 2 θ 1 − cos 2 u tan u = 1 − cos 2 u 25. tan u cot u − cos 2 u = tan u ⋅ 36. csc 4 θ − csc 2 θ = csc2 θ (csc2 θ − 1) = (cot 2 θ + 1) cot 2 θ = sin 2 u = cot 4 θ + cot 2 θ 230 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.3: Trigonometric Identities 1 sin u − cos u cos u ⎛ 1 − sin u ⎞ ⎛ 1 + sin u ⎞ =⎜ ⎟ ⋅⎜ ⎟ ⎝ cos u ⎠ ⎝ 1 + sin u ⎠ 37. sec u − tan u = = 42. 1 − 1 − sin 2 u cos u (1 + sin u ) = 1 − 1 − cos θ = − cos θ cos 2 u cos u (1 + sin u ) cos u = 1 + sin u = 1 1+ 1 + tan v cot v = 43. 1 − tan v 1 − 1 cot v 1 ⎞ ⎛ ⎜1 + ⎟ cot v = ⎝ cot v ⎠ 1 ⎞ ⎛ ⎜1 − ⎟ cot v ⎝ cot v ⎠ cot v + 1 = cot v − 1 1 cos u − sin u sin u ⎛ 1 − cos u ⎞ ⎛ 1 + cos u ⎞ =⎜ ⎟⋅⎜ ⎟ ⎝ sin u ⎠ ⎝ 1 + cos u ⎠ 1 − cos 2 u = sin u (1 + cos u ) 38. csc u − cot u = sin 2 u sin u (1 + cos u ) sin u = 1 + cos u 1 −1 csc v − 1 sin v 44. = 1 csc v + 1 +1 sin v ⎛ 1 ⎞ − 1⎟ sin v ⎜ = ⎝ sin v ⎠ ⎛ 1 ⎞ + 1⎟ sin v ⎜ ⎝ sin v ⎠ 1 − sin v = 1 + sin v = 39. 3sin 2 θ + 4 cos 2 θ = 3sin 2 θ + 3cos 2 θ + cos 2 θ = 3(sin 2 θ + cos 2 θ ) + cos 2 θ = 3 ⋅1 + cos 2 θ = 3 + cos 2 θ 40. 9sec 2 θ − 5 tan 2 θ = 4sec2 θ + 5sec2 θ − 5 tan 2 θ 1 sec θ sin θ cos θ sin θ + = + 45. 1 csc θ cos θ cos θ sin θ sin θ sin θ = + cos θ cos θ = tan θ + tan θ = 2 tan θ = 4sec 2 θ + 5(sec2 θ − tan 2 θ ) = 4sec 2 θ + 5 ⋅1 = 5 + 4sec 2 θ 41. 1 − sin 2 θ 1 − cos 2 θ = 1− 1 − cos θ 1 − cos θ (1 − cos θ )(1 + cos θ ) = 1− 1 − cos θ = 1 − (1 + cos θ ) cos 2 θ 1 − sin 2 θ = 1− 1 + sin θ 1 + sin θ (1 − sin θ )(1 + sin θ ) = 1− 1 + sin θ = 1 − (1 − sin θ ) 46. = 1 − 1 + sin θ = sin θ csc θ − 1 csc θ − 1 csc θ + 1 = ⋅ cot θ cot θ csc θ + 1 csc 2 θ − 1 = cot θ (csc θ + 1) cot 2 θ cot θ (csc θ + 1) cot θ = csc θ + 1 = 231 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 1 1+ 1 + sin θ csc θ = 47. 1 − sin θ 1 − 1 csc θ csc θ + 1 = csc θ csc θ − 1 csc θ csc θ + 1 csc θ = ⋅ csc θ csc θ − 1 csc θ + 1 = csc θ − 1 50. cos v 1 + sin v cos 2 v + (1 + sin v) 2 + = 1 + sin v cos v cos v(1 + sin v) = cos 2 v + 1 + 2sin v + sin 2 v cos v(1 + sin v) 2 + 2sin v cos v(1 + sin v) 2(1 + sin v) = cos v(1 + sin v) 2 = cos v = 2sec v = 1 (cos θ + 1) ⋅ cos θ + 1 θ cos 48. = cos θ − 1 (cos θ − 1) ⋅ 1 cos θ 1 1+ cos θ = 1 1− cos θ 1 + sec θ = 1 − sec θ 1 sin θ sin θ θ sin 51. = ⋅ 1 sin θ − cos θ sin θ − cos θ sin θ 1 = cos θ 1− sin θ 1 = 1 − cot θ 1 − sin v cos v (1 − sin v) 2 + cos 2 v 49. + = cos v 1 − sin v cos v(1 − sin v) 52. 1 − = 1 − 2sin v + sin 2 v + cos 2 v cos v(1 − sin v) 1 − 2sin v + 1 cos v(1 − sin v) 2 − 2sin v = cos v(1 − sin v) 2(1 − sin v) = cos v(1 − sin v) 2 = cos v = 2sec v = sin 2 θ 1 + cos θ − sin 2 θ = 1 + cos θ 1 + cos θ 1 + cos θ − (1 − cos 2 θ ) = 1 + cos θ 1 + cos θ − 1 + cos 2 θ = 1 + cos θ cos θ + cos 2 θ = 1 + cos θ cos θ (1 + cos θ ) = 1 + cos θ = cos θ 232 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.3: Trigonometric Identities 53. (sec θ − tan θ ) 2 56. = sec θ − 2sec θ tan θ + tan θ 2 2 1 1 sin θ sin 2 θ − 2 ⋅ ⋅ + cos θ cos θ cos 2 θ cos 2 θ 1 − 2sin θ + sin 2 θ = cos 2 θ (1 − sin θ )(1 − sin θ ) = 1 − sin 2 θ (1 − sin θ )(1 − sin θ ) = (1 − sin θ )(1 + sin θ ) 1 − sin θ = 1 + sin θ = 54. (csc θ − cot θ ) 2 = csc 2 θ − 2 csc θ cot θ + cot 2 θ 1 1 cos θ cos 2 θ − ⋅ ⋅ + 2 sin θ sin θ sin 2 θ sin 2 θ 1 − 2 cos θ + cos 2 θ = sin 2 θ (1 − cos θ )(1 − cos θ ) = 1 − cos 2 θ (1 − cos θ )(1 − cos θ ) = (1 − cos θ )(1 + cos θ ) 1 − cos θ = 1 + cos θ = cot θ tan θ + 1 − tan θ 1 − cot θ cos θ sin θ = sin θ + cos θ sin θ cos θ 1− 1− cos θ sin θ cos θ sin θ sin θ cos θ = + cos θ − sin θ sin θ − cos θ cos θ sin θ cos 2 θ sin 2 θ = + sin θ (cos θ − sin θ ) cos θ (sin θ − cos θ ) = − cos 2 θ ⋅ cos θ + sin 2 θ ⋅ sin θ sin θ cos θ (sin θ − cos θ ) = sin 3 θ − cos3 θ sin θ cos θ (sin θ − cos θ ) = (sin θ − cos θ )(sin 2 θ + sin θ cos θ + cos 2 θ ) sin θ cos θ (sin θ − cos θ ) sin 2 θ + sin θ cos θ + cos 2 θ sin θ cos θ 2 sin θ cos θ cos 2 θ sin θ + + = sin θ cos θ sin θ cos θ sin θ cos θ sin θ cos θ = +1+ cos θ sin θ = 1 + tan θ + cot θ = 57. tan θ + cos θ sin θ 55. + 1 − tan θ 1 − cot θ cos θ sin θ = + sin θ cos θ 1− 1− cos θ sin θ cos θ sin θ = + cos θ − sin θ sin θ − cos θ cos θ sin θ cos 2 θ sin 2 θ = + cos θ − sin θ sin θ − cos θ cos 2 θ − sin 2 θ = cos θ − sin θ (cos θ − sin θ )(cos θ + sin θ ) = cos θ − sin θ = sin θ + cos θ cos θ sin θ cos θ = + 1 + sin θ cos θ 1 + sin θ sin θ (1 + sin θ ) + cos 2 θ = cos θ (1 + sin θ ) sin θ + sin 2 θ + cos 2 θ cos θ (1 + sin θ ) sin θ + 1 = cos θ (1 + sin θ ) 1 = cos θ = sec θ = 233 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry sin θ cos θ − tan θ − cot θ cos θ sin θ = 61. tan θ + cot θ sin θ + cos θ cos θ sin θ sin 2 θ − cos 2 θ θ sin θ = cos sin 2 θ + cos 2 θ cos θ sin θ sin 2 θ − cos 2 θ = 1 = sin 2 θ − cos 2 θ 1 (sin θ cos θ ) ⋅ sin θ cos θ cos 2 θ = 58. 2 2 cos θ − sin θ (cos 2 θ − sin 2 θ ) ⋅ 1 cos 2 θ sin θ = cos θ2 sin θ 1− cos 2 θ tan θ = 1 − tan 2 θ 59. tan θ + sec θ − 1 tan θ − sec θ + 1 tan θ + (sec θ − 1) tan θ + (sec θ − 1) = ⋅ tan θ − (sec θ − 1) tan θ + (sec θ − 1) = 1 cos 2 θ − sec θ − cos θ cos θ cos θ = 62. sec θ + cos θ 1 cos 2 θ + cos θ cos θ 1 − cos 2 θ = cos θ2 1 + cos θ cos θ 1 − cos 2 θ = 1 + cos 2 θ sin 2 θ = 1 + cos 2 θ tan 2 θ + 2 tan θ (sec θ − 1) + sec2 θ − 2sec θ + 1 tan 2 θ − (sec2 θ − 2sec θ + 1) sec 2 θ − 1 + 2 tan θ (sec θ − 1) + sec2 θ − 2secθ + 1 sec2 θ − 1 − sec 2 θ + 2sec θ − 1 2 2sec θ − 2sec θ + 2 tan θ (sec θ − 1) = 2sec θ − 2 2sec θ (sec θ − 1) + 2 tan θ (sec θ − 1) = 2sec θ − 2 2(sec θ − 1)(sec θ + tan θ ) = 2(sec θ − 1) = tan θ + sec θ = 60. sin u cos u − tan u − cot u 63. + 1 = cos u sin u + 1 sin u cos u tan u + cot u + cos u sin u sin 2 u − cos 2 u u sin u + 1 = cos sin 2 u + cos 2 u cos u sin u sin 2 u − cos 2 u = +1 1 = sin 2 u − cos 2 u + 1 sin θ − cos θ + 1 sin θ + cos θ − 1 (sin θ − cos θ ) + 1 (sin θ + cos θ ) + 1 = ⋅ (sin θ + cos θ ) − 1 (sin θ + cos θ ) + 1 = sin 2 θ − cos 2 θ + sin θ + cos θ + sin θ − cos θ + 1 (sin θ + cos θ ) 2 − 1 sin 2 θ − cos 2 θ + 2sin θ + 1 sin 2 θ + 2sin θ cos θ + cos 2 θ − 1 sin 2 θ − (1 − sin 2 θ ) + 2sin θ + 1 = 2sin θ cos θ + 1 − 1 2sin 2 θ + 2sin θ = 2sin θ cos θ 2sin θ (sin θ + 1) = 2sin θ cos θ sin θ + 1 = cos θ = = sin 2 u + (1 − cos 2 u ) = sin 2 u + sin 2 u = 2sin 2 u 234 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.3: Trigonometric Identities sin u cos u − tan u − cot u 64. + 2 cos 2 u = cos u sin u + 2 cos 2 u sin u cos u tan u + cot u + cos u sin u sin 2 u − cos 2 u u sin u + 2 cos 2 u = cos sin 2 u + cos 2 u cos u sin u sin 2 u − cos 2 u = + 2 cos 2 u 1 = sin 2 u + cos 2 u 67. 68. =1 1 sin θ + sec θ + tan θ cos θ cos θ = 65. cot θ + cos θ cos θ + cos θ sin θ 1 + sin θ cos θ = cos θ + cos θ sin θ sin θ 1 + sin θ sin θ = ⋅ cos θ cos θ (1 + sin θ ) sin θ 1 = ⋅ cos θ cos θ = tan θ sec θ 1 sec θ cos θ 66. = 1 + sec θ 1 + 1 cos θ 1 = cos θ cos θ + 1 cos θ 1 ⎛ =⎜ ⎝ 1 + cos θ 1 − cos θ = 1 − cos 2 θ 1 − cos θ = sin 2 θ 1 − tan 2 θ 1 − tan 2 θ + 1 + tan 2 θ +1 = 2 1 + tan θ 1 + tan 2 θ 2 = sec 2 θ 1 = 2⋅ 2 sec θ = 2 cos 2 θ 1 − cot 2 θ 1 − cot 2 θ + 2 cos 2 θ = + 2 cos 2 θ 2 2 1 + cot θ csc θ 1 cot 2 θ = − + 2 cos 2 θ csc 2 θ csc 2 θ cos 2 θ 2 = sin 2 θ − sin θ + 2 cos 2 θ 1 sin 2 θ 2 = sin θ − cos 2 θ + 2 cos 2 θ = sin 2 θ + cos 2 θ =1 1 1 − sec θ − csc θ cos θ sin θ 69. = 1 1 sec θ csc θ ⋅ cos θ sin θ sin θ − cos θ = cos θ sin θ 1 cos θ sin θ sin θ − cos θ cos θ sin θ = ⋅ cos θ sin θ 1 = sin θ − cos θ ⎞ ⎛ 1 − cos θ ⎞ ⎟ ⋅⎜ ⎟ ⎠ ⎝ 1 − cos θ ⎠ 235 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 70. sin 2 θ − tan θ cos 2 θ − cot θ sin θ sin 2 θ − θ cos = cos θ 2 cos θ − sin θ 2 sin θ cos θ − sin θ cos θ = 2 cos θ sin θ − cos θ sin θ 2 sin θ cos θ − sin θ sin θ = ⋅ cos θ cos 2 θ sin θ − cos θ sin θ (sin θ cos θ − 1) sin θ = ⋅ cos θ cos θ (cos θ sin θ − 1) 74. 1 + 2sin θ + sin 2 θ − (1 − 2sin θ + sin 2 θ ) 1 − sin 2 θ 4sin θ = cos 2 θ sin θ 1 = 4⋅ ⋅ cos θ cos θ = 4 tan θ sec θ = 75. sin 2 θ cos 2 θ = tan 2 θ = 1 − cos θ cos θ 1 − cos 2 θ = cos θ sin 2 θ = cos θ sin θ = sin θ ⋅ cos θ = sin θ tan θ 71. sec θ − cos θ = 76. sec θ ⎛ sec θ ⎞ ⎛ 1 + sin θ ⎞ =⎜ ⎟ ⋅⎜ ⎟ 1 − sin θ ⎝ 1 − sin θ ⎠ ⎝ 1 + sin θ ⎠ sec θ (1 + sin θ ) = 1 − sin 2 θ sec θ (1 + sin θ ) = cos 2 θ 1 1 + sin θ = ⋅ cos θ cos 2 θ 1 + sin θ = cos3 θ 1 + sin θ (1 + sin θ )(1 + sin θ ) = 1 − sin θ (1 − sin θ )(1 + sin θ ) (1 + sin θ ) 2 1 − sin 2 θ (1 + sin θ ) 2 = cos 2 θ = sin θ cos θ + cos θ sin θ sin 2 θ + cos 2 θ = sin θ cos θ 1 = sin θ cos θ 1 1 = ⋅ cos θ sin θ = sec θ csc θ 72. tan θ + cot θ = 73. 1 + sin θ 1 − sin θ − 1 − sin θ 1 + sin θ (1 + sin θ ) 2 − (1 − sin θ ) 2 = (1 − sin θ )(1 + sin θ ) ⎛ 1 + sin θ ⎞ =⎜ ⎟ ⎝ cos θ ⎠ 2 sin θ ⎞ ⎛ 1 =⎜ + θ θ ⎟⎠ cos cos ⎝ = (sec θ + tan θ ) 2 2 1 1 1 + sin θ + 1 − sin θ + = 1 − sin θ 1 + sin θ (1 − sin θ )(1 + sin θ ) 2 = 1 − sin 2 θ 2 = cos 2 θ = 2sec 2 θ 236 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.3: Trigonometric Identities 77. (sec v − tan v) 2 + 1 csc v(sec v − tan v) = sec2 v − 2sec v tan v + tan 2 v + 1 csc v(sec v − tan v) = sec 2 v − 2sec v tan v + sec2 v csc v(sec v − tan v) 80. 2sec 2 v − 2sec v tan v csc v(sec v − tan v) 2sec v(sec v − tan v) = csc v(sec v − tan v) 2sec v = csc v 1 2⋅ = cos v 1 sin v 1 sin v = 2⋅ ⋅ cos v 1 sin v = 2⋅ cos v = 2 tan v = 78. 79. 81. 82. sec2 v − tan 2 v + tan v 1 + tan v = sec v sec v sin v 1+ cos v = 1 cos v ⎛ sin v ⎞ = ⎜1 + ⎟ cos v ⎝ cos v ⎠ = cos v + sin v sin θ + cos θ sin θ − cos θ − cos θ sin θ sin θ cos θ sin θ cos θ = + − + cos θ cos θ sin θ sin θ sin θ cos θ = +1−1+ cos θ sin θ 2 2 sin θ + cos θ = cos θ sin θ 1 = cos θ sin θ = sec θ csc θ 83. sin θ + cos θ cos θ − sin θ − sin θ cos θ sin θ cos θ cos θ sin θ = + − + sin θ sin θ cos θ cos θ cos θ sin θ = 1+ −1+ sin θ cos θ cos 2 θ + sin 2 θ = cos θ sin θ 1 = cos θ sin θ = sec θ csc θ sin 3 θ + cos3 θ sin θ + cos θ (sin θ + cos θ )(sin 2 θ − sin θ cos θ + cos 2 θ ) = sin θ + cos θ = sin 2 θ + cos 2 θ − sin θ cos θ = 1 − sin θ cos θ sin 3 θ + cos3 θ 1 − 2 cos 2 θ (sin θ + cos θ )(sin 2 θ − sin θ cos θ + cos 2 θ ) = 1 − cos 2 θ − cos 2 θ (sin θ + cos θ )(sin 2 θ + cos 2 θ − sin θ cos θ ) = sin 2 θ − cos 2 θ (sin θ + cos θ )(1 − sin θ cos θ ) = (sin θ + cos θ )(sin θ − cos θ ) 1 1 − sin θ cos θ cos θ = ⋅ 1 sin θ − cos θ cos θ 1 − sin θ = cos θ sin θ −1 cos θ sec θ − sin θ = tan θ − 1 cos 2 θ − sin 2 θ cos 2 θ − sin 2 θ = 1 − tan 2 θ sin 2 θ 1− cos 2 θ 2 cos θ − sin 2 θ = cos 2 θ − sin 2 θ cos 2 θ = ( cos 2 θ − sin 2 θ ) ⋅ cos 2 θ cos 2 θ − sin 2 θ = cos 2 θ 237 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 84. cos θ + sin θ − sin 3 θ cos θ sin θ sin 3 θ = + − sin θ sin θ sin θ sin θ = cot θ + 1 − sin 2 θ 88. = cot θ + cos 2 θ 1 + 2cosθ + cos 2 θ + 2sin θ (1 + cosθ ) + sin 2 θ 1 + 2cosθ + cos 2 θ − sin 2 θ 1 + 2cosθ + cos 2 θ + 2sin θ (1 + cosθ ) + 1 − cos 2 θ = 1 + 2cosθ + cos 2 θ − (1 − cos 2 θ ) = 2 85. ⎡⎣ 2 cos 2 θ − (sin 2 θ + cos 2 θ ) ⎤⎦ (2 cos 2 θ − 1)2 = cos 4 θ − sin 4 θ (cos 2 θ − sin 2 θ )(cos 2 θ + sin 2 θ ) = (cos 2 θ − sin 2 θ ) 2 (cos 2 θ − sin 2 θ )(cos 2 θ + sin 2 θ ) 2 + 2 cos θ + 2sin θ (1 + cos θ ) 2 cos θ + 2 cos 2 θ 2(1 + cos θ ) + 2sin θ (1 + cos θ ) = 2 cos θ (1 + cos θ ) 2(1 + cos θ )(1 + sin θ ) = 2 cos θ (1 + cos θ ) 1 + sin θ = cos θ 1 sin θ = + cos θ cos θ = sec θ + tan θ = cos 2 θ − sin 2 θ cos 2 θ + sin 2 θ = cos 2 θ − sin 2 θ = = 1 − sin 2 θ − sin 2 θ = 1 − 2sin 2 θ 86. 87. 1 + cos θ + sin θ 1 + cos θ − sin θ (1 + cos θ ) + sin θ (1 + cos θ ) + sin θ = ⋅ (1 + cos θ ) − sin θ (1 + cos θ ) + sin θ 1 − 2 cos 2 θ 1 − cos 2 θ − cos 2 θ = sin θ cos θ sin θ cos θ 2 sin θ − cos 2 θ = sin θ cos θ sin 2 θ cos 2 θ = − sin θ cos θ sin θ cos θ sin θ cos θ = − cos θ sin θ = tan θ − cot θ 89. (a sin θ + b cos θ ) 2 + (a cos θ − b sin θ ) 2 = a 2 sin 2 θ + 2ab sin θ cos θ + b 2 cos 2 θ + a 2 cos 2 θ − 2ab sin θ cos θ + b 2 sin 2 θ = a 2 (sin 2 θ + cos 2 θ ) + b 2 (sin 2 θ + cos 2 θ ) = a 2 + b2 1 + sin θ + cos θ 1 + sin θ − cos θ (1 + sin θ ) + cos θ (1 + sin θ ) + cos θ = ⋅ (1 + sin θ ) − cos θ (1 + sin θ ) + cos θ 90. (2a sin θ cosθ ) 2 + a 2 (cos 2 θ − sin 2 θ ) 2 = 4a 2 sin 2 θ cos 2 θ ( + a 2 cos 4 θ − 2cos 2 θ sin 2 θ + sin 4 θ 1 + 2sin θ + sin 2 θ + 2cosθ (1 + sin θ ) + cos 2 θ = 1 + 2sin θ + sin 2 θ − cos 2 θ 1 + 2sin θ + sin 2 θ + 2cosθ (1 + sin θ ) + (1 − sin 2 θ ) = 1 + 2sin θ + sin 2 θ − (1 − sin 2 θ ) 2 + 2sin θ + 2cosθ (1 + sin θ ) = 2sin θ + 2sin 2 θ 2(1 + sin θ ) + 2cosθ (1 + sin θ ) = 2sin θ (1 + sin θ ) 2(1 + sin θ )(1 + cosθ ) = 2sin θ (1 + sin θ ) 1 + cosθ = sin θ ( ( cos θ + 2cos θ sin θ + sin θ ) ( cos θ + sin θ ) ) = a 4sin θ cos θ + cos θ − 2cos θ sin θ + sin θ 2 = a2 = a2 = a 2 (1) 2 2 4 2 4 2 2 2 2 2 4 4 2 2 = a2 238 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. ) Section 3.3: Trigonometric Identities 91. tan α + tan β tan α + tan β = 1 1 cot α + cot β + tan α tan β tan α + tan β = tan β + tan α tan α tan β 98. ln sec θ + tan θ + ln sec θ − tan θ = ln ( sec θ + tan θ ⋅ sec θ − tan θ ) = ln sec2 θ − tan 2 θ = ln 1 =0 ⎛ tan α tan β ⎞ = (tan α + tan β ) ⋅ ⎜ ⎟ ⎝ tan α + tan β ⎠ = tan α tan β 99. f ( x ) = sin x ⋅ tan x = sin x ⋅ 92. (tan α + tan β )(1 − cot α cot β ) + (cot α + cot β )(1 − tan α tan β ) = tan α + tan β − tan α cot α cot β − tan β cot α cot β + cot α + cot β − cot α tan α tan β − cot β tan α tan β = tan α + tan β − cot β − cot α + cot α + cot β − tan β − tan α =0 sin x cos x sin 2 x cos x 1 − cos 2 x = cos x 1 cos 2 x = − cos x cos x = sec x − cos x = = g ( x) 100. 93. (sin α + cos β ) 2 + (cos β + sin α )(cos β − sin α ) = sin 2 α + 2sin α cos β + cos 2 β + cos 2 β − sin 2 α f ( x ) = cos x ⋅ cot x = cos x ⋅ = 2sin α cos β + 2 cos 2 β cos x sin x cos 2 x sin x 1 − sin 2 x = sin x 1 sin 2 x = − sin x sin x = csc x − sin x = = 2 cos β (sin α + cos β ) 94. (sin α − cos β ) 2 + (cos β + sin α )(cos β − sin α ) = sin 2 α − 2sin α cos β + cos 2 β + cos 2 β − sin 2 α = − 2sin α cos β + 2cos 2 β = − 2cos β (sin α − cos β ) 95. ln sec θ = ln 1 = ln cos θ cos θ 96. ln tan θ = ln sin θ = ln sin θ − ln cos θ cos θ −1 = − ln cos θ = g ( x) 97. ln 1 + cos θ + ln 1 − cos θ = ln ( 1 + cos θ ⋅ 1 − cos θ ) = ln 1 − cos 2 θ = ln sin 2 θ = 2 ln sin θ 239 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 101. f (θ ) = = = = = = 1 − sin θ cos θ − cos θ 1 + sin θ (1 − sin θ )(1 + sin θ ) cos θ (1 + sin θ ) ( − cos θ ⋅ cos θ 1 + ( sin θ ) ⋅ cos θ 1 − sin 2 θ − cos 2 θ cos θ (1 + sin θ ) cos θ (1 + sin θ ) 1 cos θ ⎛ 2 cos 2 θ − ⎜⎜ 2 2 ⎝ cos θ cos θ = 1200 1 cos θ ⎛ 2 − cos 2 θ ⎜⎜ 2 ⎝ cos θ = 1−1 cos θ (1 + sin θ ) = 0 cos θ (1 + sin θ ) ( 1200 1 + 1 − cos 2 θ cos θ ) 1 ⎛ 2 ⎞ − 1⎟ ⎜ cos θ ⎝ cos 2 θ ⎠ ⎞ ⎟⎟ ⎠ ⎞ ⎟⎟ ⎠ 3 ( 1200 1 + sin 2 θ ) cos θ 3 104. I t = 4 A2 ( cscθ − 1)( secθ + tan θ ) csc θ sec θ csc − 1 sec θ + tan θ θ = 4 A2 ⋅ csc θ sec θ 1 tan θ ⎞ ⎛ ⎞ ⎛ = 4 A2 ⎜ 1 − ⎟ ⎜1 + ⎟ ⎝ csc θ ⎠ ⎝ sec θ ⎠ = g (θ ) f (θ ) = tan θ + sec θ sin θ 1 + cos θ cos θ 1 + sin θ = cos θ 1 + sin θ 1 − sin θ = ⋅ cos θ 1 − sin θ 1 − sin 2 θ = cos θ (1 − sin θ ) = = = 1200 1 − ( sin 2 θ + cos 2 θ ) =0 102. ) 103. 1200sec θ 2sec2 θ − 1 = 1200 = 4 A2 (1 − sin θ )(1 + sin θ ) ( = 4 A2 1 − sin 2 θ ) = 4 A2 cos 2 θ = ( 2 A cos θ ) 2 105. Answers will vary. cos 2 θ cos θ (1 − sin θ ) 106. sin 2 θ + cos 2 θ = 1 tan 2 θ + 1 = sec 2 θ 1 + cot 2 θ = csc 2 θ cos θ 1 − sin θ = g (θ ) = 107 – 108. Answers will vary. 240 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.4: Sum and Difference Formulas Section 3.4 12. tan (5 − 2) 1. 2 + (1 − ( −3) ) 2 = 32 + 42 = 9 + 16 = 25 = 5 2. − 3 5 2 1 2 ⋅ = 2 2 4 3. a. 1− b. ⎛ 1+ 3 ⎞ ⎛ 1+ 3 ⎞ = ⎜⎜ ⎟⎟ ⋅ ⎜⎜ ⎟⎟ ⎝ 1− 3 ⎠ ⎝ 1+ 3 ⎠ 1 1 = 2 2 4. − 5. − = 4+2 3 −2 = cos120º ⋅ cos 45º − sin120º ⋅ sin 45º 8. False 1 2 3 2 =− ⋅ − ⋅ 2 2 2 2 1 =− 2+ 6 4 5π ⎛ 3π 2π ⎞ = sin ⎜ + ⎟ 12 ⎝ 12 12 ⎠ π π π π = sin ⋅ cos + cos ⋅ sin 4 6 4 6 2 3 2 1 = ⋅ + ⋅ 2 2 2 2 1 = 6+ 2 4 ( ( ( = sin 60º ⋅ cos 45º + cos 60º ⋅ sin 45º ) 3 2 1 2 ⋅ + ⋅ 2 2 2 2 1 6+ 2 = 4 = ( ) 15. tan15º = tan(45º − 30º ) tan 45º − tan 30º = 1 + tan 45º ⋅ tan 30º 3 1− 3 ⋅3 = 3 3 1 + 1⋅ 3 3− 3 3− 3 = ⋅ 3+ 3 3− 3 ) 7π ⎛ 4π 3π ⎞ = cos ⎜ + ⎟ 12 ⎝ 12 12 ⎠ π π π π = cos ⋅ cos − sin ⋅ sin 3 4 3 4 1 2 3 2 = ⋅ − ⋅ 2 2 2 2 1 2− 6 = 4 ( ) 14. sin105º = sin ( 60º + 45º ) π ⎛ 3π 2π ⎞ = sin ⎜ − ⎟ 12 ⎝ 12 12 ⎠ π π π π = sin ⋅ cos − cos ⋅ sin 4 6 4 6 2 3 2 1 = ⋅ − ⋅ 2 2 2 2 1 = 6− 2 4 11. cos 1+ 2 3 + 3 1− 3 13. cos165º = cos (120º + 45º ) 7. False 10. sin = = −2− 3 6. False 9. sin 7π ⎛ 3π 4π ⎞ = tan ⎜ + ⎟ 12 ⎝ 12 12 ⎠ π π tan + tan 4 3 = π π 1 − tan ⋅ tan 4 3 1+ 3 = 1 − 1⋅ 3 ) = 9−6 3 +3 9−3 = 12 − 6 3 6 = 2− 3 241 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 16. tan195º = tan(135º +60º ) tan135º + tan 60º = 1 − tan135º ⋅ tan 60º −1 + 3 = 1 − (−1) ⋅ 3 = ⎛ π⎞ −1 + 3 1 − 3 ⋅ 1+ 3 1− 3 −1 + 2 3 − 3 1− 3 −4+ 2 3 = −2 = = 2− 3 17. sin 18. tan 4 2 −4 6 2−6 4 2 −4 6 = −4 = 6− 2 17π ⎛ 15π 2π ⎞ = sin ⎜ + ⎟ 12 ⎝ 12 12 ⎠ π π 5π 5π = sin ⋅ cos + cos ⋅ sin 4 6 4 6 2 3 ⎛ 2⎞ 1 =− ⋅ + ⎜⎜ − ⎟⋅ 2 2 ⎝ 2 ⎟⎠ 2 1 =− 6+ 2 4 ( = ⎛ 5π ⎞ = 1+ 2 3 + 3 1− 3 = 4+2 3 −2 −1 12 −1 = ⎛ 3π 2π ⎞ tan ⎜ + ⎟ ⎝ 12 12 ⎠ −1 = π π tan + tan 4 6 π π 1 − tan ⋅ tan 4 6 π π⎞ ⎛ ⎜ 1 − tan 4 ⋅ tan 6 ⎟ = −⎜ ⎟ ⎜⎜ tan π + tan π ⎟⎟ 4 6 ⎠ ⎝ 1 1 − 1⋅ 3⋅ 3 =− 1 3 1+ 3 19π ⎛ 15π 4π ⎞ = tan ⎜ + ⎟ 12 ⎝ 12 12 ⎠ 5π π tan + tan 4 3 = 5π π 1 − tan ⋅ tan 4 3 1+ 3 = 1 − 1⋅ 3 1+ 3 1+ 3 ⋅ 1− 3 1+ 3 5π 20. cot ⎜ − ⎟ = − cot = 12 tan 5π ⎝ 12 ⎠ ) = 1 1 = ⎛ π⎞ ⎛ 3π 4π ⎞ cos ⎜ − ⎟ cos ⎜ − ⎟ ⎝ 12 ⎠ ⎝ 12 12 ⎠ 1 = π π π π cos ⋅ cos + sin ⋅ sin 4 3 4 3 1 = 2 1 2 3 ⋅ + ⋅ 2 2 2 2 1 = 2+ 6 4 4 2− 6 = ⋅ 2+ 6 2− 6 19. sec ⎜ − ⎟ = ⎝ 12 ⎠ =− = −2− 3 3 −1 3 −1 ⋅ 3 +1 3 −1 3 − 3 − 3 +1 3 −1 4−2 3 =− 2 =− = −2 + 3 242 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.4: Sum and Difference Formulas 21. sin 20º ⋅ cos10º + cos 20º ⋅ sin10º = sin(20º + 10º ) = sin 30º 1 = 2 29. cos π 5π 5π π ⎛ π 5π ⎞ ⋅ cos + sin ⋅ sin = cos ⎜ − ⎟ 12 12 12 12 ⎝ 12 12 ⎠ ⎛ 4π ⎞ = cos ⎜ − ⎟ ⎝ 12 ⎠ ⎛ π⎞ = cos ⎜ − ⎟ ⎝ 3⎠ π = cos 3 1 = 2 22. sin 20º ⋅ cos80º − cos 20º ⋅ sin 80º = sin(20º − 80º ) = sin(− 60º ) = − sin 60º =− 3 2 23. cos 70º ⋅ cos 20º − sin 70º ⋅ sin 20º = cos(70º + 20º ) = cos 90º =0 30. sin 24. cos 40º ⋅ cos10º + sin 40º ⋅ sin10º = cos(40º − 10º ) = cos 30º = 25. 26. 3 2 = tan 20º + tan 25º = tan ( 20º +25º ) 1 − tan 20º tan 25º = tan 45º =1 3 2 3 π 31. sin α = , 0 < α < 5 2 cos β = 2 5 π , − <β <0 5 2 y tan 40º − tan10º = tan ( 40º −10º ) 1 + tan 40º tan10º = tan 30º y (x, 3) 5 3 = 3 27. sin π 5π π 5π ⎛ π 5π ⎞ ⋅ cos + cos ⋅ sin = sin ⎜ + ⎟ 18 18 18 18 ⎝ 18 18 ⎠ 6π = sin 18 π = sin 3 α π π 7π 7π ⎛ π 7π ⎞ ⋅ cos − cos ⋅ sin = sin ⎜ − ⎟ 12 12 12 12 ⎝ 12 12 ⎠ 2 5 3 x x β y 5 (2 x 5, y x 2 + 32 = 52 , x > 0 x 2 = 25 − 9 = 16, x > 0 x=4 ⎛ 6π ⎞ = sin ⎜ − ⎟ ⎝ 12 ⎠ ⎛ π⎞ = sin ⎜ − ⎟ ⎝ 2⎠ = −1 cos α = (2 5 ) 2 4 , 5 tan α = 3 4 + y 2 = 52 , y < 0 y 2 = 25 − 20 = 5, y < 0 5π 7π 5π 7π ⎛ 5π 7 π ⎞ − sin ⋅ sin = cos ⎜ + 28. cos ⋅ cos ⎟ 12 12 12 12 ⎝ 12 12 ⎠ 12π = cos 12 = cos π y=− 5 sin β = − 5 − 5 1 , tan β = =− 5 2 2 5 = −1 243 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. ) Chapter 3: Analytic Trigonometry a. sin(α + β ) = sin α cos β + cos α sin β 5 π , 0<α < 5 2 4 π sin β = − , − < β < 0 5 2 32. cos α = 3 2 5 4 ⎛ 5⎞ = ⋅ + ⋅ ⎜⎜ − ⎟ 5 5 5 ⎝ 5 ⎟⎠ = 6 5−4 5 25 y y ( 2 5 = 25 b. = 8 5 +3 5 25 = 11 5 25 ( 5) −4 5 (x, −4) + y 2 = 52 , y > 0 sin α = 2 5 , 5 tan α = 2 5 5 =2 x 2 + (− 4) 2 = 52 , x > 0 x 2 = 25 − 16 = 9, x > 0 x=3 6 5+4 5 25 10 5 = 25 = tan(α − β ) = x y = 20 = 2 5 3 2 5 4 ⎛ 5⎞ = ⋅ − ⋅ ⎜⎜ − ⎟ 5 5 5 ⎝ 5 ⎟⎠ d. x y 2 = 25 − 5 = 20, y > 0 sin(α − β ) = sin α cos β − cos α sin β = 2 β x 5 4 2 5 3 ⎛ 5⎞ ⋅ − ⋅ ⎜⎜ − ⎟ 5 5 5 ⎝ 5 ⎟⎠ ) y α cos(α + β ) = cos α cos β − sin α sin β = c. 5 5, y 3 cos β = , 5 a. tan β = −4 4 =− 3 3 sin(α + β ) = sin α cos β + cos α sin β 2 5 5 ⎛ 2 5 ⎞ ⎛3⎞ ⎛ 5 ⎞ ⎛ 4⎞ = ⎜⎜ ⎟⎟ ⋅ ⎜ ⎟ + ⎜⎜ ⎟⎟ ⋅ ⎜ − ⎟ ⎝ 5 ⎠ ⎝5⎠ ⎝ 5 ⎠ ⎝ 5⎠ tan α − tan β 1 + tan α ⋅ tan β = 6 5−4 5 25 2 5 = 25 3 ⎛ 1⎞ −⎜− ⎟ 4 ⎝ 2⎠ = ⎛ 3 ⎞⎛ 1 ⎞ 1 + ⎜ ⎟⎜ − ⎟ ⎝ 4 ⎠⎝ 2 ⎠ 5 = 4 5 8 =2 b. cos(α + β ) = cos α cos β − sin α sin β ⎛ 5 ⎞ ⎛3⎞ ⎛ 2 5 ⎞ ⎛ 4⎞ = ⎜⎜ ⎟⎟ ⋅ ⎜ ⎟ − ⎜⎜ ⎟⎟ ⋅ ⎜ − ⎟ ⎝ 5 ⎠ ⎝5⎠ ⎝ 5 ⎠ ⎝ 5⎠ 3 5 +8 5 25 11 5 = 25 = 244 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.4: Sum and Difference Formulas sin(α − β ) = sin α cos β − cos α sin β c. a. ⎛ 2 5 ⎞ ⎛3⎞ ⎛ 5 ⎞ ⎛ 4⎞ = ⎜⎜ ⎟⎟ ⋅ ⎜ ⎟ − ⎜⎜ ⎟⎟ ⋅ ⎜ − ⎟ ⎝ 5 ⎠ ⎝5⎠ ⎝ 5 ⎠ ⎝ 5⎠ ⎛ 4⎞ ⎛ 1⎞ ⎛ 3⎞ ⎛ 3 ⎞ = ⎜ ⎟ ⋅ ⎜ ⎟ + ⎜ − ⎟ ⋅ ⎜⎜ ⎟ ⎝ 5 ⎠ ⎝ 2 ⎠ ⎝ 5 ⎠ ⎝ 2 ⎟⎠ 6 5+4 5 25 10 5 = 25 2 5 = 5 = = b. c. d. y 1 x 4 , 5 cos α = tan α − tan β 1 + tan α tan β 4 − − 3 3 = ⎛ 4⎞ 1+ ⎜ − ⎟ ⋅ 3 ⎝ 3⎠ tan(α − β ) = − 48 − 25 3 −39 25 3 + 48 = 39 = r 2 = (−3) 2 + 42 = 25 r =5 sin α = 4+3 3 10 −4−3 3 3 = 3− 4 3 3 ⎛ −4−3 3 ⎞ ⎛ 3+ 4 3 ⎞ = ⎜⎜ ⎟⎟ ⋅ ⎜⎜ ⎟⎟ ⎝ 3− 4 3 ⎠ ⎝ 3+ 4 3 ⎠ (1, y) β x −3 sin(α − β ) = sin α cos β − cos α sin β = 2 α −3 − 4 3 10 ⎛ 4⎞ ⎛ 1⎞ ⎛ 3⎞ ⎛ 3 ⎞ = ⎜ ⎟ ⋅ ⎜ ⎟ − ⎜ − ⎟ ⋅ ⎜⎜ ⎟ ⎝ 5 ⎠ ⎝ 2 ⎠ ⎝ 5 ⎠ ⎝ 2 ⎟⎠ y r 4 cos(α + β ) = cos α cos β − sin α sin β = ⎛ 4⎞ 2−⎜− ⎟ ⎝ 3⎠ = ⎛ 4⎞ 1+ 2 ⋅⎜ − ⎟ ⎝ 3⎠ 10 = 3 5 − 3 = −2 4 π 33. tan α = − , < α < π 3 2 1 π cos β = , 0 < β < 2 2 y (−3, 4) 4−3 3 10 ⎛ 3⎞ ⎛1⎞ ⎛ 4⎞ ⎛ 3 ⎞ = ⎜ − ⎟ ⋅ ⎜ ⎟ − ⎜ ⎟ ⋅ ⎜⎜ ⎟ ⎝ 5 ⎠ ⎝ 2 ⎠ ⎝ 5 ⎠ ⎝ 2 ⎟⎠ tan α − tan β tan(α − β ) = 1 + tan α tan β d. sin(α + β ) = sin α cos β + cos α sin β −3 3 =− 5 5 12 + y 2 = 22 , y > 0 y 2 = 4 − 1 = 3, y > 0 y= 3 sin β = 3 , 2 tan β = 3 = 3 1 245 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 5 3π , π<α < 12 2 1 3π sin β = − , π < β < 2 2 34. tan α = −12 α −5 y x r tan(α − β ) = d. β x 1 5 3 − 12 3 = 5 3 1+ ⋅ 12 3 5−4 3 12 = 36 + 5 3 36 ⎛ 15 − 12 3 ⎞ ⎛ 36 − 5 3 ⎞ = ⎜⎜ ⎟⎟ ⋅ ⎜⎜ ⎟⎟ ⎝ 36 + 5 3 ⎠ ⎝ 36 − 5 3 ⎠ y x 2 (x, −1) (−12,−5) r 2 = (−12) 2 + (−5) 2 = 169 r = 13 540 − 507 3 + 180 1296 − 75 720 − 507 3 = 1221 240 − 169 3 = 407 −5 5 −12 12 = − , cos α = =− 13 13 13 13 2 2 2 x + (−1) = 2 , x < 0 = sin α = x 2 = 4 − 1 = 3, x < 0 x=− 3 cos β = − a. 3 , 2 tan β = −1 − 3 = 3 3 5 3π , − < α < −π 13 2 π tan β = − 3, < β < π 2 35. sin α = sin(α + β ) = sin α cos β + cos α sin β 3 ⎞ ⎛ 12 ⎞ ⎛ 1 ⎞ ⎛ 5⎞ ⎛ = ⎜ − ⎟ ⋅ ⎜⎜ − ⎟⎟ + ⎜ − ⎟ ⋅ ⎜ − ⎟ 13 2 ⎝ ⎠ ⎝ ⎠ ⎝ 13 ⎠ ⎝ 2 ⎠ = b. 5 3 + 12 12 + 5 3 = 26 26 (−1, 3 ) y (x, 5) 13 5 3 cos(α + β ) = cos α cos β − sin α sin β x 3⎞ ⎛ 5 ⎞ ⎛ 1⎞ ⎛ 12 ⎞ ⎛ = ⎜ − ⎟ ⋅ ⎜⎜ − ⎟ − ⎜− ⎟⋅⎜− ⎟ ⎝ 13 ⎠ ⎝ 2 ⎟⎠ ⎝ 13 ⎠ ⎝ 2 ⎠ y r β x α −1 x x 2 + 52 = 132 , x < 0 12 3 − 5 = 26 c. tan α − tan β 1 + tan α ⋅ tan β x 2 = 169 − 25 = 144, x < 0 x = −12 sin(α − β ) = sin α cos β − cos α sin β 3 ⎞ ⎛ 12 ⎞ ⎛ 1 ⎞ ⎛ 5⎞ ⎛ = ⎜ − ⎟ ⋅ ⎜⎜ − ⎟ − ⎜− ⎟⋅⎜− ⎟ ⎝ 13 ⎠ ⎝ 2 ⎟⎠ ⎝ 13 ⎠ ⎝ 2 ⎠ cos α = −12 12 =− , 13 13 tan α = − 5 12 2 r 2 = (−1) 2 + 3 = 4 r=2 5 3 − 12 = 26 sin β = 3 −1 1 , cos β = =− 2 2 2 246 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.4: Sum and Difference Formulas sin(α + β ) = sin α cos β + cos α sin β a. 12 + y 2 = 22 , y < 0 ⎛ 5 ⎞ ⎛ 1 ⎞ ⎛ 12 ⎞ ⎛ 3 ⎞ = ⎜ ⎟ ⋅ ⎜ − ⎟ + ⎜ − ⎟ ⋅ ⎜⎜ ⎟ ⎝ 13 ⎠ ⎝ 2 ⎠ ⎝ 13 ⎠ ⎝ 2 ⎟⎠ = y 2 = 4 − 1 = 3, y < 0 y=− −5 − 12 3 5 + 12 3 or − 26 26 sin α = cos(α + β ) = cos α cos β − sin α sin β b. 12 − 5 3 26 cos β = a. −5 + 12 3 26 ( b. 3 tan β = 1 2 2 = 2 4 sin(α + β ) = sin α cos β + cos α sin β 1− 2 6 6 cos(α + β ) = cos α cos β − sin α sin β 3 ⎞ ⎛1⎞ ⎛1⎞ ⎛2 2 ⎞ ⎛ = ⎜ ⎟ ⋅ ⎜⎜ ⎟⎟ − ⎜⎜ − ⎟⋅⎜ ⎟ ⎝ 2 ⎠ ⎝ 3 ⎠ ⎝ 2 ⎟⎠ ⎝ 3 ⎠ ) ( ) = −5 + 12 3 12 = 12 + 5 3 12 ⎛ −5 + 12 3 ⎞ ⎛ 12 − 5 3 ⎞ = ⎜⎜ ⎟⎟ ⋅ ⎜⎜ ⎟⎟ ⎝ 12 + 5 3 ⎠ ⎝ 12 − 5 3 ⎠ = 2 2 , 3 = tan α − tan β 1 + tan α tan β 5 − − − 3 12 = ⎛ 5⎞ 1+ ⎜ − ⎟ ⋅ − 3 ⎝ 12 ⎠ 3 − 3 , tan α = =− 2 1 ⎛ 3 ⎞ ⎛ 2 2 ⎞ ⎛1⎞ ⎛1⎞ = ⎜⎜ − ⎟⎟ ⋅ ⎜⎜ ⎟⎟ + ⎜ ⎟ ⋅ ⎜ ⎟ ⎝ 2 ⎠ ⎝ 3 ⎠ ⎝ 2⎠ ⎝ 3⎠ tan(α − β ) = d. =− x= 8=2 2 ⎛ 5 ⎞ ⎛ 1 ⎞ ⎛ 12 ⎞ ⎛ 3 ⎞ = ⎜ ⎟ ⋅ ⎜ − ⎟ − ⎜ − ⎟ ⋅ ⎜⎜ ⎟ ⎝ 13 ⎠ ⎝ 2 ⎠ ⎝ 13 ⎠ ⎝ 2 ⎟⎠ = 3 2 x 2 = 9 − 1 = 8. x > 0 sin(α − β ) = sin α cos β − cos α sin β c. − x 2 + 12 = 32 , x > 0 ⎛ 12 ⎞ ⎛ 1 ⎞ ⎛ 5 ⎞ ⎛ 3 ⎞ = ⎜ − ⎟ ⋅ ⎜ − ⎟ − ⎜ ⎟ ⋅ ⎜⎜ ⎟ ⎝ 13 ⎠ ⎝ 2 ⎠ ⎝ 13 ⎠ ⎝ 2 ⎟⎠ = 3 c. 3+2 2 6 sin(α − β ) = sin α cos β − cos α sin β ⎛ 3 ⎞ ⎛ 2 2 ⎞ ⎛1⎞ ⎛1⎞ = ⎜⎜ − ⎟⎟ ⋅ ⎜⎜ ⎟⎟ − ⎜ ⎟ ⋅ ⎜ ⎟ ⎝ 2 ⎠ ⎝ 3 ⎠ ⎝ 2⎠ ⎝3⎠ = −1 − 2 6 6 − 240 + 169 3 69 1 π , − <α < 0 2 2 1 π sin β = , 0 < β < 3 2 36. cos α = y α 2 y 1 y x (1, y) (x, 1) 3 β 1 x x 247 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry d. tan(α − β ) = π tan α − tan β 1 + tan α tan β d. 2 − 3− 4 = ( ) 1+ − 3 ⋅ 2 4 −4 3 − 2 4 = 4− 6 4 ⎛ −4 3 − 2 ⎞ ⎛ 4+ 6 ⎞ = ⎜⎜ ⎟⎟ ⋅ ⎜⎜ ⎟⎟ ⎝ 4− 6 ⎠ ⎝ 4+ 6 ⎠ −1 + 2 2 = 2 2 2 2 +1 2 2 ⎛ 2 2 −1 ⎞ ⎛ 2 2 −1 ⎞ = ⎜⎜ ⎟⎟ ⋅ ⎜⎜ ⎟⎟ ⎝ 2 2 + 1 ⎠ ⎝ 2 2 −1 ⎠ = −16 3 − 4 2 − 4 18 − 12 16 − 6 = −18 3 − 16 2 10 = 8 − 4 2 +1 8 −1 = −9 3 − 8 2 5 = 9−4 2 7 38. cos θ = 1 37. sin θ = , θ in quadrant II 3 a. ⎛1⎞ cos θ = − 1 − sin θ = − 1 − ⎜ ⎟ ⎝3⎠ a. 2 2 = − 1− b. 1 9 =− 8 9 =− =− 2 2 3 15 16 =− 15 4 b. 2 1 16 π⎞ π π ⎛ sin ⎜ θ − ⎟ = sin θ ⋅ cos − cos θ ⋅ sin 6⎠ 6 6 ⎝ ⎛ 15 ⎞ ⎛ 3 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ = ⎜⎜ − ⎟⎟ ⋅ ⎜⎜ ⎟⎟ − ⎜ ⎟ ⋅ ⎜ ⎟ ⎝ 4 ⎠ ⎝ 2 ⎠ ⎝4⎠ ⎝2⎠ 3 − 2 2 −2 2 + 3 = 6 6 = π⎞ π π ⎛ cos ⎜ θ − ⎟ = cos θ ⋅ cos + sin θ ⋅ sin 3⎠ 3 3 ⎝ c. ⎛ 2 2 ⎞⎛ 1 ⎞ ⎛ 1 ⎞⎛ 3 ⎞ = ⎜⎜ − ⎟⎜ ⎟ + ⎜ ⎟⎜ ⎟ 3 ⎟⎠ ⎝ 2 ⎠ ⎝ 3 ⎠ ⎜⎝ 2 ⎟⎠ ⎝ = sin θ = − 1 − cos 2 θ = − 1− π⎞ π π ⎛ sin ⎜ θ + ⎟ = sin θ ⋅ cos + cos θ ⋅ sin 6⎠ 6 6 ⎝ = 1 , θ in quadrant IV 4 ⎛1⎞ = − 1− ⎜ ⎟ ⎝4⎠ ⎛ 1 ⎞⎛ 3 ⎞ ⎛ 2 2 ⎞⎛ 1 ⎞ = ⎜ ⎟ ⎜⎜ ⎟+⎜− ⎟⎜ ⎟ 3 ⎟⎠ ⎝ 2 ⎠ ⎝ 3 ⎠ ⎝ 2 ⎟⎠ ⎜⎝ c. π ⎞ tan θ + tan 4 ⎛ tan ⎜ θ + ⎟ = 4 ⎠ 1 − tan θ ⋅ tan π ⎝ 4 1 − +1 2 2 = 1 ⎞ ⎛ 1− ⎜ − ⎟ ⋅1 ⎝ 2 2⎠ −1 − 3 5 8 π⎞ π π ⎛ cos ⎜ θ + ⎟ = cos θ ⋅ cos − sin θ ⋅ sin 3⎠ 3 3 ⎝ ⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 15 ⎞ ⎛ 3 ⎞ = ⎜ ⎟ ⋅ ⎜ ⎟ − ⎜⎜ − ⎟⋅⎜ ⎟ ⎝ 4 ⎠ ⎝ 2 ⎠ ⎝ 4 ⎟⎠ ⎜⎝ 2 ⎟⎠ −2 2 + 3 6 = 1+ 3 5 8 248 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.4: Sum and Difference Formulas d. ⎛ tan ⎜ θ ⎝ π tan θ − tan π⎞ 4 − ⎟= 4 ⎠ 1 + tan θ ⋅ tan π 4 − 15 − 1 = 1 + − 15 ⋅1 ( 40. From the solution to Problem 39, we have −2 2 1 3 sin α = , cos α = , sin β = , and 3 2 2 1 cos β = . Thus, 3 g (α + β ) = cos (α + β ) ) = cos α ⋅ cos β − sin α ⋅ sin β ⎛ −1 − 15 ⎞ ⎛ 1 + 15 ⎞ = ⎜⎜ ⎟⎟ ⋅ ⎜⎜ ⎟⎟ ⎝ 1 − 15 ⎠ ⎝ 1 + 15 ⎠ = ⎛ 3 ⎞⎛ 1 ⎞ ⎛ 1 ⎞⎛ 2 2 ⎞ = ⎜⎜ ⎟⎟ ⎜ ⎟ − ⎜ ⎟ ⎜⎜ − ⎟ 3 ⎟⎠ ⎝ 2 ⎠⎝ 3 ⎠ ⎝ 2 ⎠⎝ −1 − 2 15 − 15 1 − 15 = −16 − 2 15 −14 8 + 15 = 7 = 41. From the solution to Problem 39, we have −2 2 1 3 , sin β = , and sin α = , cos α = 3 2 2 1 cos β = . Thus, 3 g (α − β ) = cos (α − β ) 39. α lies in quadrant I . Since x 2 + y 2 = 4 , r = 4 = 2 . Now, ( x, 1) is on the circle, so x 2 + 12 = 4 = cos α ⋅ cos β + sin α ⋅ sin β x 2 = 4 − 12 ⎛ 3 ⎞⎛ 1 ⎞ ⎛ 1 ⎞⎛ 2 2 ⎞ = ⎜⎜ ⎟⎟ ⎜ ⎟ + ⎜ ⎟ ⎜⎜ − ⎟ 3 ⎟⎠ ⎝ 2 ⎠⎝ 3 ⎠ ⎝ 2 ⎠⎝ x = 4 − 12 = 3 y 1 x 3 = and cos α = = . r 2 2 r β lies in quadrant IV . Since x 2 + y 2 = 1 , Thus, sin α = ⎛1 r = 1 = 1 . Now, ⎜ , ⎝3 = ⎞ y ⎟ is on the circle, so ⎠ 3 2 2 3−2 2 − = 6 6 6 42. From the solution to Problem 39, we have −2 2 1 3 , sin β = , and sin α = , cos α = 3 2 2 1 cos β = . Thus, 3 f (α − β ) = sin (α − β ) 2 ⎛1⎞ 2 ⎜ ⎟ + y =1 ⎝3⎠ ⎛1⎞ y2 = 1− ⎜ ⎟ ⎝3⎠ 3 2 2 3+2 2 + = 6 6 6 2 = sin α ⋅ cos β − cos α ⋅ sin β 2 8 2 2 ⎛1⎞ y = − 1− ⎜ ⎟ = − =− 9 3 ⎝3⎠ ⎛ 1 ⎞⎛ 1 ⎞ ⎛ 3 ⎞ ⎛ 2 2 ⎞ = ⎜ ⎟⎜ ⎟ − ⎜⎜ ⎟⎜ − ⎟ 3 ⎟⎠ ⎝ 2 ⎠⎝ 3 ⎠ ⎝ 2 ⎟⎠ ⎜⎝ y −23 2 −2 2 and = = r 1 3 x 1 1 cos β = = 3 = . Thus, r 1 3 f (α + β ) = sin (α + β ) Thus, sin β = = 1 2 6 1+ 2 6 + = 6 6 6 = sin α ⋅ cos β + cos α ⋅ sin β ⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 3 ⎞⎛ 2 2 ⎞ = ⎜ ⎟ ⎜ ⎟ + ⎜⎜ ⎟⎜ − ⎟ 3 ⎟⎠ ⎝ 2 ⎠ ⎝ 3 ⎠ ⎝ 2 ⎟⎜ ⎠⎝ = 1 2 6 1− 2 6 − = 6 6 6 249 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 43. From the solution to Problem 39, we have −2 2 1 3 , sin β = , and sin α = , cos α = 3 2 2 1 cos β = . Thus, 3 1 sin α 1 3 and tan α = = 2 = = cos α 3 3 3 2 2 2 − sin β 3 = −2 2 . Finally, = tan β = 1 cos β 3 tan α + tan β h (α + β ) = tan (α + β ) = 1 − tan α tan β ( ) ( ) 44. From the solution to Problem 43, we have 3 and tan β = −2 2 . Thus, tan α = 3 tan α − tan β h (α − β ) = tan (α − β ) = 1 + tan α tan β 3 + −2 2 = 3 3 −2 2 1− 3 3 −2 2 3 = 3 ⋅ 2 6 3 1+ 3 3 −6 2 3− 2 6 = ⋅ 3+ 2 6 3− 2 6 = = ( ) ( ) 3 − −2 2 3 = 3 1+ −2 2 3 3 +2 2 3 3 = ⋅ 2 6 3 1− 3 3 + 6 2 3+ 2 6 = ⋅ 3− 2 6 3+ 2 6 = = 3 3 + 6 2 + 18 2 + 24 3 9 + 6 6 − 6 6 − 24 27 3 + 24 2 8 2 +9 3 =− −15 5 π π ⎛π ⎞ 45. sin ⎜ + θ ⎟ = sin ⋅ cos θ + cos ⋅ sin θ 2 2 ⎝2 ⎠ = 1 ⋅ cos θ + 0 ⋅ sin θ = cos θ 3 3 − 6 2 − 18 2 + 24 3 π π ⎛π ⎞ 46. cos ⎜ + θ ⎟ = cos ⋅ cos θ − sin ⋅ sin θ 2 2 ⎝2 ⎠ = 0 ⋅ cos θ − 1 ⋅ sin θ = − sin θ 9 − 6 6 + 6 6 − 24 27 3 − 24 2 8 2 − 9 3 = −15 5 47. sin ( π − θ ) = sin π ⋅ cos θ − cos π ⋅ sin θ = 0 ⋅ cos θ − ( −1) sin θ = sin θ 48. cos ( π − θ ) = cos π ⋅ cos θ + sin π ⋅ sin θ = −1 ⋅ cos θ + 0 ⋅ sin θ = − cos θ 49. sin ( π + θ ) = sin π ⋅ cos θ + cos π ⋅ sin θ = 0 ⋅ cos θ + ( −1) sin θ = − sin θ 50. cos ( π + θ ) = cos π ⋅ cos θ − sin π ⋅ sin θ = −1 ⋅ cos θ − 0 ⋅ sin θ = − cos θ 250 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.4: Sum and Difference Formulas tan π − tan θ 1 + tan π ⋅ tan θ 0 − tan θ = 1 + 0 ⋅ tan θ − tan θ = 1 = − tan θ 51. tan ( π − θ ) = 58. 59. tan 2π − tan θ 1 + tan 2π ⋅ tan θ 0 − tan θ = 1 + 0 ⋅ tan θ − tan θ = 1 = − tan θ 52. tan ( 2π − θ ) = 60. 3π 3π ⎛ 3π ⎞ 53. sin ⎜ + θ ⎟ = sin ⋅ cos θ + cos ⋅ sin θ 2 2 ⎝ 2 ⎠ = −1 ⋅ cos θ + 0 ⋅ sin θ = − cos θ 61. 3π 3π ⎛ 3π ⎞ 54. cos ⎜ + θ ⎟ = cos ⋅ cos θ − sin ⋅ sin θ 2 2 ⎝ 2 ⎠ = 0 ⋅ cos θ − (−1) ⋅ sin θ = sin θ cos(α + β ) cos α cos β − sin α sin β = cos α cos β cos α cos β cos α cos β sin α sin β = − cos α cos β cos α cos β = 1 − tan α tan β cos(α − β ) cos α cos β + sin α sin β = sin α cos β sin α cos β cos α cos β sin α sin β = + sin α cos β sin α cos β = cot α + tan β sin(α + β ) sin α cos β + cos α sin β = sin(α − β ) sin α cos β − cos α sin β sin α cos β + cos α sin β cos α cos β = sin α cos β − cos α sin β cos α cos β sin α cos β cos α sin β + cos α cos β cos α cos β = sin α cos β cos α sin β − cos α cos β cos α cos β tan α + tan β = tan α − tan β 55. sin(α + β ) + sin(α − β ) = sin α cos β + cos α sin β + sin α cos β − cos α sin β = 2sin α cos β 56. cos(α + β ) + cos(α − β ) = cos α cos β − sin α sin β + cos α cos β + sin α sin β = 2 cos α cos β 57. sin(α + β ) sin α cos β + cos α sin β = cos α cos β cos α cos β sin α cos β cos α sin β = + cos α cos β cos α cos β = tan α + tan β 62. cos(α + β ) cos α cos β − sin α sin β = cos(α − β ) cos α cos β + sin α sin β cos α cos β − sin α sin β cos α cos β = cos α cos β + sin α sin β cos α cos β cos α cos β sin α sin β − cos α cos β cos α cos β = cos α cos β sin α sin β + cos α cos β cos α cos β 1 − tan α tan β = 1 + tan α tan β sin(α + β ) sin α cos β + cos α sin β = sin α cos β sin α cos β sin α cos β cos α sin β = + sin α cos β sin α cos β = 1 + cot α tan β 251 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry cos(α + β ) sin(α + β ) cos α cos β − sin α sin β = sin α cos β + cos α sin β cos α cos β − sin α sin β sin α sin β = sin α cos β + cos α sin β sin α sin β cos α cos β sin α sin β − sin α sin β sin α sin β = sin α cos β cos α sin β + sin α sin β sin α sin β cot α cot β − 1 = cot β + cot α 63. cot(α + β ) = 66. sec(α − β ) = 1 cos α cos β + sin α sin β 1 cos α cos β = cos α cos β + sin α sin β cos α cos β 1 1 ⋅ cos α cos β = cos α cos β sin α sin β + cos α cos β cos α cos β sec α sec β = 1 + tan α tan β = 67. sin(α − β )sin(α + β ) = ( sin α cos β − cos α sin β )( sin α cos β + cos α sin β ) cos(α − β ) sin(α − β ) cos α cos β + sin α sin β = sin α cos β − cos α sin β cos α cos β + sin α sin β sin α sin β = sin α cos β − cos α sin β sin α sin β cos α cos β sin α sin β + sin α sin β sin α sin β = sin α cos β cos α sin β − sin α sin β sin α sin β cot α cot β + 1 = cot β − cot α 64. cot(α − β ) = 65. sec(α + β ) = 1 cos(α − β ) = sin 2 α cos 2 β − cos 2 α sin 2 β = sin 2 α (1 − sin 2 β ) − (1 − sin 2 α )sin 2 β = sin 2 α − sin 2 α sin 2 β − sin 2 β + sin 2 α sin 2 β = sin 2 α − sin 2 β 68. cos(α − β )cos(α + β ) = ( cos α cos β + sin α sin β )( cos α cos β − sin α sin β ) = cos 2 α cos 2 β − sin 2 α sin 2 β = cos 2 α (1 − sin 2 β ) − (1 − cos 2 α )sin 2 β = cos 2 α − cos 2 α sin 2 β − sin 2 β + cos 2 α sin 2 β = cos 2 α − sin 2 β 69. sin(θ + k π) = sin θ ⋅ cos k π + cos θ ⋅ sin k π 1 = (sin θ )(−1) k + (cos θ )(0) cos(α + β ) = (−1) k sin θ , k any integer 1 cos α cos β − sin α sin β 1 sin α sin β = cos α cos β − sin α sin β sin α sin β 1 1 ⋅ sin α sin β = cos α cos β sin α sin β − sin α sin β sin α sin β csc α csc β = cot α cot β − 1 = 70. cos(θ + k π) = cos θ ⋅ cos k π − sin θ ⋅ sin k π = (cos θ )(−1) k − (sin θ )(0) = (−1) k cos θ , k any integer 1 ⎛ ⎞ ⎛π π ⎞ 71. sin ⎜ sin −1 + cos −1 0 ⎟ = sin ⎜ + ⎟ 2 ⎝ ⎠ ⎝6 2⎠ ⎛ 2π ⎞ = sin ⎜ ⎟ ⎝ 3 ⎠ = 3 2 252 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.4: Sum and Difference Formulas ⎛ ⎞ 3 ⎛π ⎞ + cos −1 1⎟⎟ = sin ⎜ + 0 ⎟ 72. sin ⎜⎜ sin −1 2 ⎝3 ⎠ ⎝ ⎠ π = sin 3 3 = 2 cos α = 1 − sin 2 α 2 16 ⎛ 4⎞ = 1− ⎜ − ⎟ = 1− = 25 ⎝ 5⎠ sec β = 1 + tan 2 β 2 9 25 5 ⎛3⎞ = 1+ ⎜ ⎟ = 1− = = 16 16 4 ⎝4⎠ ⎡ 3 ⎛ 4 ⎞⎤ 73. sin ⎢sin −1 − cos −1 ⎜ − ⎟ ⎥ 5 ⎝ 5 ⎠⎦ ⎣ 3 ⎛ 4⎞ Let α = sin −1 and β = cos −1 ⎜ − ⎟ . α is in 5 ⎝ 5⎠ 3 quadrant I; β is in quadrant II. Then sin α = , 5 4 π π 0 ≤ α ≤ , and cos β = − , ≤ β ≤ π . 5 2 2 cos β = 2 16 ⎛4⎞ = 1− ⎜ ⎟ = 1− = 25 ⎝5⎠ 9 3 = 25 5 ⎡ 3⎤ ⎛ 4⎞ sin ⎢sin −1 ⎜ − ⎟ − tan −1 ⎥ 4⎦ ⎝ 5⎠ ⎣ = sin (α − β ) cos α = 1 − sin α 2 9 16 4 ⎛3⎞ = 1− ⎜ ⎟ = 1− = = 5 25 25 5 ⎝ ⎠ = sin α cos β − cos α sin β ⎛ 4⎞ ⎛ 4⎞ ⎛ 3⎞ ⎛ 3⎞ = ⎜ − ⎟⋅⎜ ⎟ − ⎜ ⎟⋅⎜ ⎟ ⎝ 5⎠ ⎝ 5⎠ ⎝5⎠ ⎝5⎠ 16 9 25 =− − =− 25 25 25 = −1 sin β = 1 − cos 2 β 2 4 5 sin β = 1 − cos 2 β 2 16 ⎛ 4⎞ = 1− ⎜ − ⎟ = 1− = 25 ⎝ 5⎠ 9 3 = 25 5 9 3 = 25 5 ⎡ 3 ⎛ 4 ⎞⎤ sin ⎢sin −1 − cos −1 ⎜ − ⎟ ⎥ = sin (α − β ) 5 ⎝ 5 ⎠⎦ ⎣ = sin α cos β − cos α sin β 4 5⎞ ⎛ 75. cos ⎜ tan −1 + cos −1 ⎟ 3 13 ⎝ ⎠ 5 −1 4 and β = cos −1 . α is in Let α = tan 3 13 ⎛ 3⎞ ⎛ 4⎞ ⎛ 4⎞ ⎛ 3⎞ = ⎜ ⎟ ⋅⎜ − ⎟ − ⎜ ⎟ ⋅⎜ ⎟ ⎝5⎠ ⎝ 5⎠ ⎝ 5⎠ ⎝5⎠ 12 12 =− − 25 25 24 =− 25 quadrant I; β is in quadrant I. Then tan α = 0<α < π 2 , and cos β = 4 , 3 5 π , 0≤β ≤ . 13 2 sec α = 1 + tan 2 α ⎡ 3⎤ ⎛ 4⎞ 74. sin ⎢sin −1 ⎜ − ⎟ − tan −1 ⎥ 5 4⎦ ⎝ ⎠ ⎣ 3 ⎛ 4⎞ Let α = sin −1 ⎜ − ⎟ and β = tan −1 . α is in 4 ⎝ 5⎠ quadrant IV; β is in quadrant I. Then 2 16 ⎛4⎞ = 1+ ⎜ ⎟ = 1+ = 9 ⎝3⎠ cos α = 4 π 3 , − ≤ α ≤ 0 , and tan β = , 5 4 2 π 0<β < . 2 sin α = − 25 5 = 9 3 3 5 sin α = 1 − cos 2 α 2 9 16 4 ⎛3⎞ = 1− ⎜ ⎟ = 1− = = 25 25 5 ⎝5⎠ 253 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 5 3⎞ ⎛ 77. cos ⎜ sin −1 − tan −1 ⎟ 13 4⎠ ⎝ 5 3 and β = tan −1 . α is in Let α = sin −1 13 4 sin β = 1 − cos 2 β 2 25 144 12 ⎛5⎞ = 1− ⎜ ⎟ = 1− = = 169 169 13 ⎝ 13 ⎠ 4 5⎞ ⎛ cos ⎜ tan −1 + cos −1 ⎟ 3 13 ⎠ ⎝ = cos (α + β ) quadrant I; β is in quadrant I. Then sin α = 0≤α ≤ = cos α cos β − sin α sin β 2 25 144 12 ⎛5⎞ = 1− ⎜ ⎟ = 1− = = 13 169 169 13 ⎝ ⎠ sec β = 1 + tan 2 β ⎡ 5 ⎛ 3 ⎞⎤ 76. cos ⎢ tan −1 − sin −1 ⎜ − ⎟ ⎥ 12 ⎝ 5 ⎠⎦ ⎣ 5 ⎛ 3⎞ Let α = tan −1 and β = sin −1 ⎜ − ⎟ . α is in 12 ⎝ 5⎠ quadrant I; β is in quadrant IV. Then − 2 9 25 5 ⎛3⎞ = 1+ ⎜ ⎟ = 1+ = = 16 16 4 ⎝4⎠ cos β = 3 5 π , 0 < α < , and sin β = − , 5 12 2 4 5 sin β = 1 − cos 2 β π <α < 0. 2 2 16 ⎛4⎞ = 1− ⎜ ⎟ = 1− = 25 ⎝5⎠ sec α = 1 + tan 2 α 9 3 = 25 5 5 3⎤ ⎡ cos ⎢sin −1 − tan −1 ⎥ 13 4⎦ ⎣ = cos (α − β ) 2 25 169 13 ⎛ 5⎞ = 1+ ⎜ ⎟ = 1+ = = 144 144 12 ⎝ 12 ⎠ cos α = π 3 π , and tan β = , 0 < β < . 4 2 2 cos α = 1 − sin 2 α ⎛ 3 ⎞ ⎛ 5 ⎞ ⎛ 4 ⎞ ⎛ 12 ⎞ = ⎜ ⎟ ⋅⎜ ⎟ − ⎜ ⎟⋅⎜ ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ 15 48 33 = − =− 65 65 65 tan α = 5 , 13 = cos α cos β + sin α sin β 12 4 5 3 = ⋅ + ⋅ 13 5 13 5 48 15 = + 65 65 63 = 65 12 13 sin α = 1 − cos 2 α 2 144 25 5 ⎛ 12 ⎞ = 1− ⎜ ⎟ = 1− = = 169 169 13 ⎝ 13 ⎠ cos β = 1 − sin 2 β 4 12 ⎞ ⎛ 78. cos ⎜ tan −1 + cos −1 ⎟ 3 13 ⎠ ⎝ 4 12 Let α = tan −1 and β = cos −1 . α is in 3 13 2 9 16 4 ⎛ 3⎞ = 1− ⎜ − ⎟ = 1− = = 25 25 5 ⎝ 5⎠ ⎡ 5 ⎛ 3 ⎞⎤ cos ⎢ tan −1 − sin −1 ⎜ − ⎟ ⎥ 12 ⎝ 5 ⎠⎦ ⎣ = cos (α − β ) quadrant I; β is in quadrant I. Then tan α = = cos α cos β + sin α sin β 0<α < ⎛ 12 ⎞ ⎛ 4 ⎞ ⎛ 5 ⎞ ⎛ 3 ⎞ 48 15 33 = ⎜ ⎟⋅⎜ ⎟ + ⎜ ⎟⋅⎜ − ⎟ = − = ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ 65 65 65 4 , 3 12 π π , and cos β = , 0 ≤ β ≤ . 13 2 2 254 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.4: Sum and Difference Formulas 3⎞ π ⎛ tan ⎜ sin −1 ⎟ + tan 5⎠ 6 ⎛ −1 3 π ⎞ ⎝ tan ⎜ sin + ⎟= π 5 6⎠ ⎛ −1 3 ⎞ ⎝ 1 − tan ⎜ sin ⎟ ⋅ tan 5 6 ⎝ ⎠ sec α = 1 + tan 2 α 2 16 ⎛4⎞ = 1+ ⎜ ⎟ = 1+ = 9 ⎝3⎠ cos α = 25 5 = 9 3 3 3 + 4 3 = 3 3 1− ⋅ 4 3 9+ 3 12 = 12 − 3 3 12 9 + 3 12 + 3 3 = ⋅ 12 − 3 3 12 + 3 3 3 5 sin α = 1 − cos 2 α 2 9 16 4 ⎛3⎞ = 1− ⎜ ⎟ = 1− = = 25 25 5 ⎝5⎠ sin β = 1 − cos 2 β 2 144 25 5 ⎛ 12 ⎞ = 1− ⎜ ⎟ = 1− = = 169 169 13 ⎝ 13 ⎠ 108 + 75 3 + 36 144 − 27 144 + 75 3 = 117 48 + 25 3 = 39 = 4 12 ⎞ ⎛ cos ⎜ tan −1 + cos −1 ⎟ 3 13 ⎠ ⎝ = cos (α + β ) = cos α cos β − sin α sin β ⎛ 3 ⎞ ⎛ 12 ⎞ ⎛ 4 ⎞ ⎛ 5 ⎞ = ⎜ ⎟ ⋅⎜ ⎟ − ⎜ ⎟⋅⎜ ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ 36 20 = − 65 65 16 = 65 3⎞ ⎛π 80. tan ⎜ − cos −1 ⎟ 4 5 ⎝ ⎠ 3 Let α = cos −1 . α is in quadrant I. Then 5 3 π cos α = , 0 ≤ α ≤ . 2 5 3 π⎞ ⎛ 79. tan ⎜ sin −1 + ⎟ 5 6⎠ ⎝ 3 Let α = sin −1 . α is in quadrant I. Then 5 3 π sin α = , 0 ≤ α ≤ . 5 2 sin α = 1 − cos 2 α 2 9 16 4 ⎛3⎞ = 1− ⎜ ⎟ = 1− = = 5 25 25 5 ⎝ ⎠ 4 sin α 5 4 5 4 tan α = = = ⋅ = cos α 3 5 3 3 5 cos α = 1 − sin 2 α 2 9 16 4 ⎛3⎞ = 1− ⎜ ⎟ = 1− = = 25 25 5 ⎝5⎠ π 3⎞ ⎛ tan − tan ⎜ cos −1 ⎟ 3 4 5 ⎛π ⎞ ⎝ ⎠ tan ⎜ − cos −1 ⎟ = π 5⎠ ⎛ −1 3 ⎞ ⎝4 1 + tan ⋅ tan ⎜ cos ⎟ 4 5⎠ ⎝ 4 1 − 1− 1 3 1 3 = = 3 =− ⋅ =− 4 7 3 7 7 1 + 1⋅ 3 3 3 sin α 5 3 5 3 tan α = = = ⋅ = cos α 4 5 4 4 5 255 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 4 ⎛ ⎞ 81. tan ⎜ sin −1 + cos −1 1⎟ 5 ⎝ ⎠ −1 4 and β = cos −11 ; α is in Let α = sin 5 4 π quadrant I. Then sin α = , 0 ≤ α ≤ , and 5 2 4 ⎛ ⎞ sin ⎜ cos −1 + sin −1 1⎟ 5 ⎛ −1 4 ⎞ ⎝ ⎠ tan ⎜ cos + sin −1 1⎟ = 5 ⎝ ⎠ tan ⎛ cos −1 4 + sin −1 1⎞ ⎜ ⎟ 5 ⎝ ⎠ sin (α + β ) = cos (α + β ) cos β = 1 , 0 ≤ β ≤ π . So, β = cos −1 1 = 0 . = cos α = 1 − sin 2 α 2 16 ⎛4⎞ = 1− ⎜ ⎟ = 1− = 25 ⎝5⎠ ⎛3⎞ ⎛4⎞ ⎜ ⎟ (0) + ⎜ ⎟ (1) 5 ⎝5⎠ =⎝ ⎠ ⎛4⎞ ⎛3⎞ ⎜ ⎟ (0) − ⎜ ⎟ (1) ⎝5⎠ ⎝5⎠ 4 4 = 5 =− 3 3 − 5 9 3 = 25 5 4 sin α 5 4 5 4 tan α = = = ⋅ = cos α 3 5 3 3 5 ⎛ −1 4 ⎞ tan ⎜ sin − cos −1 1⎟ 5 ⎝ ⎠ 4 ⎛ ⎞ tan ⎜ sin −1 ⎟ + tan cos −1 1 5⎠ ⎝ = 4⎞ ⎛ 1 − tan ⎜ sin −1 ⎟ ⋅ tan cos −1 1 5⎠ ⎝ 4 4 +0 4 = 3 = 3= 4 1− ⋅ 0 1 3 3 ( ( 83. cos cos −1 u + sin −1 v ) ( sin β = 1 , − 2 ≤β ≤ π 2 ) sin α = 1 − cos 2 α = 1 − u 2 cos β = 1 − sin 2 β = 1 − v 2 . So, β = sin 1 = ( −1 π 2 2 ) cos cos −1 u + sin −1 v = cos(α + β ) = cos α cos β − sin α sin β = u 1 − v2 − v 1 − u 2 ( 84. sin sin −1 u − cos −1 v ) Let α = sin u and β = cos −1 v . Then −1 . π π ≤ α ≤ , and 2 2 cos β = v, 0 ≤ β ≤ π . −1 ≤ u ≤ 1 , −1 ≤ v ≤ 1 sin α = u , − sin α = 1 − cos 2 α 16 ⎛4⎞ = 1− ⎜ ⎟ = 1− = 5 25 ⎝ ⎠ ) Let α = cos −1 u and β = sin −1 v . Then cos α = u, 0 ≤ α ≤ π , and π π sin β = v, − ≤ β ≤ 2 2 −1 ≤ u ≤ 1 , −1 ≤ v ≤ 1 4 ⎛ ⎞ 82. tan ⎜ cos −1 + sin −1 1⎟ 5 ⎝ ⎠ −1 4 and β = sin -1 1 ; α is in Let α = cos 5 4 π quadrant I. Then cos α = , 0 ≤ α ≤ , and 2 5 π sin α cos β + cos α sin β cos α cos β − sin α sin β 9 3 = 25 5 cos α = 1 − sin 2 α = 1 − u 2 sin β = 1 − cos 2 β = 1 − v 2 3 sin α 5 3 5 3 π tan α = = = ⋅ = , but tan is cos α 4 5 4 4 2 5 undefined. Therefore, we cannot use the sum formula for tangent. Rewriting using sine and cosine, we obtain: ( ) sin sin −1 u − cos −1 v = sin(α − β ) = sin α cos β − cos α sin β = uv − 1 − u 2 1 − v 2 256 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.4: Sum and Difference Formulas ( 85. sin tan −1 u − sin −1 v ) sin α = 1 − cos 2 α Let α = tan −1 u and β = sin −1 v . Then = 1− π π < α < , and 2 2 π π sin β = v, − ≤ β ≤ . 2 2 −∞ < u < ∞ , −1 ≤ v ≤ 1 tan α = u, − = = sec α = tan 2 α + 1 = u 2 + 1 = 1 cos α = u2 + 1 cos β = sin α = 1 − cos 2 α = u +1 u = 2 = u2 +1 ( sin tan −1 u − sin −1 v = ) v2 + 1 − 1 v2 + 1 v2 v +1 v 2 v2 + 1 ) = cos α cos β − sin α sin β = u +1 2 86. cos tan −1 u + tan −1 v 1 v +1 2 = cos(α + β ) u 1− v − v = ) 1 1 ⋅ u +1 v +1 1 − uv 2 2 − u u +1 2 ⋅ v v +1 2 u 2 + 1 ⋅ v2 + 1 ( 87. tan sin −1 u − cos −1 v Let α = tan u and β = tan −1 v . Then −1 ) Let α = sin u and β = cos −1 v . Then −1 π π tan α = u, − < α < , and 2 2 π π tan β = v, − < β < . 2 2 −∞ < u < ∞ , −∞ < v < ∞ π π ≤ α ≤ , and 2 2 cos β = v, 0 ≤ β ≤ π . −1 ≤ u ≤ 1 , −1 ≤ v ≤ 1 sin α = u , − cos α = 1 − sin 2 α = 1 − u 2 sec α = tan 2 α + 1 = u 2 + 1 cos α = v +1 cos tan −1 u + tan −1 v 2 ( 1 2 ( = sin(α − β ) = sin α cos β − cos α sin β 1 u = ⋅ 1 − v2 − ⋅v 2 u +1 u2 +1 = u2 +1 = 1− 2 u u2 u +1 u 2 sin β = 1 − cos 2 β 1 2 u +1 u2 +1−1 = u2 +1 = u2 +1−1 u2 +1 sec β = tan 2 β + 1 = v 2 + 1 cos β = 1 − sin 2 β = 1 − v 2 = 1− 1 u2 +1 1 tan α = u +1 2 sin α u = cos α 1− u2 257 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry ( sec tan −1 u + cos −1 v sin β = 1 − cos 2 β = 1 − v 2 tan β = = sec(α + β ) sin β 1 − v2 = cos β v ( = ) tan sin −1 u − cos −1 v = tan(α − β ) = 1− u2 = 1+ u 1− u2 1 − v2 v ⋅ uv − 1 − u 2 1 − v 2 v 1− u2 v 1 − u 2 + u 1 − v2 v 1− u = ( −1 −1 88. sec tan u + cos v uv − 1 − u u2 +1 2 1− v 2 v 1− u + u 1− v 2 2 2 = −1 ⎛π ⎞ ⎛π ⎞ sin α = cos ⎜ − α ⎟ , cos ⎜ − α ⎟ = cos β . If 2 2 ⎝ ⎠ ⎝ ⎠ π ⎛π ⎞ v ≥ 0 , then 0 ≤ α ≤ , so that ⎜ − α ⎟ and β 2 2 ⎝ ⎠ ⎡ π⎤ both lie in the interval ⎢ 0, ⎥ . If v < 0 , then ⎣ 2⎦ π π ⎛ ⎞ − ≤ α < 0 , so that ⎜ − α ⎟ and β both lie in 2 ⎝2 ⎠ ⎛π ⎤ the interval ⎜ , π ⎥ . Either way, ⎝2 ⎦ π ⎛π ⎞ cos ⎜ − α ⎟ = cos β implies − α = β , or 2 2 ⎝ ⎠ π π α + β = . Thus, sin −1 v + cos −1 v = . 2 2 π π < α < , and 2 2 cos β = v, 0 ≤ β ≤ π . −∞ < u < ∞ , −1 ≤ v ≤ 1 tan α = u, − sec α = tan 2 α + 1 = u 2 + 1 1 u2 + 1 sin α = 1 − cos 2 α = 1− = = = v − u 1 − v2 sin α = v = cos β , and since Let α = tan u and β = cos v . Then cos α = u2 +1 89. Let α = sin −1 v and β = cos −1 v . Then ) −1 cos(α + β ) 1 cos α cos β − sin α sin β 1 = u 1 ⋅v − ⋅ 1 − v2 2 2 u +1 u +1 1 = v u 1 − v2 − u2 +1 u2 +1 1 = v − u 1 − v2 1 − v2 v − 1 = tan α − tan β 1 + tan α tan β u = ) 1 u +1 2 u2 +1−1 u2 +1 u2 u +1 u 2 u2 +1 sin β = 1 − cos 2 β = 1 − v 2 258 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.4: Sum and Difference Formulas ( 90. Let α = tan −1 v and β = cot −1 v . Then tan α = v = cot β , and since 93. sin sin −1 v + cos −1 v ) ( ) + cos ( sin v ) sin ( cos v ) = sin sin −1 v cos cos −1 v ⎛π ⎞ ⎛π ⎞ tan α = cot ⎜ − α ⎟ , cot ⎜ − α ⎟ = cot β . If ⎝2 ⎠ ⎝2 ⎠ π ⎛π ⎞ v ≥ 0 , then 0 ≤ α < , so that ⎜ − α ⎟ and β 2 2 ⎝ ⎠ ⎛ π⎤ both lie in the interval ⎜ 0, ⎥ . If v < 0 , then ⎝ 2⎦ π ⎛π ⎞ − < α < 0 , so that ⎜ − α ⎟ and β both lie in 2 ⎝2 ⎠ π ⎛ ⎞ the interval ⎜ , π ⎟ . Either way, ⎝2 ⎠ π ⎛π ⎞ cot ⎜ − α ⎟ = cot β implies − α = β , or 2 2 ⎝ ⎠ π π α + β = . Thus, tan −1 v + cot −1 v = . Note 2 2 that v ≠ 0 since cot −1 0 is undefined. −1 −1 = v ⋅ v + 1 − v2 1 − v2 = v2 + 1 − v2 =1 ( 94. cos sin −1 v + cos −1 v ( ) ( ) ) − sin ( sin v ) sin ( cos v ) = cos sin −1 v cos cos −1 v −1 −1 = 1 − v2 ⋅ v − v ⋅ 1 − v2 =0 95. 1 ⎛1⎞ 91. Let α = tan −1 ⎜ ⎟ and β = tan −1 v . Because v ⎝v⎠ must be defined, v ≠ 0 and so α , β ≠ 0 . Then tan α = ( ) 1 1 = = cot β , and since v tan β ⎛π ⎞ ⎛π ⎞ tan α = cot ⎜ − α ⎟ , cot ⎜ − α ⎟ = cot β . 2 2 ⎝ ⎠ ⎝ ⎠ π ⎛π ⎞ Because v > 0 , 0 < α < and so ⎜ − α ⎟ and 2 2 ⎝ ⎠ ⎛ π⎞ β both lie in the interval ⎜ 0, ⎟ . Then ⎝ 2⎠ 96. π ⎛π ⎞ cot ⎜ − α ⎟ = cot β implies − α = β or 2 ⎝2 ⎠ π α = − β . Thus, 2 ⎛1⎞ π tan −1 ⎜ ⎟ = − tan −1 v, if v > 0 . ⎝v⎠ 2 92. Let θ = tan −1 e− v . Then tan θ = e− v , so 1 π cot θ = − v = ev . Because 0 < θ < , we know 2 e −v that e > 0 , which means cot −1 ev = cot −1 ( cot θ ) = θ = tan −1 e− v . f ( x + h) − f ( x ) h sin( x + h) − sin x = h sin x cos h + cos x sin h − sin x = h cos x sin h − sin x + sin x cos h = h cos x sin h − sin x (1 − cos h ) = h sin h 1 − cos h = cos x ⋅ − sin x ⋅ h h f ( x + h) − f ( x ) h cos( x + h) − cos x h cos x cos h − sin x sin h − cos x = h − sin x sin h + cos x cos h − cos x = h − sin x sin h − cos x (1 − cos h ) = h sin h 1 − cos h = − sin x ⋅ − cos x ⋅ h h 259 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 97. a. ( −1 −1 −1 ) (( −1 −1 ) −1 ) tan tan 1 + tan 2 + tan 3 = tan tan 1 + tan 2 + tan 3 = ( ( ) ( ) 2 ) tan ( tan 3) tan tan −1 1 + tan −1 2 + tan tan −1 3 ( −1 1 − tan tan 1 + tan ) −1 −1 ( ) +3 3 1+ 2 +3 +3 1 − tan ( tan 1) tan ( tan 2 ) −3 + 3 0 − 1 − 1 ⋅ 2 = 1 = = =0 = = + 2 3 1 + 1 9 10 tan ( tan 1) + tan ( tan 2 ) ⋅3 1− ⋅3 1− 1− ⋅3 −1 1 − 1⋅ 2 1 − tan ( tan 1) tan ( tan 2 ) tan tan −1 1 + tan tan −1 2 −1 −1 −1 −1 −1 −1 b. From the definition of the inverse tangent function we know 0 < tan −1 1 < π , 0 < tan −1 2 < π , and 2 2 π 3π ⎛ 3π ⎞ 0 < tan −1 3 < . Thus, 0 < tan −1 1 + tan −1 2 + tan −1 3 < . On the interval ⎜ 0, ⎟ , tan θ = 0 if and only if 2 2 ⎝ 2 ⎠ θ = π . Therefore, from part (a), tan −1 1 + tan −1 2 + tan −1 3 = π . ( ) = sin (ωt ) ( sin (ωt ) cos φ − cos (ω t ) sin φ ) 98. cos φ sin 2 (ωt ) − sin φ sin (ω t ) cos (ωt ) = sin (ω t ) cos φ sin (ω t ) − sin φ cos (ω t ) = sin (ωt ) sin (ωt − φ ) 99. Note that θ = θ 2 − θ1 . Then tan θ = tan (θ 2 − θ1 ) = tan θ 2 − tan θ1 m − m1 = 2 1 + tan θ 2 tan θ1 1 + m2 m1 100. sin(α − θ )sin( β − θ )sin(γ − θ ) = ( sin α cosθ − cos α sin θ )( sin β cosθ − cos β sin θ )( sin γ cosθ − cos γ sin θ ) ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ cosθ ⎞ ⎛ cosθ ⎞ ⎛ cosθ ⎞ = sin θ ⎜ sin α ⎜ ⎟ − cos α ⎟ sin θ ⎜ sin β ⎜ ⎟ − cos β ⎟ sin θ ⎜ sin γ ⎜ ⎟ − cos γ ⎟ θ θ θ sin sin sin ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎛ cosθ cos β ⎛ ⎛ cosθ cos α ⎞ ⎞ ⎛ − = sin 3 θ ⎜ sin α ⎜ − ⎟ ⎟ ⎜ sin β ⎜ θ α sin sin ⎝ ⎠ ⎝ ⎠⎝ ⎝ sin θ sin β ⎞ ⎞⎛ ⎛ cosθ cos γ ⎞ ⎞ − ⎟ ⎟⎜ sin γ ⎜ ⎟⎟ ⎠ ⎠⎝ ⎝ sin θ sin γ ⎠ ⎠ = sin 3 θ ( sin α ( cot θ − cot α ) ) ( sin β ( cot θ − cot β ) ) ( sin γ ( cot θ − cot γ ) ) = sin 3 θ sin α sin β sin γ ( cot β + cot γ )( cot α + cot γ )( cot α + cot β ) ⎛ cos β cos γ ⎞⎛ cos α cos γ ⎞⎛ cos α cos β ⎞ = sin 3 θ sin α sin β sin γ ⎜ + + + ⎟⎜ ⎟⎜ ⎟ ⎝ sin β sin γ ⎠⎝ sin α sin γ ⎠⎝ sin α sin β ⎠ ⎛ sin(γ + β ) ⎞⎛ sin(γ + α ) ⎞⎛ sin( β + α ) ⎞ = sin 3 θ sin α sin β sin γ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ sin β sin γ ⎠⎝ sin α sin γ ⎠⎝ sin α sin β ⎠ ⎛ sin(180º − α ) ⎞⎛ sin(180º − β ) ⎞⎛ sin(180º − γ ) ⎞ = sin 3 θ sin α sin β sin γ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ sin β sin γ ⎠⎝ sin α sin γ ⎠⎝ sin α sin β ⎠ ⎛ sin α ⎞⎛ sin β ⎞⎛ sin γ ⎞ = sin 3 θ sin α sin β sin γ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ sin β sin γ ⎠⎝ sin α sin γ ⎠⎝ sin α sin β ⎠ = sin 3 θ 260 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.5: Double-angle and Half-angle Formulas 101. If tan α = x + 1 and tan β = x − 1 , then 2cot (α − β ) = 2 ⋅ = Section 3.5 1 1. sin 2 θ , 2 cos 2 θ , 2sin 2 θ tan (α − β ) 2 tan α − tan β 1 + tan α tan β 2. 1 − cos θ 3. sin θ 2 (1 + tan α tan β ) = tan α − tan β = = 4. True 2 (1 + ( x + 1)( x − 1) ) 5. False x + 1 − ( x − 1) ( ( 6. False )) 2 1 + x2 − 1 3 π θ π 7. sin θ = , 0 < θ < . Thus, 0 < < , which 5 2 2 4 x +1− x +1 2x2 = 2 = x2 means lies in quadrant I. 2 y = 3, r = 5 102. The first step in the derivation, x 2 + 32 = 52 , x > 0 π π ⎞ tan θ + tan 2 ⎛ tan ⎜ θ + ⎟ = , is impossible 2 ⎠ 1 − tan θ ⋅ tan π ⎝ 2 because tan θ x 2 = 25 − 9 = 16, x > 0 x=4 4 So, cos θ = . 5 π is undefined. 2 103. If formula (7) is used, we obtain π tan − tan θ ⎛π ⎞ 2 tan ⎜ − θ ⎟ = . However, this is 2 ⎝ ⎠ 1 + tan π ⋅ tan θ 2 π impossible because tan is undefined. Using 2 formulas (3a) and (3b), we obtain ⎛π ⎞ sin ⎜ − θ ⎟ 2 ⎛π ⎞ ⎝ ⎠. tan ⎜ − θ ⎟ = π 2 ⎛ ⎝ ⎠ cos − θ ⎞ ⎜ ⎟ ⎝2 ⎠ cos θ = sin θ = cot θ a. 3 4 24 sin(2θ ) = 2sin θ cos θ = 2 ⋅ ⋅ = 5 5 25 b. cos(2θ ) = cos 2 θ − sin 2 θ 2 2 16 9 7 ⎛ 4⎞ ⎛3⎞ = ⎜ ⎟ −⎜ ⎟ = − = 5 5 25 25 25 ⎝ ⎠ ⎝ ⎠ c. sin θ 2 = = d. cos θ 2 = = 1 − cosθ 2 1− 2 4 5 = 1 5 = 1 = 1 10 = 10 2 10 10 10 10 1 + cosθ 2 1+ 2 4 5 = 9 5 = 9 = 3 10 = 3 10 2 10 10 10 10 261 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 3 π θ π 8. cos θ = , 0 < θ < . Thus, 0 < < , which 5 2 2 4 means c. sin θ 2 θ ⎛ 3⎞ 1− ⎜ − ⎟ ⎝ 5⎠ = 2 lies in quadrant I. 2 x = 3, r = 5 32 + y 2 = 52 , y > 0 y 2 = 25 − 9 = 16, y > 0 y=4 So, sin θ = d. a. 4 3 24 sin(2θ ) = 2sin θ cos θ = 2 ⋅ ⋅ = 5 5 25 b. cos(2θ ) = cos 2 θ − sin 2 θ cos θ 2 sin θ 2 1− = d. cos θ 2 2 3 5 = 3 1+ 5 = = 2 9. tan θ = 10. tan θ = 2 5 = 1= 1 5= 5 2 5 5 5 5 θ 2 x = −3, y = − 4 8 5 = 2 r= 5 4 2 5 2 5 = = 5 5 5 5 5 2 2 5 =− , cos θ = − 5 5 5 5 sin(2θ ) = 2sin θ cos θ sin θ = − a. 1 =− ⎛ 5⎞ ⎛ 2 5⎞ 4 = 2 ⋅ ⎜⎜ − ⎟⎟ ⋅ ⎜⎜ − ⎟= 5 ⎟⎠ 5 ⎝ 5 ⎠ ⎝ lies in quadrant II. b. cos(2θ ) = cos 2 θ − sin 2 θ 2 ⎛ 2 5⎞ ⎛ = ⎜⎜ − ⎟ −⎜− 5 ⎟⎠ ⎜⎝ ⎝ 20 5 15 = − = = 25 25 25 sin(2θ ) = 2sin θ cos θ c. ⎛ 4 ⎞ ⎛ 3 ⎞ 24 = 2⋅⎜ − ⎟⋅⎜ − ⎟ = ⎝ 5 ⎠ ⎝ 5 ⎠ 25 b. lie in quadrant II. r 2 = (− 2) 2 + (−1) 2 = 4 + 1 = 5 r 2 = (−3) 2 + (− 4) 2 = 9 + 16 = 25 r =5 4 3 sin θ = − , cos θ = − 5 5 a. θ 2 x = − 2, y = −1 4 3π π θ 3π , π <θ < . Thus, < < , 3 2 2 2 4 which means 1 3π π θ 3π . Thus, < < , , π <θ < 2 2 2 2 4 which means 1 + cos θ 2 = 1 + cos θ 2 2 1 1 5 5 5 =− =− =− =− 2 5 5 5 5 2 1 − cos θ 2 = =− ⎛ 3⎞ 1+ ⎜ − ⎟ ⎝ 5⎠ =− 2 9 16 7 ⎛3⎞ ⎛ 4⎞ = ⎜ ⎟ −⎜ ⎟ = − =− 5 5 25 25 25 ⎝ ⎠ ⎝ ⎠ c. 8 5 = 4= 2 5=2 5 2 5 5 5 5 = 4 . 5 2 1 − cos θ 2 = 2 2 9 16 7 ⎛ 3⎞ ⎛ 4⎞ = ⎜− ⎟ −⎜− ⎟ = − =− 25 25 25 ⎝ 5⎠ ⎝ 5 ⎠ 2 3 5 ⎛ −2 5 ⎞ 1 − ⎜⎜ ⎟⎟ θ 1 − cos θ ⎝ 5 ⎠ sin = = 2 2 2 = cos(2θ ) = cos 2 θ − sin 2 θ 5⎞ ⎟ 5 ⎟⎠ = 5+ 2 5 5 2 5+ 2 5 10 262 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.5: Double-angle and Half-angle Formulas d. ⎛ −2 5 ⎞ 1 + ⎜⎜ ⎟⎟ θ 1 + cos θ ⎝ 5 ⎠ cos = − =− 2 2 2 d. ⎛ 6⎞ 1 + ⎜⎜ − ⎟⎟ θ 1 + cos θ ⎝ 3 ⎠ cos = = 2 2 2 5−2 5 5 =− 2 =− which means θ 2 x = − 6, r = 3 2 5−2 5 10 = 6 π π θ π , < θ < π . Thus, < < , 3 2 4 2 2 11. cos θ = − (− 6 ) = which means ( x2 + − 3 y2 = 9 − 6 = 3 ) a. cos θ = a. sin(2θ ) = 2sin θ cos θ 6 3 sin(2θ ) = 2sin θ cos θ ⎛ 3⎞ ⎛ 6⎞ = 2 ⋅ ⎜⎜ − ⎟⎟ ⋅ ⎜⎜ ⎟⎟ ⎝ 3 ⎠ ⎝ 3 ⎠ ⎛ 3⎞ ⎛ 6⎞ = 2 ⋅ ⎜⎜ ⎟⎟ ⋅ ⎜⎜ − ⎟⎟ ⎝ 3 ⎠ ⎝ 3 ⎠ b. 2 18 6 2 2 2 =− =− 9 9 3 =− b. cos(2θ ) = cos 2 θ − sin 2 θ 2 ⎛ 6⎞ ⎛ 3⎞ = ⎜⎜ − ⎟⎟ − ⎜⎜ ⎟⎟ ⎝ 3 ⎠ ⎝ 3 ⎠ 6 3 3 1 = − = = 9 9 9 3 c. =3 x= 6 3 3 =− 2 lies in quadrant II. x2 = 9 − 3 = 6 y= 3 sin θ = θ 2 y = − 3, r = 3 + y 2 = 32 3− 6 6 3 3π 3π θ < θ < 2π . Thus, < <π, , 3 2 4 2 12. sin θ = − lies in quadrant I. 3− 6 3 2 = cos(2θ ) = cos 2 θ − sin 2 θ 2 2 ⎛ 6⎞ ⎛ 3⎞ = ⎜⎜ ⎟⎟ − ⎜⎜ − ⎟⎟ ⎝ 3 ⎠ ⎝ 3 ⎠ 6 3 3 1 = − = = 9 9 9 3 ⎛ 6⎞ 1 − ⎜⎜ − ⎟⎟ 3 θ 1 − cos θ ⎝ ⎠ sin = = 2 2 2 = 2 18 6 2 2 2 =− =− 9 9 3 c. 3+ 6 3 2 θ 1 − cos θ = sin = 2 2 = 3+ 6 6 = 2 6 3 1− 2 3− 6 3 2 3− 6 6 263 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry d. cos θ 2 =− 6 3 1+ 1 + cos θ =− 2 14. csc θ = − 5, cos θ < 0 , so π < θ < π θ 3π θ < < , which means lies in quadrant II. 2 2 4 2 −1 5 sin θ = =− , r = 5, y = −1 5 5 2 3+ 6 3 =− 2 x 2 + (−1) 2 = 3+ 6 =− 6 13. sec θ = 3, sin θ > 0 , so 0 < θ < θ 2 cos θ = a. y2 = 9 −1 = 8 b. sin(2θ ) = 2sin θ cos θ = 2 ⋅ b. cos(2θ ) = cos θ − sin θ 2 2 1 4 2 ⋅ = 3 3 9 2 c. 2 2 1 8 7 ⎛1⎞ ⎛ 2 2 ⎞ = ⎜ ⎟ − ⎜⎜ ⎟⎟ = − = − 9 9 9 ⎝3⎠ ⎝ 3 ⎠ θ 2 = d. cos θ 2 = = 2 1 3 = cos(2θ ) = cos 2 θ − sin 2 θ d. 4 3 = 2 2 = 3 2 3 3 3 = 5⎞ ⎟ 5 ⎟⎠ 2 3 5 ⎛ 2 5⎞ 1 − ⎜⎜ − ⎟ 5 ⎟⎠ θ 1 − cos θ ⎝ = sin = 2 2 2 = 2 3 = 1= 1 3= 3 2 3 3 3 3 1 + cos θ 2 1+ sin(2θ ) = 2sin θ cos θ = 1 − cos θ 2 1 1− 3 = = 2 2 5 5 ⎛ 2 5⎞ ⎛ = ⎜⎜ − ⎟ −⎜− 5 ⎟⎠ ⎜⎝ ⎝ 20 5 15 = − = = 25 25 25 2 2 3 a. sin 5 =− 2 y= 8=2 2 c. −2 ⎛ 5⎞ ⎛ 2 5⎞ 4 = 2 ⋅ ⎜⎜ − ⎟⎟ ⋅ ⎜⎜ − ⎟= 5 ⎟⎠ 5 ⎝ 5 ⎠ ⎝ 12 + y 2 = 32 2 2 x = −2 π . Thus, 2 < sin θ = ( 5) x2 = 5 − 1 = 4 π θ , which means lies in quadrant I. 2 4 1 cos θ = , x = 1 , r = 3 . 3 0< 3π . Thus, 2 5+2 5 5 2 5+2 5 10 ⎛ 2 5⎞ 1 + ⎜⎜ − ⎟ 5 ⎟⎠ θ 1 + cos θ ⎝ =− cos = − 2 2 2 5−2 5 5 =− 2 6 3 =− 5−2 5 10 264 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.5: Double-angle and Half-angle Formulas 15. cot θ = −2, sec θ < 0 , so π < θ < π . Thus, 2 16. sec θ = 2, csc θ < 0 , so π θ π θ < < , which means lies in quadrant I. 4 2 2 2 x = − 2, y = 1 3π θ θ < < π , which means lies in quadrant II. 4 2 2 1 cos θ = , x = 1, r = 2 2 12 + y 2 = 22 r 2 = (− 2) 2 + 12 = 4 + 1 = 5 r= 5 y2 = 4 −1 = 3 5 −2 2 5 , cos θ = =− sin θ = = 5 5 5 5 1 a. y= 3 sin(2θ ) = 2sin θ cos θ 2 ⎛ 3⎞ ⎛1⎞ 3 = 2 ⋅ ⎜⎜ − ⎟⎟ ⋅ ⎜ ⎟ = − 2 ⎝ 2 ⎠ ⎝2⎠ 2 b. = 2 c. = sin θ 2 = = 5+2 5 5 2 d. cos θ 2 5+2 5 10 = = ⎛ 2 5⎞ 1 + ⎜⎜ − ⎟ 5 ⎟⎠ θ 1 + cos θ ⎝ cos = = 2 2 2 = cos(2θ ) = cos 2 θ − sin 2 θ 2 3⎞ 1 3 1 ⎛1⎞ ⎛ = ⎜ ⎟ − ⎜⎜ − ⎟⎟ = − = − 4 4 2 ⎝2⎠ ⎝ 2 ⎠ ⎛ 2 5⎞ 1 − ⎜⎜ − ⎟ 5 ⎟⎠ θ 1 − cos θ ⎝ sin = = 2 2 2 = d. a. cos(2θ ) = cos 2 θ − sin 2 θ ⎛ 2 5⎞ ⎛ 5⎞ = ⎜⎜ − ⎟ −⎜ ⎟ 5 ⎟⎠ ⎜⎝ 5 ⎟⎠ ⎝ 20 5 15 3 = − = = 25 25 25 5 c. 3 2 sin(2θ ) = 2sin θ cos θ sin θ = − ⎛ 5⎞ ⎛ 2 5⎞ 20 4 = 2 ⋅ ⎜⎜ =− ⎟⎟ ⋅ ⎜⎜ − ⎟⎟ = − 5 ⎠ 25 5 ⎝ 5 ⎠ ⎝ b. 3π < θ < 2π . Thus, 2 1 − cos θ 2 1− 2 1 2 = 1 2 = 1 =1 2 4 2 1 + cos θ 2 1+ 2 1 2 = 3 2 = 2 17. tan θ = − 3, sin θ < 0 , so 3 3 = 4 2 3π < θ < 2π . Thus, 2 3π θ θ < < π , which means lies in quadrant II. 4 2 2 x = 1, y = −3 5−2 5 5 2 r 2 = 12 + (−3) 2 = 1 + 9 = 10 5−2 5 10 r = 10 sin θ = a. −3 10 =− 3 10 1 10 , cos θ = = 10 10 10 sin ( 2θ ) = 2sin θ cos θ ⎛ 3 10 ⎞ ⎛ 10 ⎞ = 2 ⋅ ⎜⎜ − ⎟⎟ ⋅ ⎜⎜ ⎟⎟ ⎝ 10 ⎠ ⎝ 10 ⎠ 6 3 =− =− 10 5 265 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry b. cos(2θ ) = cos 2 θ − sin 2 θ b. 2 cos(2θ ) = cos 2 θ − sin 2 θ 2 2 ⎛ 3 10 ⎞ ⎛ 10 ⎞ = ⎜⎜ − ⎟⎟ − ⎜⎜ − ⎟⎟ ⎝ 10 ⎠ ⎝ 10 ⎠ 90 10 80 4 = − = = 100 100 100 5 ⎛ 10 ⎞ ⎛ 3 10 ⎞ = ⎜⎜ ⎟⎟ − ⎜⎜ − ⎟⎟ ⎝ 10 ⎠ ⎝ 10 ⎠ 10 90 80 4 = − =− =− 100 100 100 5 c. 1− θ 1 − cos θ sin = = 2 2 10 10 2 c. ⎛ 3 10 ⎞ 1 − ⎜⎜ − ⎟ 10 ⎟⎠ θ 1 − cos θ ⎝ = sin = 2 2 2 10 − 10 10 = 2 d. 10 + 3 10 10 = 2 = 10 − 10 20 = 10 + 3 10 20 = 1 10 − 10 2 5 = 1 10 + 3 10 2 5 1+ θ 1 + cos θ cos = − =− 2 2 10 10 2 d. 10 + 10 10 =− 2 =− 10 + 10 20 =− 1 10 + 10 2 5 18. cot θ = 3, cos θ < 0 , so π < θ < ⎛ 3 10 ⎞ 1 + ⎜⎜ − ⎟ 10 ⎟⎠ θ 1 + cos θ ⎝ =− cos = − 2 2 2 10 − 3 10 10 =− 2 3π . Thus, 2 = r 2 = (−3) 2 + (−1) 2 = 9 + 1 = 10 r = 10 = 1 10 =− 10 , 10 10 − 3 10 20 =− 1 10 − 3 10 2 5 1 − cos 45° 2 1− 2 2 2 = 2− 2 = 4 2− 2 2 2+ 2 = 4 2+ 2 2 ⎛ 45° ⎞ 20. cos 22.5° = cos ⎜ ⎟ ⎝ 2 ⎠ 3 3 10 =− cos θ = − 10 10 a. =− ⎛ 45° ⎞ 19. sin 22.5° = sin ⎜ ⎟ ⎝ 2 ⎠ π θ 3π θ which means is in quadrant II. < < 2 2 2 4 x = −3, y = −1 sin θ = − 2 = sin ( 2θ ) = 2sin θ cos θ ⎛ 10 ⎞ ⎛ 3 10 ⎞ 6 3 = 2 ⋅ ⎜⎜ − = ⎟⎟ ⋅ ⎜⎜ − ⎟⎟ = ⎝ 10 ⎠ ⎝ 10 ⎠ 10 5 = 1 + cos 45° 2 1+ 2 2 2 = 266 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.5: Double-angle and Half-angle Formulas 7π ⎛ 7π ⎞ 1 − cos ⎜ 4 ⎟ 7π 4 21. tan = tan ⎜ ⎟ =− 7π 8 ⎝ 2 ⎠ 1 + cos 4 1 − cos 390° ⎛ 390° ⎞ 24. sin195° = sin ⎜ ⎟ =− 2 ⎝ 2 ⎠ =− 2 2 ⋅2 =− 2 2 1+ 2 1− ⎛ 2− 2 ⎞ ⎛ 2− 2 ⎞ = − ⎜⎜ ⎟⎟ ⋅ ⎜⎜ ⎟⎟ ⎝ 2+ 2 ⎠ ⎝ 2− 2 ⎠ (2 − 2 ) =− 2 25. sec 2 ⎛ 2− 2 ⎞ = − ⎜⎜ ⎟ 2 ⎟⎠ ⎝ =− ( ) 2 −1 = 1− 2 9π ⎛ 9π ⎞ 1 − cos ⎜ 4 ⎟ 9π 4 = tan ⎜ 22. tan ⎟= 9π ⎝ 2 ⎠ 8 1 + cos 4 2 2 2 = ⋅ 2 2 1+ 2 1− ⎛ 2− 2 ⎞ ⎛ 2− 2 ⎞ = ⎜⎜ ⎟⎟ ⎟⎟ ⋅ ⎜⎜ ⎝ 2+ 2 ⎠ ⎝ 2− 2 ⎠ (2 − 2 ) = = 3 2 1− 2 =− 2− 3 4 =− 2− 3 2 15π 1 1 = = 15π 8 ⎛ 15π ⎞ cos ⎜ ⎟ 8 cos ⎜ 4 ⎟ ⎝ 2 ⎠ 1 = 15π 1 + cos 4 2 1 = 2 1+ 2 2 1 = 2+ 2 4 2 = 2+ 2 ⎞ ⎛ 2+ ⎟⋅⎜ ⎟ ⎜ 2+ ⎠ ⎝ ⎛ 2 2+ 2 ⎞ ⎛ 2− ⎟⋅⎜ =⎜ ⎜ 2 + 2 ⎟ ⎜⎝ 2 − ⎝ ⎠ ⎛ 2 =⎜ ⎜ 2+ 2 ⎝ 2 2 2− 2 2 = = 2 −1 ( 2 2− 2 ( = 2− 2 = −1 + 2 ) ) 2⎞ ⎟ 2 ⎟⎠ 2⎞ ⎟ 2 ⎟⎠ 2+ 2 2 2+ 2 ⎛ 330° ⎞ 23. cos165° = cos ⎜ ⎟ ⎝ 2 ⎠ =− =− 1 + cos 330° 2 1+ 3 2 = − 2+ 3 = − 2+ 3 2 4 2 267 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 26. csc 1 7π 1 = = ⎛ 7π ⎞ 8 sin 7 π ⎜ ⎟ 8 sin ⎜ 4 ⎟ ⎝ 2 ⎠ 1 = 7π 1 − cos 4 2 1 = 2 1− 2 2 1 = 2− 2 4 2 = 2− 2 ⎛ ⎞ ⎛ 2− 2 =⎜ ⎟⋅⎜ ⎜ 2− 2 ⎟ ⎜ 2− ⎝ ⎠ ⎝ ⎛2 2− 2 ⎞ ⎛2+ ⎟⋅⎜ =⎜ ⎜ 2 − 2 ⎟ ⎜⎝ 2 + ⎝ ⎠ = ( 2 2+ 2 ( = 2+ 2 ) ) 29. θ lies in quadrant II. Since x 2 + y 2 = 5 , r = 5 . Now, the point (a, 2) is on the circle, so a 2 + 22 = 5 a 2 = 5 − 22 a = − 5 − 2 2 = − 1 = −1 (a is negative because θ lies in quadrant II.) Thus, sin θ = a −1 5 = =− . Thus, r 5 5 f ( 2θ ) = sin ( 2θ ) = 2sin θ cos θ cos θ = ⎛2 5⎞ ⎛ 5⎞ 20 4 = 2 ⋅ ⎜⎜ =− ⎟⎟ ⋅ ⎜⎜ − ⎟⎟ = − 25 5 ⎝ 5 ⎠ ⎝ 5 ⎠ 30. From the solution to Problem 29, we have 2 5 5 and cos θ = − . sin θ = 5 5 2⎞ ⎟ 2 ⎟⎠ Thus, g ( 2θ ) = cos ( 2θ ) = cos 2 θ − sin 2 θ 2⎞ ⎟ 2 ⎟⎠ 2 2− 2 2 2− 2 31. Note: Since θ lies in quadrant II, quadrant I. Therefore, cos ⎛ π⎞ 1 − cos ⎜ − ⎟ ⎝ 4⎠ =− 2 =− θ 2 θ 2 must lie in is positive. From the solution to Problem 29, we have cos θ = − ⎛− 5⎞ 1 + ⎜⎜ ⎟⎟ ⎝ 5 ⎠ = 2 ⎛ 3π ⎞ ⎜− ⎟ ⎛ 3π ⎞ 28. cos ⎜ − ⎟ = cos ⎜ 4 ⎟ ⎝ 2 ⎠ ⎝ 8 ⎠ ⎛ 3π ⎞ 1 + cos ⎜ − ⎟ ⎝ 4 ⎠ = 2 = = 2− 2 = 4 5 . 5 θ 1 + cos θ ⎛θ ⎞ Thus, g ⎜ ⎟ = cos = 2 2 ⎝2⎠ 2 2 = − 2− 2 = − 2− 2 2 4 2 ⎛ 2⎞ 1 + ⎜⎜ − ⎟ 2 ⎟⎠ ⎝ = = 2 2 ⎛ 5⎞ ⎛2 5⎞ = ⎜⎜ − ⎟⎟ − ⎜⎜ ⎟⎟ ⎝ 5 ⎠ ⎝ 5 ⎠ 5 20 15 3 = − =− =− 25 25 25 5 ⎛ π⎞ ⎜− ⎟ ⎛ π⎞ 27. sin ⎜ − ⎟ = sin ⎜ 4 ⎟ ⎝ 2 ⎠ ⎝ 8⎠ 1− b 2 2 5 = = and r 5 5 2− 2 2 = 5− 5 5 2 5− 5 10 ( 10 5 − 5 ) 10 268 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.5: Double-angle and Half-angle Formulas 32. Note: Since θ lies in quadrant II, quadrant I. Therefore, sin θ 2 θ 2 34. From the solution to Problem 29, we have 2 5 5 and cos θ = − . Thus, sin θ = 5 5 ⎛− 5⎞ 1 − ⎜⎜ ⎟⎟ θ 1 − cos θ ⎛θ ⎞ ⎝ 5 ⎠ h ⎜ ⎟ = tan = = 2 sin θ 2 5 ⎝2⎠ 5 5+ 5 = 5 2 5 5 5+ 5 = 2 5 must lie in is positive. From the solution to Problem 29, we have cos θ = − 5 . 5 θ 1 − cos θ ⎛θ ⎞ Thus, f ⎜ ⎟ = sin = 2 2 ⎝2⎠ ⎛− 5⎞ 1 − ⎜⎜ ⎟ 5 ⎟⎠ ⎝ = 2 = = = 5+ 5 5 2 = 5+ 5 10 ( 10 5 + 5 ) 10 ⎛ 1 ⎞ r = 1 = 1 . Now, the point ⎜ − , b ⎟ is on the ⎝ 4 ⎠ circle, so 2 ⎛ 1⎞ 2 ⎜− ⎟ +b =1 ⎝ 4⎠ a = − 5 − 2 2 = − 1 = −1 (a is negative because θ lies in quadrant II.) b 2 = −2 . Thus, tan θ = = a −1 h ( 2θ ) = tan ( 2θ ) 1 − ( −2 ) 2 = 5 35. α lies in quadrant III. Since x 2 + y 2 = 1 , a 2 = 5 − 22 = 5 5 5 +5 10 5 +1 1+ 5 = = 2 2 a 2 + 22 = 5 2 tan θ 1 − tan 2 θ 2 ( −2 ) 2 5 ⋅ = 33. θ lies in quadrant II. Since x 2 + y 2 = 5 , r = 5 . Now, the point (a, 2) is on the circle, so = 5+ 5 ⎛ 1⎞ b2 = 1 − ⎜ − ⎟ ⎝ 4⎠ 2 2 15 15 ⎛ 1⎞ b = − 1− ⎜ − ⎟ = − =− 16 4 ⎝ 4⎠ (b is negative because α lies in quadrant III.) 1 − 1 a Thus, cos α = = 4 = − and r 1 4 15 − b 4 = − 15 . Thus, sin α = = r 1 4 2 g ( 2α ) = cos ( 2α ) = cos α − sin 2 α −4 −4 4 = = 1 − 4 −3 3 2 2 ⎛ 1 ⎞ ⎛ 15 ⎞ = ⎜ − ⎟ − ⎜⎜ ⎟ ⎝ 4 ⎠ ⎝ 4 ⎟⎠ 1 15 14 7 = − =− =− 16 16 16 8 269 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 36. From the solution to Problem 35, we have 15 1 and cos α = − . Thus, sin α = − 4 4 f ( 2α ) = sin ( 2α ) 39. From the solution to Problem 35, we have 15 1 and cos α = − . Thus, sin α = − 4 4 α 1 − cos α ⎛α ⎞ h ⎜ ⎟ = tan = 2 sin α ⎝2⎠ = 2sin α cos α ⎛ 1⎞ 1− ⎜ − ⎟ ⎝ 4⎠ = 15 − 4 5 = 4 15 − 4 5 =− 15 ⎛ 15 ⎞ ⎛ 1 ⎞ 15 = 2 ⋅ ⎜⎜ − ⎟⎟ ⋅ ⎜ − ⎟ = 8 ⎝ 4 ⎠ ⎝ 4⎠ 37. Note: Since α lies in quadrant III, quadrant II. Therefore, sin α 2 α 2 must lie in is positive. From the solution to Problem 35, we have cos α = − α ⎛α ⎞ Thus, f ⎜ ⎟ = sin 2 ⎝2⎠ = 1 . 4 1 − cos α 2 ⎛ 1⎞ 1− ⎜ − ⎟ ⎝ 4⎠ = 2 = 5 4 = 5 = 5 ⋅ 2 = 10 = 10 2 8 8 2 16 4 38. Note: Since α lies in quadrant III, quadrant II. Therefore, cos α 2 α 2 15 ⋅ =− 5 15 15 =− 15 3 15 15 40. α lies in quadrant III. Since x 2 + y 2 = 1 , ⎛ 1 ⎞ r = 1 = 1 . Now, the point ⎜ − , b ⎟ is on the ⎝ 4 ⎠ circle, so 2 ⎛ 1⎞ 2 ⎜− ⎟ +b =1 ⎝ 4⎠ must lie in is negative. From ⎛ 1⎞ b2 = 1 − ⎜ − ⎟ ⎝ 4⎠ 1 the solution to Problem 35, we have cos α = − . 4 Thus, α ⎛α ⎞ g ⎜ ⎟ = cos 2 2 ⎝ ⎠ =− 5 =− 2 2 15 15 ⎛ 1⎞ b = − 1− ⎜ − ⎟ = − =− 16 4 ⎝ 4⎠ (b is negative because α lies in quadrant III.) 1 + cos α 2 15 − b 4 = 15 . Thus, tan θ = = 1 a − 4 h ( 2α ) = tan ( 2α ) ⎛ 1⎞ 1+ ⎜ − ⎟ ⎝ 4⎠ =− 2 = 3 3 3 2 6 6 =− 4 =− =− ⋅ =− =− 2 8 8 2 16 4 = 2 tan α 1 − tan 2 α ( 15 ) 1 − ( 15 ) 2 2 = 2 15 2 15 15 = =− 1 − 15 −14 7 270 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.5: Double-angle and Half-angle Formulas ( 41. sin 4 θ = sin 2 θ ) 45. We use the result of problem 42 to help solve this problem: sin ( 5θ ) = sin(4θ + θ ) 2 ⎛ 1 − cos ( 2θ ) ⎞ =⎜ ⎟ 2 ⎝ ⎠ 1 = ⎡⎣1 − 2 cos ( 2θ ) + cos 2 ( 2θ ) ⎤⎦ 4 1 1 1 = − cos ( 2θ ) + cos 2 ( 2θ ) 4 2 4 1 1 1 ⎛ 1 + cos ( 4θ ) ⎞ = − cos ( 2θ ) + ⎜ ⎟ 4 2 4⎝ 2 ⎠ 1 1 1 1 = − cos ( 2θ ) + + cos ( 4θ ) 4 2 8 8 3 1 1 = − cos ( 2θ ) + cos ( 4θ ) 8 2 8 2 = sin ( 4θ ) cosθ + cos ( 4θ ) sin θ ( ( ) ( ) = cos θ 4sin θ − 8sin θ + 1 − 2sin 2 ( 2θ ) sin θ 2 ( 3 )( = 1 − sin θ 4sin θ − 8sin θ 2 3 ( ) 2 ) + sin θ 1 − 8sin 2 θ cos 2 θ ) + sin θ 1 − 2 ( 2sin θ cosθ ) = 4sin θ − 12sin θ + 8sin θ 3 5 ( = 4sin θ − 12sin θ + 8sin θ 3 5 ( + sin θ − 8sin 3 θ 1 − sin 2 θ ) = 5sin θ − 12sin θ + 8sin θ − 8sin θ + 8sin θ 3 42. sin ( 4θ ) = sin ( 2 ⋅ 2θ ) 5 3 5 = 16sin 5 θ − 20sin 3 θ + 5sin θ = 2sin ( 2θ ) cos ( 2θ ) ( = 2(2sin θ cos θ ) 1 − 2sin 2 θ ( = 4sin θ cos θ 1 − 2sin 2 θ ) 46. We use the results from problems 42 and 44 to help solve this problem: cos(5θ ) = cos(4θ + θ ) ) ( = cos ( 4θ ) cos θ − sin ( 4θ ) sin θ ) = ( cos θ ) ⎡ 4sin θ 1 − 2sin 2 θ ⎤ ⎣ ⎦ ( = ( cos θ ) 4sin θ − 8sin 3 θ ( ) ( )) ( − cos θ 4sin θ − 8sin 3 θ sin θ = 8cos θ − 8cos θ + cos θ 5 = cos ( 2θ ) cos θ − sin ( 2θ ) sin θ 3 − 4 cos θ sin 2 θ + 8cos θ sin 4 θ ) = 2 cos 2 θ − 1 cos θ − 2sin θ cos θ sin θ = 8cos5 θ − 8cos3 θ + cos θ − 4 cos θ (1 − cos 2 θ ) + 8cos θ (1 − cos 2 θ ) 2 = 2 cos3 θ − cos θ − 2sin 2 θ cos θ ( ) = 8cos 4 θ − 8cos 2 θ + 1 cos θ 43. cos(3θ ) = cos(2θ + θ ) ( ) = cosθ 4sin θ − 8sin 3 θ cosθ + cos ( 2(2θ ) ) sin θ ) = 8cos5 θ − 8cos3 θ + cos θ − 4 cos θ = 2 cos3 θ − cos θ − 2 1 − cos 2 θ cos θ + 4 cos3 θ + 8cos θ (1 − 2 cos 2 θ + cos 4 θ ) = 2 cos3 θ − cos θ − 2 cos θ + 2 cos3 θ = 8cos5 θ − 4 cos3 θ − 3cos θ = 4 cos3 θ − 3cos θ + 8cos θ − 16 cos3 θ + 8cos5 θ 44. cos ( 4θ ) = cos ( 2 ⋅ 2θ ) = 16 cos5 θ − 20 cos3 θ + 5cos θ = 2 cos (2θ ) − 1 2 ( = 2 ( 4 cos ) ( 47. cos 4 θ − sin 4 θ = cos 2 θ + sin 2 θ 2 = 2 2 cos 2 θ − 1 − 1 4 )( cos 2 θ − sin 2 θ ) = 1 ⋅ cos ( 2θ ) θ − 4 cos 2 θ + 1) − 1 = cos ( 2θ ) = 8cos 4 θ − 8cos 2 θ + 2 − 1 = 8cos 4 θ − 8cos 2 θ + 1 271 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry cos θ sin θ − cot θ − tan θ sin θ cos θ = 48. cot θ + tan θ cos θ + sin θ sin θ cos θ cos 2 θ − sin 2 θ θ cos θ = sin cos 2 θ + sin 2 θ sin θ cos θ cos 2 θ − sin 2 θ sin θ cos θ = ⋅ sin θ cos θ cos 2 θ + sin 2 θ 2 2 cos θ − sin θ = 1 = cos ( 2θ ) 49. cot(2θ ) = 50. cot(2θ ) = 1 1 = 2 tan θ tan(2θ ) 1 − tan 2 θ 1 − tan 2 θ = 2 tan θ 1 1− 2 cot θ = 2 cot θ cot 2 θ − 1 2 = cot θ 2 cot θ cot 2 θ − 1 cot θ = ⋅ 2 cot 2 θ 2 cot θ − 1 = 2 cot θ 51. sec(2θ ) = 1 1 = cos(2θ ) 2 cos 2 θ − 1 1 = 2 −1 sec 2 θ 1 = 2 − sec 2 θ sec 2 θ sec 2 θ = 2 − sec 2 θ 52. csc ( 2θ ) = 1 1 = sin ( 2θ ) 2sin θ cos θ 1 1 1 = ⋅ ⋅ 2 cos θ sin θ 1 = sec θ csc θ 2 53. cos 2 (2u ) − sin 2 (2u ) = cos [ 2(2u ) ] = cos(4u ) 54. (4sin u cos u )(1 − 2sin 2 u ) = 2(2sin u cos u )(1 − 2sin 2 u ) = 2sin 2u cos 2u = sin ( 2 ⋅ 2u ) = sin ( 4u ) 55. 1 1 = 2 tan θ tan(2θ ) 1 − tan 2 θ 1 − tan 2 θ = 2 tan θ 1⎛ 1 tan 2 θ ⎞ = ⎜ − ⎟ 2 ⎝ tan θ tan θ ⎠ 1 = ( cot θ − tan θ ) 2 cos(2θ ) cos 2 θ − sin 2 θ = 1 + sin(2θ ) 1 + 2sin θ cos θ (cos θ − sin θ )(cos θ + sin θ ) = cos 2 θ + sin 2 θ + 2sin θ cos θ (cos θ − sin θ )(cos θ + sin θ ) = (cos θ + sin θ )(cos θ + sin θ ) cos θ − sin θ sin θ = cos θ + sin θ sin θ cos θ − sin θ = cos θ + sin θ cos θ sin θ − = sin θ sin θ cos θ sin θ + sin θ sin θ cot θ − 1 = cot θ + 1 272 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.5: Double-angle and Half-angle Formulas 1 4sin 2 θ cos 2 θ 4 1 2 = ( 2sin θ cos θ ) 4 2 1 = ⎡⎣sin ( 2θ ) ⎤⎦ 4 1 ⎡1 − cos ( 4θ ) ⎤ = ⋅⎢ ⎥ 4 ⎣ 2 ⎦ 1 = ⎡⎣1 − cos ( 4θ ) ⎤⎦ 8 56. sin 2 θ cos 2 θ = ( ) 60. tan v 1 − cos v 1 cos v = = − = csc v − cot v 2 sin v sin v sin v 1 − cos θ 1 + cos θ 61. 1 − cos θ θ 1 + tan 2 1+ 2 1 + cos θ 1 + cos θ − (1 − cos θ ) 1 + cos θ = 1 + cos θ + 1 − cos θ 1 + cos θ 2 cos θ 1 = + cos θ 2 1 + cos θ 2 cos θ 1 + cos θ = ⋅ 1 + cos θ 2 = cos θ 1 − tan 2 1 1 2 ⎛θ ⎞ = = 57. sec 2 ⎜ ⎟ = ⎝ 2 ⎠ cos 2 ⎛ θ ⎞ 1 + cos θ 1 + cos θ ⎜ ⎟ 2 ⎝2⎠ 1 1 2 ⎛θ ⎞ = = 58. csc 2 ⎜ ⎟ = ⎝ 2 ⎠ sin 2 ⎛ θ ⎞ 1 − cos θ 1 − cos θ ⎜ ⎟ 2 ⎝2⎠ 62. 1 1 ⎛v⎞ 59. cot 2 ⎜ ⎟ = = 1 cos − v v 2 ⎝ ⎠ tan 2 ⎛ ⎞ ⎜ ⎟ 1 + cos v ⎝2⎠ 1 + cos v = 1 − cos v 1 1+ v sec = 1 1− sec v sec v + 1 = sec v sec v − 1 sec v sec v + 1 sec v = ⋅ sec v sec v − 1 sec v + 1 = sec v − 1 θ 2 = 1− sin 3 θ + cos3 θ sin θ + cos θ = ( sin θ + cos θ ) ( sin 2 θ − sin θ cos θ + cos 2 θ ) sin θ + cos θ = sin θ − sin θ cos θ + cos 2 θ 1 = sin 2 θ + cos 2 θ − ( 2sin θ cos θ ) 2 1 = 1 − sin ( 2θ ) 2 2 ( 63. ) sin(3θ ) cos(3θ ) sin ( 3θ ) cos θ − cos ( 3θ ) sin θ − = sin θ cos θ sin θ cos θ sin(3θ − θ ) = sin θ cos θ sin 2θ = sin θ cos θ 2sin θ cos θ = sin θ cos θ =2 273 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry cos θ + sin θ cos θ − sin θ ( cos θ + sin θ ) − ( cos θ − sin θ ) − = cos θ − sin θ cos θ + sin θ ( cos θ − sin θ )( cos θ + sin θ ) 2 64. = 2 ( cos 2 θ + 2 cos θ sin θ + sin 2 θ − cos 2 θ − 2 cos θ sin θ + sin 2 θ ) cos θ − sin θ cos 2 θ + 2 cos θ sin θ + sin 2 θ − cos 2 θ + 2 cos θ sin θ − sin 2 θ = cos 2 θ − sin 2 θ 4 cos θ sin θ = cos ( 2θ ) = = 2 2 2(2sin θ cos θ ) cos ( 2θ ) 2sin ( 2θ ) cos ( 2θ ) = 2 tan ( 2θ ) 65. tan ( 3θ ) = tan(2θ + θ ) 2 tan θ 2 tan θ + tan θ − tan 3 θ + tan θ 2 tan ( 2θ ) + tan θ 3 tan θ − tan 3 θ 1 − tan 2 θ 3 tan θ − tan 3 θ 1 − tan 2 θ = = 1 − tan θ = = ⋅ = 2 2 2 2 1 − tan ( 2θ ) tan θ 1 − 2 tan θ ⋅ tan θ 1 − tan θ − 2 tan θ 1 − tan θ 1 − 3 tan θ 1 − 3 tan 2 θ 2 1 − tan θ 1 − tan 2 θ 66. tan θ + tan(θ + 120º ) + tan(θ + 240º ) tan θ + tan120º tan θ + tan 240º = tan θ + + 1 − tan θ tan120º 1 − tan θ tan 240º tan θ − 3 tan θ + 3 = tan θ + + 1 − tan θ − 3 1 − tan θ 3 ( = tan θ + = ( ) tan θ − 3 1 + 3 tan θ + ) ( ( ) tan θ + 3 1 − 3 tan θ )( ) ( )( tan θ 1 − 3 tan θ + tan θ − 3 1 − 3 tan θ + tan θ + 3 1 + 3 tan θ 2 ) 1 − 3 tan θ tan θ − 3 tan 3 θ + tan θ − 3 tan 2 θ − 3 + 3 tan θ + tan θ + 3 tan 2 θ + 3 + 3 tan θ = 1 − 3 tan 2 θ −3 tan 3 θ + 9 tan θ = 1 − 3 tan 2 θ = 2 ( 3 3 tan θ − tan 3 θ ) 1 − 3 tan θ = 3 tan ( 3θ ) (from Problem 65) 2 274 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.5: Double-angle and Half-angle Formulas 67. 1 ⋅ ln 1 − cos ( 2θ ) − ln 2 2 1 1 − cos 2θ = ⋅ ln 2 2 ( ⎛ 1 − cos ( 2θ ) = ln ⎜ ⎜ 2 ⎝ ( = ln sin 2 θ 1/ 2 ) 1/ 2 ⎡ ⎛ 3 ⎞⎤ 73. tan ⎢ 2 cos −1 ⎜ − ⎟ ⎥ ⎝ 5 ⎠⎦ ⎣ ⎛ 3⎞ Let α = cos −1 ⎜ − ⎟ . α lies in quadrant II. ⎝ 5⎠ 3 π ≤α ≤ π. Then cos α = − , 5 2 5 sec α = − 3 ) ⎞ ⎟ ⎟ ⎠ tan α = − sec2 α − 1 = ln sin θ 2 68. 1 ⋅ ln 1 + cos ( 2θ ) − ln 2 2 1 1 + cos 2θ = ⋅ ln 2 2 ( ⎛ 1 + cos ( 2θ ) = ln ⎜ ⎜ 2 ⎝ ( = ln cos 2 θ 1/ 2 ) 1/ 2 25 16 4 ⎛ 5⎞ = − ⎜ − ⎟ −1 = − −1 = − =− 9 9 3 ⎝ 3⎠ ) ⎡ 2 tan α ⎛ 3 ⎞⎤ tan ⎢ 2 cos −1 ⎜ − ⎟ ⎥ = tan 2α = 1 − tan 2 α ⎝ 5 ⎠⎦ ⎣ ⎛ 4⎞ 2⎜ − ⎟ 3⎠ = ⎝ 2 ⎛ 4⎞ 1− ⎜ − ⎟ ⎝ 3⎠ 8 − 3 ⋅9 = 16 9 1− 9 −24 = 9 − 16 −24 = −7 24 = 7 ⎞ ⎟ ⎟ ⎠ = ln cos θ 1⎞ π 3 ⎛ ⎛ π⎞ 69. sin ⎜ 2sin −1 ⎟ = sin ⎜ 2 ⋅ ⎟ = sin = 2⎠ 3 2 ⎝ ⎝ 6⎠ ⎡ 3⎤ 2π 3 ⎛ π⎞ = 70. sin ⎢ 2sin −1 ⎥ = sin ⎜ 2 ⋅ ⎟ = sin 2 ⎦ 3 2 ⎝ 3⎠ ⎣ 3⎞ 3⎞ ⎛ ⎛ 71. cos ⎜ 2sin −1 ⎟ = 1 − 2sin 2 ⎜ sin −1 ⎟ 5 5 ⎝ ⎠ ⎝ ⎠ ⎛3⎞ = 1− 2⎜ ⎟ ⎝5⎠ 18 = 1− 25 7 = 25 2 3⎞ ⎛ 74. tan ⎜ 2 tan −1 ⎟ = 4⎠ ⎝ 3⎞ ⎛ 2 tan ⎜ tan −1 ⎟ 4⎠ ⎝ 2⎛ −1 3 ⎞ 1 − tan ⎜ tan ⎟ 4⎠ ⎝ ⎛3⎞ 2⋅⎜ ⎟ ⎝4⎠ = 2 ⎛3⎞ 1− ⎜ ⎟ ⎝4⎠ 3 16 = 2 ⋅ 9 16 1− 16 24 = 16 − 9 24 = 7 4⎞ 4⎞ ⎛ ⎛ 72. cos ⎜ 2 cos −1 ⎟ = 2 cos 2 ⎜ cos −1 ⎟ − 1 5 5 ⎝ ⎠ ⎝ ⎠ 2 ⎛4⎞ = 2 ⎜ ⎟ −1 ⎝5⎠ 32 = −1 25 7 = 25 275 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 4⎞ ⎛ 75. sin ⎜ 2 cos −1 ⎟ 5 ⎝ ⎠ −1 4 Let α = cos . α is in quadrant I. 5 4 π Then cos α = , 0 ≤ α ≤ . 5 2 3⎞ ⎛1 78. cos 2 ⎜ sin −1 ⎟ 2 5 ⎝ ⎠ −1 3 Let α = sin . α is in quadrant I. Then 5 3 π sin α = , 0 < α < . 5 2 sin α = 1 − cos 2 α 2 16 ⎛4⎞ = 1− ⎜ ⎟ = 1− = 5 25 ⎝ ⎠ cos α = 1 − sin 2 α 2 9 16 4 ⎛3⎞ = 1− ⎜ ⎟ = 1− = = 5 25 25 5 ⎝ ⎠ 9 3 = 25 5 3⎞ ⎛1 ⎛1 ⎞ cos 2 ⎜ sin −1 ⎟ = cos 2 ⎜ ⋅ α ⎟ 5⎠ ⎝2 ⎝2 ⎠ 4⎞ ⎛ sin ⎜ 2 cos −1 ⎟ = sin 2α 5⎠ ⎝ 3 4 24 = 2sin α cos α = 2 ⋅ ⋅ = 5 5 25 1 + cos α = = 2 ⎡ ⎛ 4 ⎞⎤ 76. cos ⎢ 2 tan −1 ⎜ − ⎟ ⎥ ⎝ 3 ⎠⎦ ⎣ ⎛ 4⎞ Let α = tan −1 ⎜ − ⎟ . α is in quadrant IV. ⎝ 3⎠ 4 π Then tan α = − , − < α < 0 . 3 2 3⎞ ⎛ 79. sec ⎜ 2 tan −1 ⎟ 4⎠ ⎝ ⎛3⎞ Let α = tan −1 ⎜ ⎟ . α is in quadrant I. ⎝4⎠ 3 π Then tan α = , 0 < α < . 4 2 sec α = tan 2 α + 1 2 16 ⎛ 4⎞ = ⎜ − ⎟ +1 = +1 = 3 9 ⎝ ⎠ cos α = 4 9 5=5= 9 2 2 10 1+ sec α = tan 2 α + 1 25 5 = 9 3 2 9 25 5 ⎛3⎞ = ⎜ ⎟ +1 = +1 = = 16 16 4 ⎝4⎠ 3 5 cos α = ⎡ ⎛ 4 ⎞⎤ cos ⎢ 2 tan −1 ⎜ − ⎟ ⎥ = cos 2α = 2 cos 2 α − 1 ⎝ 3 ⎠⎦ ⎣ 2 ⎛3⎞ = 2 ⎜ ⎟ −1 ⎝5⎠ 18 = −1 25 7 =− 25 4 5 3⎞ 1 ⎛ sec ⎜ 2 tan −1 ⎟ = sec ( 2α ) = 4⎠ cos ( 2α ) ⎝ 1 = 2 cos 2 α − 1 1 = 2 ⎛4⎞ 2 ⎜ ⎟ −1 ⎝5⎠ 1 = 32 −1 25 1 = 7 25 25 = 7 3⎞ ⎛ 1 − cos ⎜ cos −1 ⎟ 1 − 3 3⎞ 5⎠ ⎛1 ⎝ 5 77. sin 2 ⎜ cos −1 ⎟ = = 2 5 2 2 ⎝ ⎠ 2 =5 2 1 = 5 276 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.5: Double-angle and Half-angle Formulas b. Here we have D = 15 and W = 6.5 . ⎡ ⎛ 3 ⎞⎤ 80. csc ⎢ 2sin −1 ⎜ − ⎟ ⎥ ⎝ 5 ⎠⎦ ⎣ ⎛ 3⎞ Let α = sin −1 ⎜ − ⎟ . α is in quadrant IV. ⎝ 5⎠ 3 π Then sin α = − , − ≤ α ≤ 0 . 5 2 ⎛ 3⎞ cos α = 1 − sin 2 α = 1 − ⎜ − ⎟ ⎝ 5⎠ = 1− 6.5 = 2 (15 ) tan 2 13 tan = 2 60 θ 13 = tan −1 2 60 −1 13 θ = 2 tan ≈ 24.45° 60 θ 2 9 25 82. = 1 ⎡ ⎛ 3 ⎞⎤ csc ⎢ 2sin −1 ⎜ − ⎟ ⎥ = csc ( 2α ) = sin ( 2α ) ⎝ 5 ⎠⎦ ⎣ 1 = 2sin α cos α 1 = ⎛ 3 ⎞⎛ 4 ⎞ 2 ⎜ − ⎟⎜ ⎟ ⎝ 5 ⎠⎝ 5 ⎠ 1 = 24 − 25 25 =− 24 D= ( ) ( sin θ cosθ ) + I xy ( cos2 θ − sin 2 θ ) ( ) 12 sin 2θ + I xy cos 2θ = Ix − I y 4 = 5 81. a. ( I x sin θ cos θ − I y sin θ cos θ + I xy cos 2 θ − sin 2 θ = Ix − I y 16 25 = 83. a. Ix − I y 2 sin 2θ + I xy cos 2θ v02 2 cos θ (sin θ − cos θ ) 16 v2 2 (cos θ sin θ − cos 2 θ ) = 0 16 v2 2 1 = 0 ⋅ (2 cos θ sin θ − 2 cos 2 θ ) 16 2 v2 2 ⎡ ⎛ 1 + cos 2θ ⎞ ⎤ = 0 sin 2θ − 2 ⎜ ⎟⎥ ⎢ 32 ⎣ 2 ⎝ ⎠⎦ R(θ ) = v02 2 ⎡sin ( 2θ ) − 1 − cos ( 2θ ) ⎤⎦ 32 ⎣ v2 2 = 0 ⎡sin ( 2θ ) − cos ( 2θ ) − 1⎦⎤ 32 ⎣ = 1W 2 csc θ − cot θ W = 2 D ( csc θ − cot θ ) b. Let Y1 = 1 cos θ 1 − cos θ csc θ − cot θ = − = sin θ sin θ sin θ = tan 20 θ 2 Therefore, W = 2 D tan θ 2 θ 322 2 [sin(2 x) − cos(2 x)] 32 . 45° 0 90° 277 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. ) Chapter 3: Analytic Trigonometry c. Using the MAXIMUM feature on the calculator: c. 20 The largest value of the sine function is 1. Solve: sin 2θ = 1 2θ = 45° θ= 90° 0 R has the largest value when θ = 67.5º . d. 1 1 84. y = sin(2π x) + sin(4π x) 2 4 1 1 = sin(2π x) + sin(2 ⋅ 2π x) 2 4 1 1 = sin(2π x) + [ 2sin(2π x) cos(2π x) ] 2 4 1 1 = sin(2π x) + [sin(2π x) cos(2π x) ] 2 2 1 1 = sin(2π x) + ⎡⎣sin(2π x) ⋅ 2 cos 2 (π x) − 1 ⎤⎦ 2 2 1 1 = sin(2π x) + sin(2π x) cos 2 (π x) − sin(2π x) 2 2 = sin(2π x) cos 2 (π x) ( 85. Let b represent the base of the triangle. θ h θ b/2 cos = sin = 2 s s 2 h = s cos θ b = 2 s sin 2 ) θ 2 b. 2 cos θ sin θ = 2sin θ cos θ = sin(2θ ) π 2 π 2 y = sin = = 4 2 4 2 The dimensions of the largest rectangle are 2 . 2 by 2 x = cos cos 2 θ − sin 2 θ cos 2 θ + sin 2 θ cos 2 θ − sin 2 θ cos 2 θ = 2 cos θ + sin 2 θ cos 2 θ 1 − tan 2 θ 4 = ⋅ 1 + tan 2 θ 4 4 − 4 tan 2 θ = 4 + 4 tan 2 θ y x = y; cos θ = = x 1 1 A = 2 xy = 2 cos θ sin θ = 45° 88. cos ( 2θ ) = cos 2 θ − sin 2 θ = θ a. 4 2sin θ cos 2 θ ⋅ cos θ 1 sin θ 2⋅ = cos θ 1 cos 2 θ 2 tan θ = sec2 θ 2 tan θ 4 = ⋅ 1 + tan 2 θ 4 4(2 tan θ ) = 4 + (2 tan θ ) 2 4x = 4 + x2 = s 2 sin cos 2 2 1 2 = s sin θ 2 86. sin θ = 2 π 87. sin ( 2θ ) = 2sin θ cos θ = 1 A = b⋅h 2 1 ⎛ θ ⎞⎛ θ⎞ = ⋅ ⎜ 2s sin ⎟⎜ s cos ⎟ 2 ⎝ 2 ⎠⎝ 2⎠ θ π = = 4 − ( 2 tan θ ) 2 4 + ( 2 tan θ ) 2 4 − x2 4 + x2 278 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.5: Double-angle and Half-angle Formulas 89. 1 1 ⋅ sin 2 x + C = − ⋅ cos ( 2 x ) 2 4 1 1 C = − ⋅ cos ( 2 x ) − ⋅ sin 2 x 4 2 1 = − ⋅ cos ( 2 x ) + 2sin 2 x 4 1 = − ⋅ 1 − 2sin 2 x + 2sin 2 x 4 1 = − ⋅ (1) 4 1 =− 4 ( ) ( 90. ⎛α ⎞ 92. If z = tan ⎜ ⎟ , then ⎝2⎠ ⎛α ⎞ 1 − tan 2 ⎜ ⎟ 1− z2 ⎝2⎠ = 1+ z2 2 ⎛α ⎞ 1 + tan ⎜ ⎟ ⎝2⎠ 1 − cos α 1− + cos α 1 = 1 − cos α 1+ 1 + cos α 1 + cos α − (1 − cos α ) 1 + cos α = 1 + cos α + 1 − cos α 1 + cos α 1 + cos α − (1 − cos α ) = 1 + cos α + 1 − cos α 2 cos α = 2 = cos α ) 1 1 ⋅ cos 2 x + C = ⋅ cos ( 2 x ) 2 4 1 1 C = ⋅ cos ( 2 x ) − ⋅ cos 2 x 4 2 1 1 2 = ⋅ 2 cos x − 1 − cos 2 x 4 2 1 1 1 = cos 2 x − − cos 2 x 2 4 2 1 =− 4 ( ) 93. ⎛α ⎞ 91. If z = tan ⎜ ⎟ , then ⎝2⎠ ⎛α ⎞ 2 tan ⎜ ⎟ 2z ⎝2⎠ = 2 1+ z ⎛α ⎞ 1 + tan 2 ⎜ ⎟ ⎝2⎠ ⎛α ⎞ 2 tan ⎜ ⎟ ⎝2⎠ = ⎛α ⎞ sec2 ⎜ ⎟ ⎝2⎠ ⎛α ⎞ ⎛α ⎞ = 2 tan ⎜ ⎟ cos 2 ⎜ ⎟ ⎝2⎠ ⎝2⎠ f ( x) = sin 2 x = 1 − cos ( 2 x ) 2 Starting with the graph of y = cos x , compress horizontally by a factor of 2, reflect across the xaxis, shift 1 unit up, and shrink vertically by a factor of 2. 94. g ( x) = cos 2 x = 1 + cos ( 2 x ) 2 Starting with the graph of y = cos x , compress horizontally by a factor of 2, reflect across the xaxis, shift 1 unit up, and shrink vertically by a factor of 2. ⎛α ⎞ 2sin ⎜ ⎟ ⎝ 2 ⎠ ⋅ cos 2 ⎛ α ⎞ = ⎜ ⎟ ⎛α ⎞ ⎝2⎠ cos ⎜ ⎟ ⎝2⎠ ⎛α ⎞ ⎛α ⎞ = 2sin ⎜ ⎟ cos ⎜ ⎟ 2 ⎝ ⎠ ⎝2⎠ ⎡ ⎛ α ⎞⎤ = sin ⎢ 2 ⎜ ⎟ ⎥ ⎣ ⎝ 2 ⎠⎦ = sin α 279 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry π ⎛π⎞ 1 + cos ⎜4⎟ π 4 96. cos = cos ⎜ ⎟ = ⎝2⎠ 8 2 π ⎛ π ⎞ 1 − cos ⎜ 12 ⎟ π 12 = sin ⎜ ⎟ = 95. sin 24 ⎝ 2 ⎠ 2 ( ⎛1 1− ⎜ ⎝4 = = = 8−2 ( ) ⎞ 6+ 2 ⎟ ⎠ = 1−1 2 2 8 6+ 2 16 ( ( 2 4− )= 6+ 2 4 )) 8−2 ( ( 6+ 2 6+ 2 ) = ) = = 8+2 ( ( 2 4− 6 − 2 4 = ) ⎞ 6+ 2 ⎟ ⎠ = 1+1 2 2 8 6+ 2 16 ( 2 4+ 6 + 2 4 )= )= 8+2 ( ( 6+ 2 2+ 2 4 2+ 2 2 π ⎛π⎞ 1 − cos ⎜8⎟ π 8 sin = sin ⎜ ⎟ = 16 ⎝2⎠ 2 π ⎛ π ⎞ 1 + cos ⎜ 12 ⎟ π 12 cos = cos ⎜ ⎟ = 24 ⎝ 2 ⎠ 2 ⎛1 1+ ⎜ ⎝4 = 2 2 2 = = 4 = 1+ 6+ 2 ) = ) 1− 2+ 2 2 = 2 2− 2+ 2 4 2− 2+ 2 2 π ⎛π⎞ 1 + cos ⎜8⎟ π 8 cos = cos ⎜ ⎟ = 16 ⎝2⎠ 2 4 2 4+ 6 + 2 4 = = 1+ 2+ 2 2 = 2 2+ 2+ 2 4 2+ 2+ 2 2 97. sin 3 θ + sin 3 (θ + 120º ) + sin 3 (θ + 240º ) = sin 3 θ + ( sin θ cos (120º ) + cos θ sin (120º ) ) + ( sin θ cos ( 240º ) + cos θ sin ( 240º ) ) 3 3 3 3 ⎛ 1 ⎞ ⎛ 1 ⎞ 3 3 = sin θ + ⎜⎜ − ⋅ sin θ + ⋅ cos θ ⎟⎟ + ⎜⎜ − ⋅ sin θ − ⋅ cos θ ⎟⎟ 2 2 ⎝ 2 ⎠ ⎝ 2 ⎠ 1 = sin 3 θ + ⋅ − sin 3 θ + 3 3 sin 2 θ cos θ − 9sin θ cos 2 θ + 3 3 cos3 θ 8 1 − sin 3 θ + 3 3 sin 2 θ cos θ + 9sin θ cos 2 θ + 3 3 cos3 θ 8 3 ( ) ( ) 1 3 3 9 3 3 = sin 3 θ − ⋅ sin 3 θ + ⋅ sin 2 θ cos θ − ⋅ sin θ cos 2 θ + ⋅ cos3 θ 8 8 8 8 1 3 3 9 3 3 − ⋅ sin 3 θ − ⋅ sin 2 θ cos θ − ⋅ sin θ cos 2 θ − ⋅ cos3 θ 8 8 8 8 3 9 3 3 = ⋅ sin 3 θ − ⋅ sin θ cos 2 θ = ⋅ ⎡⎣sin 3 θ − 3sin θ 1 − sin 2 θ ⎤⎦ = ⋅ sin 3 θ − 3sin θ + 3sin 3 θ 4 4 4 4 3 3 = ⋅ 4sin 3 θ − 3sin θ = − ⋅ sin ( 3θ ) 4 4 ( ( ) ( ) ) 280 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.6: Product-to-Sum and Sum-to-Product Formulas ⎛ θ⎞ 98. tan θ = tan ⎜ 3 ⋅ ⎟ ⎝ 3⎠ = 3 tan θ 3 − tan 3 1 − 3 tan 1 [cos(3θ − 5θ ) − cos(3θ + 5θ )] 2 1 = ⎡⎣ cos(− 2θ ) − cos ( 8θ ) ⎤⎦ 2 1 = ⎡⎣ cos ( 2θ ) − cos ( 8θ ) ⎤⎦ 2 4. sin(3θ ) sin(5θ ) = θ 2 θ 3 (from problem 65) 3 θ⎛ θ⎞ tan ⎜ 3 − tan 2 ⎟ 3⎝ 3⎠ a tan = 3 2 θ 1 − 3 tan 3 θ θ θ⎛ θ⎞ 3 tan − tan 3 = a tan ⎜ 1 − 3 tan 2 ⎟ 3 3 3⎝ 3⎠ 1 [cos(3θ − 5θ ) + cos(3θ + 5θ )] 2 1 = ⎡⎣ cos(− 2θ ) + cos ( 8θ ) ⎤⎦ 2 1 = ⎡⎣ cos ( 2θ ) + cos ( 8θ ) ⎤⎦ 2 θ 3 − tan 2 3 − tan 3a tan 2 θ 3 − tan θ 3 2 θ 3 2 ( 3a − 1) tan 2 θ 3 θ 3 θ 5. cos(3θ ) cos(5θ ) = θ⎞ ⎛ = a ⎜ 1 − 3 tan 2 ⎟ 3⎠ ⎝ = a − 3a tan 1 [sin(4θ + 6θ ) + sin(4θ − 6θ )] 2 1 = ⎡⎣sin (10θ ) + sin(− 2θ ) ⎤⎦ 2 1 = ⎡⎣sin (10θ ) − sin ( 2θ ) ⎤⎦ 2 6. sin(4θ ) cos(6θ ) = 2θ 3 = a−3 = a−3 1 [cos(θ − 2θ ) − cos(θ + 2θ )] 2 1 = ⎡⎣ cos(−θ ) − cos ( 3θ ) ⎤⎦ 2 1 = ⎡⎣ cos θ − cos ( 3θ ) ⎤⎦ 2 a −3 3 3a − 1 a −3 θ tan = ± 3 3a − 1 tan 2 7. sin θ sin(2θ ) = = 99. Answers will vary. 1 [cos(3θ − 4θ ) + cos(3θ + 4θ )] 2 1 = ⎡⎣ cos(− θ ) + cos ( 7θ ) ⎤⎦ 2 1 = ⎡⎣ cos θ + cos ( 7θ ) ⎤⎦ 2 8. cos(3θ ) cos(4θ ) = Section 3.6 1 [cos(4θ − 2θ ) − cos(4θ + 2θ )] 2 1 = ⎡⎣ cos ( 2θ ) − cos ( 6θ ) ⎤⎦ 2 1. sin(4θ ) sin(2θ ) = 9. sin 1 [cos(4θ − 2θ ) + cos(4θ + 2θ )] 2 1 = ⎡⎣cos(2θ ) + cos ( 6θ ) ⎤⎦ 2 2. cos(4θ ) cos(2θ ) = 3θ θ 1 ⎡ ⎛ 3θ θ ⎞ ⎛ 3θ θ ⎞ ⎤ cos = ⎢sin ⎜ + ⎟ + sin ⎜ − ⎟ ⎥ 2 2 2⎣ ⎝ 2 2⎠ ⎝ 2 2 ⎠⎦ 1 = ⎣⎡sin ( 2θ ) + sin θ ⎦⎤ 2 θ 5θ 1 ⎡ ⎛ θ 5θ ⎞ ⎛ θ 5θ ⎞ ⎤ = sin ⎜ + ⎟ + sin ⎜ − ⎟ ⎥ 10. sin cos 2 2 2 ⎢⎣ ⎝ 2 2 ⎠ ⎝ 2 2 ⎠⎦ 1 = ⎡⎣sin ( 3θ ) + sin(− 2θ ) ⎤⎦ 2 1 = ⎡⎣sin ( 3θ ) − sin ( 2θ ) ⎤⎦ 2 1 [sin(4θ + 2θ ) + sin(4θ − 2θ )] 2 1 = ⎡⎣sin ( 6θ ) + sin ( 2θ ) ⎤⎦ 2 3. sin(4θ ) cos(2θ ) = 281 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry ⎛ 4θ − 2θ ⎞ ⎛ 4θ + 2θ ⎞ 11. sin(4θ ) − sin(2θ ) = 2sin ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ = 2sin θ cos ( 3θ ) ⎛ θ + 3θ ⎞ ⎛ θ − 3θ ⎞ 2sin ⎜ ⎟ cos ⎜ ⎟ 2 ⎝ ⎠ ⎝ 2 ⎠ 2sin(2θ ) 2sin(2θ ) cos(−θ ) = 2sin(2θ ) = cos(−θ ) = cos θ sin θ + sin(3θ ) = 19. 2sin(2θ ) ⎛ 4θ + 2θ ⎞ ⎛ 4θ − 2θ ⎞ 12. sin(4θ ) + sin(2θ ) = 2sin ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ = 2sin ( 3θ ) cos θ ⎛ θ + 3θ ⎞ ⎛ θ − 3θ ⎞ 2 cos ⎜ cos ⎜ ⎟ ⎟ cos θ + cos(3θ ) ⎝ 2 ⎠ ⎝ 2 ⎠ = 20. 2 cos(2θ ) 2 cos(2θ ) 2 cos(2θ ) cos(−θ ) = 2 cos(2θ ) = cos(−θ ) ⎛ 2θ + 4θ ⎞ ⎛ 2θ − 4θ ⎞ 13. cos(2θ ) + cos(4θ ) = 2 cos ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ = 2 cos ( 3θ ) cos(−θ ) = 2 cos ( 3θ ) cos θ ⎛ 5θ + 3θ ⎞ ⎛ 5θ − 3θ ⎞ 14. cos(5θ ) − cos(3θ ) = − 2sin ⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ = − 2sin ( 4θ ) sin θ = cos θ ⎛ 4θ + 2θ ⎞ ⎛ 4θ − 2θ ⎞ 2sin ⎜ ⎟ cos ⎜ ⎟ 2 ⎝ ⎠ ⎝ 2 ⎠ cos(4θ ) + cos(2θ ) 2sin(3θ ) cos θ = 2 cos(3θ ) cos θ sin(3θ ) = cos(3θ ) = tan(3θ ) sin(4θ ) + sin(2θ ) = 21. cos(4θ ) + cos(2θ ) ⎛ θ + 3θ ⎞ ⎛ θ − 3θ ⎞ 15. sin θ + sin(3θ ) = 2sin ⎜ ⎟ cos ⎜ ⎟ 2 ⎝ ⎠ ⎝ 2 ⎠ = 2sin ( 2θ ) cos(−θ ) = 2sin ( 2θ ) cos θ ⎛ θ + 3θ ⎞ ⎛ θ − 3θ ⎞ 16. cos θ + cos(3θ ) = 2 cos ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ = 2 cos ( 2θ ) cos(−θ ) ⎛ θ + 3θ ⎞ ⎛ θ − 3θ ⎞ −2sin ⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛ 3θ − θ ⎞ ⎛ 3θ + θ ⎞ 2sin ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ − 2sin(2θ ) sin(−θ ) = 2sin θ cos(2θ ) −(− sin θ ) sin(2θ ) = sin θ cos(2θ ) = tan(2θ ) = 2 cos ( 2θ ) cos θ ⎛ θ 3θ ⎞ ⎛ θ 3θ ⎜ + ⎟ ⎜ − 3θ 17. cos − cos = − 2sin ⎜ 2 2 ⎟ sin ⎜ 2 2 2 2 ⎝ 2 ⎠ ⎝ 2 ⎛ θ⎞ = − 2sin θ sin ⎜ − ⎟ ⎝ 2⎠ θ cos θ − cos(3θ ) = 22. sin(3θ ) − sin θ ⎞ ⎟ ⎟ ⎠ θ⎞ ⎛ = − 2sin θ ⎜ − sin ⎟ 2⎠ ⎝ = 2sin θ sin θ ⎛ θ + 3θ ⎞ ⎛ θ − 3θ ⎞ −2sin ⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛ θ + 3θ ⎞ ⎛ θ − 3θ ⎞ 2sin ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ − 2sin(2θ ) sin(−θ ) = 2sin(2θ ) cos(−θ ) −(− sin θ ) = cos θ = tan θ cos θ − cos(3θ ) 23. = sin θ + sin(3θ ) 2 ⎛ θ 3θ ⎜ − 3θ = 2sin ⎜ 2 2 18. sin − sin ⎝ 2 2 2 θ ⎞ ⎛ θ 3θ ⎟ ⎜2+ 2 ⎟ cos ⎜ ⎠ ⎝ 2 ⎞ ⎟ ⎟ ⎠ ⎛ θ⎞ = 2sin ⎜ − ⎟ cos θ ⎝ 2⎠ = − 2sin θ 2 cos θ 282 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.6: Product-to-Sum and Sum-to-Product Formulas ⎛ θ + 5θ ⎞ ⎛ θ − 5θ ⎞ −2sin ⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛ θ + 5θ ⎞ ⎛ θ − 5θ ⎞ 2sin ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ − 2sin(3θ ) sin(− 2θ ) = 2sin(3θ ) cos(− 2θ ) 28. cos θ − cos(5θ ) 24. = sin θ + sin(5θ ) = ⎛ 4θ − 8θ ⎞ ⎛ 4θ + 8θ ⎞ 2sin ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ = ⎛ 4θ + 8θ ⎞ ⎛ 4θ − 8θ ⎞ −2sin ⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ 2sin(− 2θ ) cos(6θ ) = − 2sin(6θ ) sin(− 2θ ) cos(6θ ) = − sin(6θ ) = − cot(6θ ) −(− sin 2θ ) cos ( 2θ ) = tan ( 2θ ) 25. sin θ [sin θ + sin(3θ ) ] ⎡ ⎛ θ + 3θ ⎞ ⎛ θ − 3θ ⎞ ⎤ = sin θ ⎢ 2sin ⎜ ⎟ cos ⎜ ⎟⎥ 2 ⎝ ⎠ ⎝ 2 ⎠⎦ ⎣ = sin θ [ 2sin(2θ ) cos(−θ ) ] 29. sin(4θ ) + sin(8θ ) sin(4θ ) − sin(8θ ) ⎛ 4θ + 8θ ⎞ ⎛ 4θ − 8θ ⎞ 2sin ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ = ⎛ 4θ − 8θ ⎞ ⎛ 4θ + 8θ ⎞ −2sin ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ 2sin(6θ ) cos(− 2θ ) = 2sin(− 2θ ) cos(6θ ) sin(6θ ) cos(2θ ) = − sin(2θ ) cos(6θ ) = − tan(6θ ) cot(2θ ) tan(6θ ) =− tan(2θ ) = cos θ [ 2sin(2θ ) sin θ ] ⎡ 1 ⎤ = cos θ ⎢ 2 ⋅ [ cos θ − cos(3θ ) ]⎥ ⎣ 2 ⎦ = cos θ [ cos θ − cos(3θ ) ] 26. sin θ ⎡⎣sin ( 3θ ) + sin(5θ ) ⎤⎦ ⎡ ⎛ 3θ + 5θ ⎞ ⎛ 3θ − 5θ ⎞ ⎤ = sin θ ⎢ 2sin ⎜ ⎟ cos ⎜ ⎟⎥ ⎝ 2 ⎠ ⎝ 2 ⎠⎦ ⎣ = sin θ [ 2sin(4θ ) cos(−θ ) ] = cos θ [ 2sin(4θ ) sin θ ] ⎡ 1 ⎤ = cos θ ⎢ 2 ⋅ ⎡⎣ cos ( 3θ ) − cos(5θ ) ⎤⎦ ⎥ ⎣ 2 ⎦ = cos θ ⎡⎣ cos ( 3θ ) − cos(5θ ) ⎤⎦ 27. sin(4θ ) − sin(8θ ) cos(4θ ) − cos(8θ ) 30. cos(4θ ) − cos(8θ ) cos(4θ ) + cos(8θ ) ⎛ 4θ + 8θ ⎞ ⎛ 4θ − 8θ ⎞ −2sin ⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ = ⎛ 4θ + 8θ ⎞ ⎛ 4θ − 8θ ⎞ 2 cos ⎜ ⎟ cos ⎜ ⎟ 2 ⎝ ⎠ ⎝ 2 ⎠ −2sin(6θ )sin(−2θ ) = 2 cos(6θ ) cos(−2θ ) sin(6θ ) sin( −2θ ) =− ⋅ cos(6θ ) cos(−2θ ) = − tan(6θ ) tan(−2θ ) = tan(2θ ) tan(6θ ) sin(4θ ) + sin(8θ ) cos(4θ ) + cos(8θ ) ⎛ 4θ + 8θ ⎞ ⎛ 4θ − 8θ ⎞ 2sin ⎜ ⎟ cos ⎜ ⎟ 2 ⎝ ⎠ ⎝ 2 ⎠ = ⎛ 4θ + 8θ ⎞ ⎛ 4θ − 8θ ⎞ 2 cos ⎜ ⎟ cos ⎜ ⎟ 2 ⎝ ⎠ ⎝ 2 ⎠ 2sin(6θ ) cos(− 2θ ) = 2 cos(6θ ) cos(− 2θ ) sin(6θ ) = cos(6θ ) = tan(6θ ) 283 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry sin α + sin β 31. = sin α − sin β ⎛α + β ⎞ ⎛α − β 2sin ⎜ ⎟ cos ⎜ 2 ⎝ ⎠ ⎝ 2 ⎛α − β ⎞ ⎛α + β 2sin ⎜ ⎟ cos ⎜ ⎝ 2 ⎠ ⎝ 2 ⎞ ⎟ ⎠ ⎞ ⎟ ⎠ sin α + sin β 33. = cos α + cos β ⎛α + β ⎞ ⎛α − β ⎞ 2sin ⎜ ⎟ cos ⎜ ⎟ 2 ⎝ ⎠ ⎝ 2 ⎠ ⎛α + β ⎞ ⎛α − β ⎞ 2 cos ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛α + β ⎞ ⎛α − β ⎞ sin ⎜ ⎟ cos ⎜ ⎟ 2 ⎝ ⎠⋅ ⎝ 2 ⎠ = ⎛α + β ⎞ ⎛α − β ⎞ cos ⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛α + β ⎞ sin ⎜ ⎟ ⎝ 2 ⎠ = ⎛α + β ⎞ cos ⎜ ⎟ ⎝ 2 ⎠ ⎛α + β ⎞ ⎛α − β ⎞ = tan ⎜ ⎟ cot ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛α + β ⎞ = tan ⎜ ⎟ ⎝ 2 ⎠ cos α + cos β 32. = cos α − cos β ⎛α + β ⎞ ⎛α − β ⎞ 2 cos ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛α + β ⎞ ⎛α − β ⎞ − 2sin ⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ sin α − sin β 34. = cos α − cos β ⎛α − β ⎞ ⎛α + β ⎞ 2sin ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛α + β ⎞ ⎛α − β ⎞ −2sin ⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛α + β ⎞ ⎛α − β ⎞ cos ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠⋅ ⎝ 2 ⎠ =− ⎛α + β ⎞ ⎛α − β ⎞ sin ⎜ ⎟ sin ⎜ ⎟ 2 ⎝ ⎠ ⎝ 2 ⎠ ⎛α + β ⎞ cos ⎜ ⎟ ⎝ 2 ⎠ =− ⎛α + β ⎞ sin ⎜ ⎟ ⎝ 2 ⎠ ⎛α + β = − cot ⎜ ⎝ 2 ⎛α + β ⎞ = − cot ⎜ ⎟ ⎝ 2 ⎠ ⎞ ⎛α − β ⎞ ⎟ cot ⎜ ⎟ ⎠ ⎝ 2 ⎠ 35. 1 + cos(2θ ) + cos(4θ ) + cos(6θ ) = cos 0 + cos(6θ ) + cos(2θ ) + cos(4θ ) ⎛ 0 + 6θ ⎞ ⎛ 0 − 6θ ⎞ ⎛ 2θ + 4θ ⎞ ⎛ 2θ − 4θ ⎞ = 2 cos ⎜ ⎟ cos ⎜ ⎟ + 2 cos ⎜ ⎟ cos ⎜ ⎟ 2 2 2 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ 2 ⎠ = 2 cos(3θ ) cos(−3θ ) + 2 cos(3θ ) cos(−θ ) = 2 cos 2 (3θ ) + 2 cos(3θ ) cos θ = 2 cos(3θ ) [ cos(3θ ) + cos θ ] ⎡ ⎛ 3θ + θ ⎞ ⎛ 3θ − θ = 2 cos(3θ ) ⎢ 2 cos ⎜ ⎟ cos ⎜ ⎝ 2 ⎠ ⎝ 2 ⎣ = 2 cos(3θ ) [ 2 cos(2θ ) cos θ ] ⎞⎤ ⎟⎥ ⎠⎦ = 4 cos θ cos(2θ ) cos(3θ ) 36. 1 − cos(2θ ) + cos(4θ ) − cos(6θ ) = [ cos 0 − cos(6θ ) ] + [ cos(4θ ) − cos(2θ ) ] ⎛ 0 + 6θ ⎞ ⎛ 0 − 6θ ⎞ ⎛ 2θ + 4θ ⎞ ⎛ 2θ − 4θ ⎞ = −2sin ⎜ ⎟ sin ⎜ ⎟ − 2sin ⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ = −2sin(3θ ) sin(−3θ ) − 2sin(3θ ) sin(θ ) = 2sin 2 (3θ ) − 2sin(3θ ) sin θ = 2sin(3θ ) [sin(3θ ) − sin θ ] ⎡ ⎛ 3θ − θ ⎞ ⎛ 3θ + θ ⎞ ⎤ = 2sin(3θ ) ⎢ 2sin ⎜ ⎟ cos ⎜ ⎟⎥ 2 ⎝ ⎠ ⎝ 2 ⎠⎦ ⎣ = 2sin(3θ ) [ 2sin θ cos(2θ ) ] = 4sin θ cos(2θ ) sin(3θ ) 284 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.6: Product-to-Sum and Sum-to-Product Formulas 37. a. y = sin [ 2π (852)t ] + sin [ 2π (1209)t ] 2π (852)t + 2π (1209)t ⎞ ⎛ 2π (852)t − 2π (1209)t ⎞ = 2sin ⎛⎜ ⎟ cos ⎜ ⎟ 2 2 ⎝ ⎠ ⎝ ⎠ = 2sin(2061π t ) cos(−357π t ) = 2sin(2061π t ) cos(357π t ) b. Because sin θ ≤ 1 and cos θ ≤ 1 for all θ , it follows that sin(2061π t ) ≤ 1 and cos(357π t ) ≤ 1 for all values of t. Thus, y = 2sin(2061π t ) cos(357π t ) ≤ 2 ⋅1 ⋅1 = 2 . That is, the maximum value of y is 2. c. Let Y1 = 2sin(2061π x) cos(357π x) . 38. a. y = sin [ 2π (941)t ] + sin [ 2π (1477)t ] 2π (941)t + 2π (1477)t ⎞ ⎛ 2π (941)t − 2π (1477)t ⎞ = 2sin ⎛⎜ ⎟ cos ⎜ ⎟ 2 2 ⎝ ⎠ ⎝ ⎠ = 2sin(2418π t ) cos(−536π t ) = 2sin(2418π t ) cos(536π t ) b. Because sin θ ≤ 1 and cos θ ≤ 1 for all θ , it follows that sin(2418π t ) ≤ 1 and cos(2418π t ) ≤ 1 for all values of t. Thus, y = 2sin(2418π t ) cos(536π t ) ≤ 2 ⋅1 ⋅1 = 2 . That is, the maximum value of y is 2. c. Let Y1 = 2sin(2418π x) cos(536π x) . 2 2 39. I u = I x cos θ + I y sin θ − 2 I xy sin θ cos θ ⎛ cos 2θ + 1 ⎞ ⎛ 1 − cos 2θ ⎞ = Ix ⎜ ⎟ + Iy ⎜ ⎟ − I xy 2sin θ cos θ 2 2 ⎝ ⎠ ⎝ ⎠ I I cos 2 θ I cos 2θ I x y y = x + + − − I xy sin 2θ 2 2 2 2 Ix + I y Ix − I y = + cos 2θ − I xy sin 2θ 2 2 285 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry I v = I x sin 2 θ + I y cos 2 θ + 2 I xy sin θ cos θ ⎛ 1 − cos 2θ ⎞ ⎛ cos 2θ + 1 ⎞ = Ix ⎜ ⎟ + Iy ⎜ ⎟ + I xy 2sin θ cos θ 2 2 ⎝ ⎠ ⎝ ⎠ I cos 2 I θ I I cos 2θ y y = x− x + + + I xy sin 2θ 2 2 2 2 Ix + I y Ix − I y cos 2θ + I xy sin 2θ = − 2 2 40. a. Since φ and v0 are fixed, we need to maximize sin θ cos (θ − φ ) . ( ) ( ) 1⎡ sin θ + (θ − φ ) + sin θ − (θ − φ ) ⎤⎥ ⎦ 2 ⎣⎢ 1 = ⎡⎣sin ( 2θ − φ ) + sin φ ⎤⎦ 2 This quantity will be maximized when sin ( 2θ − φ ) = 1 . So, sin θ cos (θ − φ ) = Rmax b. 1 2v02 ⋅ ⋅ (1 + sin φ ) v 2 (1 + sin φ ) v02 0 2 = = = 2 2 g (1 − sin φ ) g cos φ g cos φ Rmax = ( 50 )2 9.8 (1 − sin 35° ) ≈ 598.24 The maximum range is about 598 meters. 41. sin ( 2α ) + sin ( 2 β ) + sin ( 2γ ) ⎛ 2α + 2 β ⎞ ⎛ 2α − 2β ⎞ = 2sin ⎜ ⎟ cos ⎜ ⎟ + sin ( 2γ ) 2 2 ⎝ ⎠ ⎝ ⎠ = 2sin(α + β ) cos(α − β ) + 2sin γ cos γ = 2sin(π − γ ) cos(α − β ) + 2sin γ cos γ = 2sin γ cos(α − β ) + 2sin γ cos γ = 2sin γ [ cos(α − β ) + cos γ ] ⎡ ⎛α − β +γ ⎞ ⎛ α − β − γ ⎞⎤ = 2sin γ ⎢ 2 cos ⎜ ⎟ cos ⎜ ⎟⎥ 2 2 ⎝ ⎠ ⎝ ⎠⎦ ⎣ π β 2 α − π 2 − ⎛ ⎞ ⎛ ⎞ = 4sin γ cos ⎜ ⎟ ⎟ cos ⎜ ⎝ 2 ⎠ ⎝ 2 ⎠ π⎞ ⎛π ⎞ ⎛ = 4sin γ cos ⎜ − β ⎟ cos ⎜ α − ⎟ 2 2⎠ ⎝ ⎠ ⎝ = 4sin γ sin β sin α = 4sin α sin β sin γ 286 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.6: Product-to-Sum and Sum-to-Product Formulas sin α sin β sin γ + + cos α cos β cos γ sin α cos β cos γ + sin β cos α cos γ + sin γ cos α cos β = cos α cos β cos γ cos γ (sin α cos β + cos α sin β ) + sin γ cos α cos β = cos α cos β cos γ cos γ sin(α + β ) + sin γ cos α cos β = cos α cos β cos γ cos γ sin(π − γ ) + sin γ cos α cos β = cos α cos β cos γ cos γ sin γ + sin γ cos α cos β = cos α cos β cos γ sin γ (cos γ + cos α cos β ) = cos α cos β cos γ 42. tan α + tan β + tan γ = = = = sin γ ⎡⎣cos ( π − (α + β ) ) + cos α cos β ⎤⎦ cos α cos β cos γ sin γ [ − cos(α + β ) + cos α cos β ] cos α cos β cos γ sin γ ( − cos α cos β + sin α sin β + cos α cos β ) cos α cos β cos γ sin γ (sin α sin β ) = cos α cos β cos γ = tan α tan β tan γ 43. Add the sum formulas for sin(α + β ) and sin(α − β ) and solve for sin α cosβ : sin(α + β ) = sin α cos β + cos α sin β sin(α − β ) = sin α cos β − cos α sin β sin(α + β ) + sin(α − β ) = 2sin α cos β sin α cos β = 1 [sin(α + β ) + sin(α − β )] 2 ⎛α −β ⎞ ⎛α + β ⎞ 44. 2sin ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ α −β α +β ⎞ 1⎡ ⎛α −β = 2 ⋅ ⎢sin ⎛⎜ + ⎟ + sin ⎜ 2⎣ ⎝ 2 2 ⎠ ⎝ 2 ⎛ 2α ⎞ ⎛ −2 β ⎞ = sin ⎜ ⎟ + sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ − α + β ⎞⎤ 2 ⎟⎥ ⎠⎦ = sin α + sin ( − β ) = sin α − sin β ⎛α − β Thus, sin α − sin β = 2sin ⎜ ⎝ 2 ⎞ ⎛α + β ⎟ cos ⎜ ⎠ ⎝ 2 ⎞ ⎟. ⎠ 287 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry ⎛α + β ⎞ ⎛α − β ⎞ 45. 2 cos ⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ 1⎡ α +β α −β ⎞ ⎛α + β − = 2 ⋅ ⎢ cos ⎛⎜ ⎟ + cos ⎜ 2⎣ ⎝ 2 2 ⎠ ⎝ 2 ⎛ 2β ⎞ ⎛ 2α ⎞ = cos ⎜ ⎟ + cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ = cos β + cos α + 7. 2sin θ + 3 = 2 2sin θ = −1 1 sin θ = − 2 7π 11π θ= + 2k π or θ = + 2k π , k is any integer 6 6 ⎧ 7 π 11π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , ⎬. ⎩6 6 ⎭ α − β ⎞⎤ ⎟⎥ ⎠⎦ 2 ⎛α + β ⎞ ⎛α − β ⎞ Thus, cos α + cos β = 2 cos ⎜ ⎟ cos ⎜ ⎟. ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛α + β ⎞ ⎛α − β ⎞ 46. −2sin ⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ 1⎡ α +β α −β ⎞ ⎛α + β = −2 ⋅ ⎢ cos ⎛⎜ − ⎟ − cos ⎜ 2⎣ ⎝ 2 2 ⎠ ⎝ 2 1 2 1 1 − cos θ = 2 1 = cos θ 2 π 5π θ = + 2k π or θ = + 2k π , k is any integer 3 3 ⎧ π 5π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , ⎬ . ⎩3 3 ⎭ 8. 1 − cos θ = + α − β ⎞⎤ 2 ⎟⎥ ⎠⎦ ⎡ ⎛ 2β ⎞ ⎛ 2α ⎞ ⎤ = − ⎢ cos ⎜ ⎟ − cos ⎜ ⎟⎥ 2 ⎝ ⎠ ⎝ 2 ⎠⎦ ⎣ = cos α − cos β ⎛α + β Thus, cos α − cos β = − 2sin ⎜ ⎝ 2 ⎞ ⎛α − β ⎟ sin ⎜ ⎠ ⎝ 2 ⎞ ⎟. ⎠ 9. 4 cos 2 θ = 1 1 cos 2 θ = 4 Section 3.7 1. 3x − 5 = − x + 1 4x = 6 6 3 x= = 4 2 cos θ = ± π 2π + k π or θ = + k π , k is any integer 3 3 On the interval 0 ≤ θ < 2π , the solution set is ⎧ π 2π 4π 5π ⎫ , , ⎬. ⎨ , ⎩3 3 3 3 ⎭ θ= ⎧3⎫ The solution set is ⎨ ⎬ . ⎩2⎭ 2. 3. 2 1 , − 2 2 π 6 , 1 2 10. tan 2 θ = 1 3 1 3 =± 3 3 π 5π + k π, k is any integer θ = + k π or θ = 6 6 On the interval 0 ≤ θ < 2π , the solution set is ⎧ π 5π 7π 11π ⎫ , , ⎨ , ⎬. ⎩6 6 6 6 ⎭ 5π 6 tan θ = ± ⎧ π 5π ⎫ 4. ⎨θ θ = + 2π k , θ = + 2π k , k is any integer ⎬ 6 6 ⎩ ⎭ 5. False 6. False 288 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.7: Trigonometric Equations (I) 11. 2sin 2 θ − 1 = 0 15. cos ( 2θ ) = − 2sin θ = 1 2 sin 2 θ = 2π 4π + 2kπ or 2θ = + 2kπ 3 3 π 2π θ = + kπ or θ = + kπ , k is any integer 3 3 On the interval 0 ≤ θ < 2π , the solution set is ⎧ π 2π 4π 5π ⎫ , , ⎬. ⎨ , ⎩3 3 3 3 ⎭ 2θ = 1 2 1 2 =± 2 2 π 3π + kπ , k is any integer θ = + kπ or θ = 4 4 On the interval 0 ≤ θ < 2π , the solution set is ⎧ π 3π 5π 7 π ⎫ ⎨ , , , ⎬. ⎩4 4 4 4 ⎭ sin θ = ± 16. tan ( 2θ ) = −1 3π + k π, k is any integer 4 3π k π θ = + , k is any integer 8 2 On the interval 0 ≤ θ < 2π , the solution set is ⎧ 3π 7π 11π 15π ⎫ , , ⎨ , ⎬. 8 ⎭ ⎩8 8 8 2θ = 12. 4 cos 2 θ − 3 = 0 4 cos 2 θ = 3 cos 2 θ = 3 4 cos θ = ± 3 2 3θ = −2 2 3θ 2π 3θ 4π = + 2kπ or = + 2kπ 2 3 2 3 4π 4kπ 8π 4kπ θ= + + or θ = , 9 3 9 3 k is any integer On the interval 0 ≤ θ < 2π , the solution set is ⎧ 4π 8π 16π ⎫ ⎨ , , ⎬. ⎩9 9 9 ⎭ π 5π + k π or θ = + k π , k is any integer 6 6 On the interval 0 ≤ θ < 2π , the solution set is ⎧ π 5π 7π 11π ⎫ , , ⎨ , ⎬. ⎩6 6 6 6 ⎭ 17. sec θ= 13. sin ( 3θ ) = −1 3π + 2k π 2 π 2k π θ= + , k is any integer 2 3 On the interval 0 ≤ θ < 2π , the solution set is ⎧ π 7 π 11π ⎫ , ⎨ , ⎬. ⎩2 6 6 ⎭ 3θ = 2θ =− 3 3 2θ 5π = + kπ , k is any integer 3 6 5π 3kπ θ= , k is any integer + 4 2 18. cot ⎛θ ⎞ 14. tan ⎜ ⎟ = 3 ⎝2⎠ θ ⎧ 5π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ ⎬ . ⎩4⎭ π + kπ , k is any integer 3 2π θ= + 2π k , k is any integer 3 ⎧ 2π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ ⎬ . ⎩3 ⎭ 2 = 1 2 19. 2sin θ + 1 = 0 2sin θ = −1 1 sin θ = − 2 7π 11π θ= + 2k π or θ = + 2k π , k is any integer 6 6 ⎧ 7 π 11π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , ⎬. ⎩6 6 ⎭ 289 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 20. cos θ + 1 = 0 cos θ = −1 θ = π + 2k π , k is any integer 26. 4sin θ + 3 3 = 3 4sin θ = − 2 3 2 3 3 =− 4 2 4π 5π θ= + 2k π or θ = + 2k π , k is any integer 3 3 ⎧ 4 π 5π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , ⎬ . ⎩3 3⎭ On the interval 0 ≤ θ < 2π , the solution set is {π } . sin θ = − 21. tan θ + 1 = 0 tan θ = −1 3π θ = + k π , k is any integer 4 ⎧ 3π 7π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , ⎬ . ⎩4 4 ⎭ 22. π⎞ ⎛ 27. cos ⎜ 2θ − ⎟ = −1 2⎠ ⎝ π 2θ − = π + 2k π 2 3π + 2k π 2θ = 2 3π θ = + k π , k is any integer 4 ⎧ 3π 7π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , ⎬ . ⎩4 4⎭ 3 cot θ + 1 = 0 3 cot θ = −1 cot θ = − θ= 1 3 =− 3 3 2π + k π , k is any integer 3 ⎧ 2π 5π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , ⎬ . ⎩3 3⎭ π⎞ ⎛ 28. sin ⎜ 3θ + ⎟ = 1 18 ⎠ ⎝ π π 3θ + = + 2k π 18 2 4π + 2k π 3θ = 9 4π 2k π + θ= , k is any integer 27 3 On the interval 0 ≤ θ < 2π , the solution set is ⎧ 4π 22π 40π ⎫ , ⎨ , ⎬. ⎩ 27 27 27 ⎭ 23. 4sec θ + 6 = − 2 4sec θ = − 8 sec θ = − 2 2π 4π + 2k π or θ = + 2k π , k is any integer 3 3 ⎧ 2π 4 π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , ⎬ . ⎩3 3⎭ θ= 24. 5csc θ − 3 = 2 5csc θ = 5 csc θ = 1 π θ = + 2k π , k is any integer 2 ⎛θ π ⎞ 29. tan ⎜ + ⎟ = 1 ⎝2 3⎠ θ π π + = + kπ 2 3 4 θ π = − + kπ 2 12 π θ = − + 2k π , k is any integer 6 ⎧11π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ ⎬. ⎩ 6 ⎭ ⎧π⎫ On 0 ≤ θ < 2π , the solution set is ⎨ ⎬ . ⎩2⎭ 25. 3 2 cos θ + 2 = −1 3 2 cos θ = − 3 cos θ = − 1 2 =− 2 2 3π 5π + 2k π or θ = + 2k π , k is any integer 4 4 ⎧ 3π 5π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , ⎬ . ⎩4 4⎭ θ= 290 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.7: Trigonometric Equations (I) 35. cos θ = 0 ⎧ π 3π ⎫ ⎨θ θ = + 2k π or θ = + 2k π ⎬ , k is any 2 2 ⎩ ⎭ integer π 3π 5π 7 π 9π 11π Six solutions are θ = , , , . , , 2 2 2 2 2 2 ⎛θ π ⎞ 1 30. cos ⎜ − ⎟ = ⎝3 4⎠ 2 θ π π θ π 5π − = + 2k π or − = + 2k π 3 4 3 3 4 3 θ 7π θ 23π = + 2k π or = + 2k π 3 12 3 12 7π 23π + 6k π or + 6k π , θ= θ= 4 4 k is any integer. ⎧ 7π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ ⎬ . ⎩4⎭ 31. sin θ = 2 2 ⎧ π 3π ⎫ + 2kπ ⎬ , k is any ⎨θ θ = + 2k π or θ = 4 4 ⎩ ⎭ integer π 3π 9π 11π 17π 19π Six solutions are θ = , , , , , . 4 4 4 4 4 4 36. sin θ = 1 2 ⎧ π 5π ⎫ + 2kπ ⎬ , k is any ⎨θ θ = + 2kπ or θ = 6 6 ⎩ ⎭ integer. Six solutions are π 5π 13π 17π 25π 29π θ= , , , , , . 6 6 6 6 6 6 37. cos ( 2θ ) = − 2π 4π + 2k π or 2θ = + 2k π, k is any integer 3 3 ⎧ π 2π ⎫ + k π ⎬ , k is any integer ⎨θ θ = + k π or θ = 3 3 ⎩ ⎭ π 2π 4π 5π 7π 8π . , , , , Six solutions are θ = , 3 3 3 3 3 3 2θ = 32. tan θ = 1 ⎧ π ⎫ ⎨θ θ = + k π ⎬ , k is any integer 4 ⎩ ⎭ π 5π 9π 13π 17 π 21π . , , Six solutions are θ = , , , 4 4 4 4 4 4 33. tan θ = − 1 2 38. sin ( 2θ ) = −1 3π + 2k π, k is any integer 2 ⎧ 3π ⎫ + k π ⎬ , k is any integer ⎨θ θ = 4 ⎩ ⎭ Six solutions are 3π 7π 11π 15π 19π 23π θ= , , . , , , 4 4 4 4 4 4 2θ = 3 3 ⎧ 5π ⎫ + k π ⎬ , k is any integer ⎨θ θ = 6 ⎩ ⎭ Six solutions are 5π 11π 17 π 23π 29π 35π θ= , . , , , , 6 6 6 6 6 6 39. sin θ =− 3 2 2 4π θ 5π = + 2k π or = + 2k π, k is any integer 2 3 2 3 ⎧ 8π 10π ⎫ + 4k π or θ = + 4k π ⎬ , k is any ⎨θ θ = 3 3 ⎩ ⎭ integer. Six solutions are 8π 10π 20π 22π 32π 34π θ= , , , , , . 3 3 3 3 3 3 θ 3 34. cos θ = − 2 ⎧ 5π 7π ⎫ + 2k π or θ = + 2k π ⎬ , k is any ⎨θ θ = 6 6 ⎩ ⎭ integer. Six solutions are 5π 7 π 17 π 19π 29π 31π θ= , , . , , , 6 6 6 6 6 6 291 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 40. tan θ 47. sec θ = −4 1 cos θ = − 4 = −1 2 3π = + kπ , k is any integer 2 4 ⎧ 3π ⎫ + 2kπ ⎬ , k is any integer ⎨θ θ = 2 ⎩ ⎭ Six solutions are 3π 7π 11π 15π 19π 23π θ= , , . , , , 2 2 2 2 2 2 θ ⎛ 1⎞ ⎝ ⎠ θ ≈ 1.82 or θ ≈ 2π − 1.82 ≈ 4.46 . The solution set is {1.82, 4.46} . θ = cos −1 ⎜ − ⎟ ≈ 1.82 4 48. csc θ = −3 1 sin θ = − 3 41. sin θ = 0.4 θ = sin −1 ( 0.4 ) ≈ 0.41 θ ≈ 0.41 or θ ≈ π − 0.41 ≈ 2.73 . ⎛ 1⎞ ⎝ ⎠ θ ≈ −0.34 + 2π or θ ≈ π − ( −0.34 ) . ≈ 5.94 ≈ 3.48 The solution set is {3.48, 5.94} . θ = sin −1 ⎜ − ⎟ ≈ −0.34 3 The solution set is {0.41, 2.73} . 42. cos θ = 0.6 θ = cos−1 ( 0.6 ) ≈ 0.93 θ ≈ 0.93 or θ ≈ 2π − 0.93 ≈ 5.36 . 49. 5 tan θ + 9 = 0 5 tan θ = −9 9 tan θ = − 5 The solution set is {0.93, 5.36} . 43. tan θ = 5 θ = tan −1 ( 5 ) ≈ 1.37 θ ≈ 1.37 or θ ≈ π + 1.37 ≈ 4.51 . ⎛ 9⎞ ⎝ ⎠ θ ≈ −1.064 + π or θ ≈ −1.064 + 2π ≈ 2.08 ≈ 5.22 The solution set is {2.08, 5.22} . θ = tan −1 ⎜ − ⎟ ≈ −1.064 5 The solution set is {1.37, 4.51} . 44. cot θ = 2 1 tan θ = 2 50. 4 cot θ = −5 5 cot θ = − 4 4 tan θ = − 5 ⎛1⎞ ⎝ ⎠ θ ≈ 0.46 or θ ≈ π + 0.46 ≈ 3.61 . The solution set is {0.46, 3.61} . θ = tan −1 ⎜ ⎟ ≈ 0.46 2 45. cos θ = −0.9 ⎛ 4⎞ ⎝ ⎠ θ ≈ −0.675 + π or θ ≈ −0.675 + 2π . ≈ 2.47 ≈ 5.61 The solution set is {2.47, 5.61} . θ = tan −1 ⎜ − ⎟ ≈ −0.675 5 θ = cos ( −0.9 ) ≈ 2.69 θ ≈ 2.69 or θ ≈ 2π − 2.69 ≈ 3.59 . −1 The solution set is {2.69, 3.59} . 46. sin θ = −0.2 θ = sin −1 ( −0.2 ) ≈ −0.20 θ ≈ −0.20 + 2π or θ ≈ π − ( −0.20 ) . ≈ 6.08 ≈ 3.34 The solution set is {3.34, 6.08} . 292 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.7: Trigonometric Equations (I) 51. 3sin θ − 2 = 0 3sin θ = 2 2 sin θ = 3 55. a. f ( x) = 0 3sin x = 0 sin x = 0 x = 0 + 2kπ or x = π + 2kπ , k is any integer On the interval [ −2π , 4π] , the x-intercepts ⎛2⎞ ⎝ ⎠ θ ≈ 0.73 or θ ≈ π − 0.73 ≈ 2.41 . The solution set is {0.73, 2.41} . θ = sin −1 ⎜ ⎟ ≈ 0.73 3 of the graph of f are −2π, −π, 0, π, 2π, 3π, 4π . b. 52. 4 cos θ + 3 = 0 4 cos θ = −3 f ( x ) = 3sin x 3 4 cos θ = − ⎛ 3⎞ ⎝ ⎠ θ ≈ 2.42 or θ ≈ 2π − 2.42 ≈ 3.86 . The solution set is {2.42, 3.86} . θ = cos −1 ⎜ − ⎟ ≈ 2.42 4 f ( x) = 0 53. c. 4sin 2 x − 3 = 0 4sin 2 x = 3 sin 2 x = 3 4 5π + 2kπ , k is any integer 6 6 On the interval [ −2π , 4π] , the solution set is x= 3 3 =± sin x = ± 4 2 π 2π x = + kπ or x = + kπ , k is any integer 3 3 On the interval [ 0, 2π] , the x-intercepts of the graph of f are + 2kπ or x = d. From the graph in part (b) and the results of 3 part (c), the solutions of f ( x ) > on the 2 ⎧ 11π 7π interval [ −2π , 4π] is ⎨ x − <x<− 6 6 ⎩ π 2π 4π 5π , , , . 3 3 3 3 2 cos ( 3 x ) + 1 = 0 2 cos ( 3 x ) = −1 cos ( 3 x ) = − π ⎧ 11π 7π π 5π 13π 17 π ⎫ ,− , , , , ⎨− ⎬. 6 6 6 6 6 ⎭ ⎩ 6 f ( x) = 0 54. 3 2 3 3sin x = 2 1 sin x = 2 f ( x) = or 1 2 π 5π 13π 17π ⎫ <x< or <x< ⎬. 6 6 6 6 ⎭ 2π 4π + 2kπ or 3x = + 2kπ 3 3 2π 2kπ 4π 2kπ + + x= or x = , 9 3 9 3 k is any integer On the interval [ 0, π] , the x-intercepts of the 3x = graph of f are 2π 4π 8π . , , 9 9 9 293 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 56. a. f ( x) = 0 4 tan x < −4 tan x < −1 Graphing y1 = tan x and y2 = −1 on the 2 cos x = 0 cos x = 0 3π + 2kπ or x = + 2kπ , k is any 2 2 integer On the interval [ −2π , 4π] , the x-intercepts x= π ⎛ π π⎞ interval ⎜ − , ⎟ , we see that y1 < y2 for ⎝ 2 2⎠ π π ⎛ π π⎞ − < x < − or ⎜ − , − ⎟ . 2 4 ⎝ 2 4⎠ of the graph of f are 3π π π 3π 5π 7π − ,− , , , , . 2 2 2 2 2 2 b. f ( x ) < −4 b. 6 f ( x ) = 2 cos x π _ 2 π −_ 2 −6 58. f ( x ) = cot x a. f ( x) = − 3 cot x = − 3 c. ⎧ 5π ⎫ + kπ ⎬ , k is any integer ⎨x x = 6 ⎩ ⎭ f ( x) = − 3 2 cos x = − 3 cos x = − b. 3 2 f ( x) > − 3 cot x > − 3 1 and y2 = − 3 on the tan x interval ( 0, π ) , we see that y1 > y2 for Graphing y1 = 5π 7π x= + 2kπ or x = + 2kπ , k is any 6 6 integer On the interval [ −2π , 4π] , the solution set is 0< x< ⎧ 7π 5π 5π 7π 17π 19π ⎫ , , , ⎨− , − , ⎬. 6 6 6 6 6 ⎭ ⎩ 6 6 d. From the graph in part (b) and the results of part (c), the solutions of f ( x ) < − 3 on the 57. ⎞ ⎟. ⎠ π 0 ⎧ 7π 5π interval [ −2π , 4π] is ⎨ x − <x<− 6 6 ⎩ 5π 7π 17 π 19π ⎫ or <x< or <x< ⎬. 6 6 6 6 ⎭ 5π ⎛ 5π or ⎜ 0, 6 ⎝ 6 −6 59. a, d. f ( x ) = 3sin ( 2 x ) + 2 ; g ( x ) = 7 2 f ( x ) = 4 tan x a. f ( x ) = −4 4 tan x = −4 tan x = −1 ⎧ π ⎫ ⎨ x x = − + kπ ⎬ , k is any integer 4 ⎩ ⎭ 294 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.7: Trigonometric Equations (I) f ( x) = g ( x) b. 7 2 3 3sin ( 2 x ) = 2 1 sin ( 2 x ) = 2 c. 3sin ( 2 x ) + 2 = 2x = π 6 [0, 4π] is 61. a, d. ⎧ 2π 10π ⎫ ⎛ 2π 10π ⎞ <x< ⎨x ⎬ or ⎜ , ⎟. 3 3 ⎭ ⎝ 3 3 ⎠ ⎩ f ( x ) = −4 cos x ; g ( x ) = 2 cos x + 3 5π + 2kπ 6 5π + kπ , x= 12 + 2kπ or 2 x = π + kπ or 12 k is any integer x= From the graph in part (a) and the results of part (b), the solution of f ( x ) < g ( x ) on ⎧ π 5π ⎫ On [ 0, π] , the solution set is ⎨ , ⎬ . ⎩12 12 ⎭ c. From the graph in part (a) and the results of part (b), the solution of f ( x ) > g ( x ) on [0, π] 60. a, d. ⎧ π 5π ⎫ ⎛ π 5π ⎞ is ⎨ x < x < ⎬ or ⎜ , ⎟. 12 ⎭ ⎝ 12 12 ⎠ ⎩ 12 −4 cos x = 2 cos x + 3 −6 cos x = 3 3 1 cos x = =− 2 −6 2π 4π x= + 2kπ or x = + 2kπ , 3 3 k is any integer ⎧ 2π 4π ⎫ On [ 0, 2π ] , the solution set is ⎨ , ⎬. ⎩ 3 3 ⎭ x f ( x ) = 2 cos + 3 ; g ( x ) = 4 2 c. b. f ( x) = g ( x) b. f ( x) = g ( x) x 2 cos + 3 = 4 2 x 2 cos = 1 2 x 1 cos = 2 2 x π x 5π = + 2kπ or = + 2kπ 2 3 2 3 2π 10π x= + 4kπ or x = + 4kπ , 3 3 k is any integer ⎧ 2π 10π ⎫ On [ 0, 4π ] , the solution set is ⎨ , ⎬. ⎩3 3 ⎭ From the graph in part (a) and the results of part (b), the solution of f ( x ) > g ( x ) on [0, 2π ] is 62. a, d. ⎧ 2π 4π ⎫ ⎛ 2π 4π ⎞ <x< , ⎨x ⎬ or ⎜ ⎟. 3 3 ⎝ 3 3 ⎠ ⎩ ⎭ f ( x ) = 2sin x ; g ( x ) = −2sin x + 2 295 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry b. f ( x) = g ( x) π⎞ ⎛ b. Solve h ( t ) = 125sin ⎜ 0.157t − ⎟ + 125 = 250 2⎠ ⎝ on the interval [ 0,80] . 2sin x = −2sin x + 2 4sin x = 2 2 1 sin x = = 4 2 x= π + 2kπ or x = 6 k is any integer π⎞ ⎛ 125sin ⎜ 0.157t − ⎟ + 125 = 250 2⎠ ⎝ π⎞ ⎛ 125sin ⎜ 0.157t − ⎟ = 125 2⎠ ⎝ π⎞ ⎛ sin ⎜ 0.157t − ⎟ = 1 2⎠ ⎝ 5π + 2kπ , 6 ⎧ π 5π ⎫ On [ 0, 2π ] , the solution set is ⎨ , ⎬ . ⎩6 6 ⎭ c. [0, ⎧ π 5π ⎫ ⎛ π 5π ⎞ 2π] is ⎨ x < x < ⎬ or ⎜ , ⎟ . 6⎭ ⎝6 6 ⎠ ⎩ 6 π⎞ ⎛ sin ⎜ 0.157t − ⎟ = 0 2⎠ ⎝ 2 c. = kπ , k is any integer 0.157t = kπ + t= kπ + For k = 0, t = For k = 1, t = π 2 , k is any integer π π π 2 ≈ 30 seconds . 0.157 2π + π⎞ ⎛ Solve h ( t ) = 125sin ⎜ 0.157t − ⎟ + 125 > 125 2⎠ ⎝ on the interval [ 0, 40] . π⎞ ⎛ Graphing y1 = sin ⎜ 0.157 x − ⎟ and y2 = 0 2⎠ ⎝ on the interval [ 0, 40] , we see that y1 > y2 for 2 ≈ 10 seconds . 0.157 π+ π π⎞ ⎛ 125sin ⎜ 0.157t − ⎟ + 125 > 125 2⎠ ⎝ π⎞ ⎛ 125sin ⎜ 0.157t − ⎟ > 0 2⎠ ⎝ π⎞ ⎛ sin ⎜ 0.157t − ⎟ > 0 2⎠ ⎝ 2 , k is any integer 0.157 0+ π ≈ 20 seconds . 0.157 π + 2π For k = 1, t = ≈ 60 seconds . 0.157 π + 4π For k = 2, t = ≈ 100 seconds . 0.157 So during the first 80 seconds, an individual on the Ferris Wheel is exactly 250 feet above the ground when t ≈ 20 seconds and again when t ≈ 60 seconds . π⎞ ⎛ 125sin ⎜ 0.157t − ⎟ + 125 = 125 2⎠ ⎝ π⎞ ⎛ 125sin ⎜ 0.157t − ⎟ = 0 2⎠ ⎝ π = For k = 0, t = π⎞ ⎛ 63. h ( t ) = 125sin ⎜ 0.157t − ⎟ + 125 2⎠ ⎝ π⎞ ⎛ a. Solve h ( t ) = 125sin ⎜ 0.157t − ⎟ + 125 = 125 2⎠ ⎝ on the interval [ 0, 40] . 0.157t − π + 2kπ , k is any integer 2 2 0.157t = π + 2kπ , k is any integer π + 2kπ t= , k is any integer 0.157 0.157t − From the graph in part (a) and the results of part (b), the solution of f ( x ) > g ( x ) on 10 < x < 30 . π 2 ≈ 50 seconds . 0.157 So during the first 40 seconds, an individual on the Ferris Wheel is exactly 125 feet above the ground when t ≈ 10 seconds and again when t ≈ 30 seconds . For k = 2, t = 296 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.7: Trigonometric Equations (I) 1.5 0 π⎞ ⎛ b. Solve h ( t ) = 13sin ⎜ 4π t − ⎟ + 13 = 6.5 on 2⎠ ⎝ the interval [ 0,1] . 40 π⎞ ⎛ 13sin ⎜ 4π t − ⎟ + 13 = 6.5 2⎠ ⎝ π⎞ ⎛ 13sin ⎜ 4π t − ⎟ = −6.5 2⎠ ⎝ 1 π⎞ ⎛ sin ⎜ 4π t − ⎟ = − 2⎠ 2 ⎝ π π π 5π + 2kπ 4π t − = − + 2kπ or 4π t − = − 2 6 2 6 π π 4π t = 2kπ + or 4π t = 2kπ − 3 3 π π 2 kπ + 2 kπ − 3 or t = 3 t= 4π 4π 6k + 1 6k − 1 or , = = 12 12 k is any integer −1.5 So during the first 40 seconds, an individual on the Ferris Wheel is more than 125 feet above the ground for times between about 10 and 30 seconds. That is, on the interval 10 < x < 30 , or (10, 30 ) . π⎞ ⎛ 64. h ( t ) = 13sin ⎜ 4π t − ⎟ + 13 2⎠ ⎝ π⎞ ⎛ a. Solve h ( t ) = 13sin ⎜ 4π t − ⎟ + 13 = 13 on 2⎠ ⎝ the interval [ 0,1] . π⎞ ⎛ 13sin ⎜ 4π t − ⎟ + 13 = 13 2⎠ ⎝ 0 +1 0 −1 or t = 12 12 ≈ 0.083 sec ≈ −0.083 sec For k = 0, t = π⎞ ⎛ 13sin ⎜ 4π t − ⎟ = 0 2⎠ ⎝ π⎞ ⎛ sin ⎜ 4π t − ⎟ = 0 2⎠ ⎝ 4π t − π 2 6 +1 6 −1 or t = 12 12 ≈ 0.583 sec ≈ 0.417 sec For k = 1, t = = kπ , k is any integer 4π t = kπ + kπ + π 2 12 + 1 12 − 1 or t = 12 12 ≈ 1.083 sec ≈ 0.917 sec For k = 2, t = , k is any integer π 18 − 1 12 ≈ 1.417 sec So during the first second, the point on the tire is exactly 6.5 inches above the ground when t ≈ 0.083 second , t ≈ 0.417 second , t ≈ 0.583 second , and t ≈ 0.917 second . 2 = 2k + 1 , k is any integer t= 4π 8 0 +1 For k = 0, t = = 0.125 second . 8 2 +1 For k = 1, t = = 0.375 second . 8 4 +1 For k = 2, t = = 0.625 second . 8 6 +1 For k = 3, t = = 0.875 second . 8 8 +1 For k = 4, t = = 1.125 second . 8 So during the first second, the point on the tire is exactly 13 inches above the ground when t = 0.125 second , t = 0.375 second , t = 0.625 second , and t = 0.875 second . For k = 3, t= 297 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry c. 3.94 + 2π k 5.94 + 2π k or x ≈ , 0.65 0.65 k is any integer 3.94 + 0 5.94 + 0 or x ≈ For k = 0 , x ≈ 0.65 0.65 ≈ 6.06 min ≈ 8.44 min π⎞ ⎛ Solve h ( t ) = 13sin ⎜ 4π t − ⎟ + 13 > 13 on 2⎠ ⎝ the interval [ 0,1] . x≈ π⎞ ⎛ 13sin ⎜ 4π t − ⎟ + 13 > 13 2⎠ ⎝ π⎞ ⎛ 13sin ⎜ 4π t − ⎟ > 0 2⎠ ⎝ π⎞ ⎛ sin ⎜ 4π t − ⎟ > 0 2⎠ ⎝ 3.94 + 2π 5.94 + 2π or x ≈ 0.65 0.65 ≈ 15.72 min ≈ 18.11 min For k = 1 , x ≈ For k = 2 , 3.94 + 4π 5.94 + 4π x≈ or x ≈ 0.65 0.65 ≈ 25.39 min ≈ 27.78 min π⎞ ⎛ Graphing y1 = sin ⎜ 4π x − ⎟ and y2 = 0 2⎠ ⎝ on the interval [ 0,1] , we see that y1 > y2 for 0.125 < x < 0.375 and again for 0.625 < x < 0.875 . So during the first 20 minutes in the holding pattern, the plane is exactly 100 miles from the airport when x ≈ 6.06 minutes , x ≈ 8.44 minutes , x ≈ 15.72 minutes , and x ≈ 18.11 minutes . 1.5 0 1 c. So during the first second, the point on the tire is more than 13 inches above the ground when 0.125 < t < 0.375 second and for 0.625 < t < 0.875 second. 70sin ( 0.65 x ) + 150 > 100 70sin ( 0.65 x ) > −50 sin ( 0.65 x ) > − 65. d ( x ) = 70sin ( 0.65 x ) + 150 a. Solve d ( x ) = 70sin ( 0.65 x ) + 150 > 100 on the interval [ 0, 20] . −1.5 5 on 7 the interval [ 0, 20] , we see that y1 > y2 for d ( 0 ) = 70sin ( 0.65 ( 0 ) ) + 150 Graphing y1 = sin ( 0.65 x ) and y2 = − = 70sin ( 0 ) + 150 = 150 miles 0 < x < 6.06 , 8.44 < x < 15.72 , and 18.11 < x < 20 . b. Solve d ( x ) = 70sin ( 0.65 x ) + 150 = 100 on 1.5 the interval [ 0, 20] . 70sin ( 0.65 x ) + 150 = 100 0 70sin ( 0.65 x ) = −50 sin ( 0.65 x ) = − 5 7 5 7 20 −1.5 So during the first 20 minutes in the holding pattern, the plane is more than 100 miles from the airport before 6.06 minutes, between 8.44 and 15.72 minutes, and after 18.11 minutes. ⎛ 5⎞ 0.65 x = sin −1 ⎜ − ⎟ + 2π k ⎝ 7⎠ ⎛ 5⎞ sin −1 ⎜ − ⎟ + 2π k ⎝ 7⎠ x= 0.65 d. No, the plane is never within 70 miles of the airport while in the holding pattern. The minimum value of sin ( 0.65x ) is −1 . Thus, the least distance that the plane is from the airport is 70 ( −1) + 150 = 80 miles. 298 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.7: Trigonometric Equations (I) 66. R (θ ) = 672sin ( 2θ ) a. 0.9330 + 0 2.2083 + 0 or θ = 2 2 ≈ 1.10415 ≈ 0.46665 For k = 0 , θ = Solve R (θ ) = 672sin ( 2θ ) = 450 on the ⎡ π⎞ interval ⎢ 0, ⎟ . ⎣ 2⎠ 672sin ( 2θ ) = 450 For k = 1 , θ = 450 225 = 672 336 ⎛ 225 ⎞ 2θ = sin −1 ⎜ ⎟ + 2kπ ⎝ 336 ⎠ ⎛ 225 ⎞ sin −1 ⎜ ⎟ + 2kπ 336 ⎠ ⎝ θ= 2 0.7337 + 2kπ 2.408 + 2kπ θ≈ or θ ≈ , 2 2 k is any integer sin ( 2θ ) = 0.7337 + 2π 2 c. ≈ 200.99° ≈ 248.98° 2 ≈ 4.246 Solve R (θ ) = 672sin ( 2θ ) ≥ 480 on the 480 672 5 sin ( 2θ ) ≥ 7 Graphing y1 = sin ( 2 x ) and y2 = 5 on the 7 ⎡ π⎞ interval ⎢ 0, ⎟ and using INTERSECT, we ⎣ 2⎠ see that y1 ≥ y2 when 0.3978 ≤ x ≤ 1.1730 radians, or 22.79° ≤ x ≤ 67.21° . 2 ≈ 4.3456 2.2083 + 2π sin ( 2θ ) ≥ 2.408 + 2π ≈ 3.508 or θ = ⎡ π⎞ interval ⎢ 0, ⎟ . ⎣ 2⎠ 672sin ( 2θ ) ≥ 480 ≈ 68.98° or θ = 2 ≈ 243.28° ≈ 206.72° So the golfer should hit the ball at an angle of either 26.74° or 63.26° . 0.7337 + 0 2.408 + 0 or θ = 2 2 ≈ 1.204 ≈ 0.36685 ≈ 21.02° 0.9330 + 2π ≈ 3.608 For k = 0 , θ = For k = 1 , θ = ≈ 63.26° ≈ 26.74° So the golfer should hit the ball at an angle of either 21.02° or 68.98° . 1.5 b. Solve R (θ ) = 672sin ( 2θ ) = 540 on the 0 ⎡ π⎞ interval ⎢ 0, ⎟ . ⎣ 2⎠ 672sin ( 2θ ) = 540 π _ 2 −1.5 1.5 540 135 = 672 168 ⎛ 135 ⎞ 2θ = sin −1 ⎜ ⎟ + 2kπ ⎝ 168 ⎠ ⎛ 135 ⎞ sin −1 ⎜ ⎟ + 2kπ 168 ⎠ ⎝ θ= 2 0.9333 + 2kπ 2.2083 + 2kπ θ≈ or θ ≈ , 2 2 k is any integer sin ( 2θ ) = 0 π _ 2 −1.5 So, the golf ball will travel at least 480 feet if the angle is between about 22.79° and 67.21° . d. No; since the maximum value of the sine function is 1, the farthest the golfer can hit the ball is 672 (1) = 672 feet. 299 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 67. 72. The index of refraction of crown glass is 1.52. sin 30º ≈ 1.52 sin θ 2 sin 40° = 1.33 sin θ 2 1.33sin θ 2 = sin 40° 1.52sin θ 2 = sin 30° sin 40° ≈ 0.4833 1.33 θ 2 = sin −1 ( 0.4833) ≈ 28.90° sin θ 2 = 68. sin 30° ≈ 0.3289 1.52 θ 2 ≈ sin −1 ( 0.3352 ) ≈ 19.20° sin θ 2 = sin 50° = 1.66 sin θ 2 The angle of refraction is about 19.20° . 73. If θ is the original angle of incidence and φ is 1.66sin θ 2 = sin 50° sin θ = n2 . The sin φ angle of incidence of the emerging beam is also 1 φ , and the index of refraction is . Thus, θ is n2 the angle of refraction of the emerging beam. The two beams are parallel since the original angle of incidence and the angle of refraction of the emerging beam are equal. sin 50° ≈ 0.4615 1.66 θ 2 = sin −1 ( 0.4615 ) ≈ 27.48° the angle of refraction, then sin θ 2 = 69. Calculate the index of refraction for each: v1 sin θ1 θ1 θ2 = v2 sin θ 2 sin10º ≈ 1.2477 10º 8º sin 8º sin 20º ≈ 1.2798 20º 15º 30 ' = 15.5º sin15.5º sin 30º ≈ 1.3066 30º 22º 30 ' = 22.5º sin 22.5º sin 40º 40º 29º 0 ' = 29º ≈ 1.3259 sin 29º sin 50º 50º 35º 0 ' = 35º ≈ 1.3356 sin 35º sin 60º 60º 40º 30 ' = 40.5º ≈ 1.3335 sin 40.5º sin 70º ≈ 1.3175 70º 45º 30 ' = 45.5º sin 45.5º sin 80º 80º 50º 0 ' = 50º ≈ 1.2856 sin 50º 74. Here we have n1 = 1.33 and n2 = 1.52 . n1 sin θ B = n2 cos B sin θ B n2 = cos θ B n1 Yes, these data values agree with Snell’s Law. The results vary from about 1.25 to 1.34. 70. tan θ B = n2 n1 θ B = tan −1 v1 2.998 × 108 = ≈ 1.56 v2 1.92 × 108 The index of refraction for this liquid is about 1.56. n2 ⎛ 1.52 ⎞ = tan −1 ⎜ ⎟ ≈ 48.8° n1 ⎝ 1.33 ⎠ 75. Answers will vary. 71. Calculate the index of refraction: sin θ1 sin 40º θ1 = 40º , θ 2 = 26º ; = ≈ 1.47 sin θ 2 sin 26º 300 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.8: Trigonometric Equations (II) Section 3.8 5. 4 x2 − x − 5 = 0 1. cos θ = 0 ( 4 x − 5)( x + 1) = 0 ( −1) − 4 (1)( −1) 2 (1) 2 cos θ = − sin 2 θ − 1 = 0 6. (sin θ + 1)(sin θ − 1) = 0 sin θ + 1 = 0 1± 1+ 4 2 1± 5 = 2 or sin θ = −1 θ= sin θ − 1 = 0 sin θ = 1 3π 2 θ= π 2 ⎧ π 3π ⎫ The solution set is ⎨ , ⎬. ⎩2 2 ⎭ ⎪⎧1 − 5 1 + 5 ⎪⎫ , ⎬. 2 ⎭⎪ ⎩⎪ 2 The solution set is ⎨ 7. (2 x − 1) 2 − 3(2 x − 1) − 4 = 0 [(2 x − 1) + 1][(2 x − 1) − 4] = 0 2sin 2 θ − sin θ − 1 = 0 (2sin θ + 1)(sin θ − 1) = 0 2sin θ + 1 = 0 2 x(2 x − 5) = 0 2 x = 0 or 2 x − 5 = 0 5 x = 0 or x= 2 ⎧ 5⎫ The solution set is ⎨0, ⎬ . ⎩ 2⎭ or 2sin θ = −1 sin θ − 1 = 0 sin θ = 1 π 1 θ= 2 2 7 π 11π θ= , 6 6 ⎧ π 7π 11π ⎫ , The solution set is ⎨ , ⎬. 6 ⎭ ⎩2 6 sin θ = − 4. 5 x3 − 2 = x − x 2 Let y1 = 5 x3 − 2 and y2 = x − x 2 . Use INTERSECT to find the solution(s): 8. 2 cos 2 θ + cos θ − 1 = 0 (cos θ + 1)(2 cos θ − 1) = 0 6 cos θ + 1 = 0 cos θ = −1 6 −6 2 cos θ = −1 1 2 2π 4π θ= , 3 3 ⎧ π 2π 4π 3π ⎫ The solution set is ⎨ , , , ⎬. 3 2 ⎭ ⎩2 3 = 3. 2 cos θ + 1 = 0 π 3π 2 2 2. x 2 − x − 1 = 0 x= or θ= , 4 x − 5 = 0 or x + 1 = 0 5 x= or x = −1 4 5⎫ ⎧ The solution set is ⎨−1, ⎬ . 4⎭ ⎩ − ( −1) ± 2 cos 2 θ + cos θ = 0 cos θ (2 cos θ + 1) = 0 θ =π or 2 cos θ − 1 = 0 2 cos θ = 1 1 2 π 5π θ= , 3 3 5π ⎫ ⎧π The solution set is ⎨ , π , ⎬. 3 ⎭ ⎩3 −6 In this case, the graphs only intersect in one location, so the equation has only one solution. Rounding as directed, the solutions set is {0.76} . cos θ = 301 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 9. (tan θ − 1)(sec θ − 1) = 0 tan θ − 1 = 0 or sec θ − 1 = 0 tan θ = 1 sec θ = 1 π 5π θ =0 θ= , 4 4 ⎧ π 5π ⎫ The solution set is ⎨0, , ⎬. ⎩ 4 4 ⎭ 1 − cos 2 θ = 6 cos θ + 6 cos 2 θ + 6 cos θ + 5 = 0 ( cos θ + 5 )( cos θ + 1) = 0 cos θ + 5 = 0 θ= 3π 7 π , 4 4 ( 2 2 2 − 2 cos θ = 3 − 3cos θ 2 2 cos θ − 3cos θ + 1 = 0 2 ( 2 cos θ − 1)( cos θ − 1) = 0 2 cos θ − 1 = 0 1 cos θ = 2 θ = 1 + cos θ θ= 1 − 2 cos θ = 1 + cos θ 2 ( cos θ )( 2 cos θ + 1) = 0 θ= or 2 cos θ + 1 = 0 π 3π cos θ = − , 2 2 15. 1 2 2 2 3 2 π 2π θ= , 3 3 ⎧ π 2π , The solution set is ⎨ , ⎩3 3 θ + sin θ = 0 1 − 2sin θ + sin θ = 0 2sin 2 θ − sin θ − 1 = 0 ( 2sin θ + 1)( sin θ − 1) = 0 sin θ = − or 1 2 16. sin θ = 1 θ= , 4π 5π , 3 3 4π 5π ⎫ , ⎬. 3 3 ⎭ cos ( 2θ ) = 2 − 2sin 2 θ 1 − 2sin 2 θ = 2 − 2sin 2 θ 1 = 2 (not possible) The equation has no real solution. sin θ − 1 = 0 7π 11π θ= , 6 6 ⎧ π 7π 11π ⎫ The solution set is ⎨ , , ⎬. 6 ⎭ ⎩2 6 cos ( 2θ ) + 6sin 2 θ = 4 sin θ = ± 2 2sin θ + 1 = 0 , 3 3 4sin 2 θ = 3 3 sin 2 θ = 4 cos 2 θ − sin 2 θ + sin θ = 0 (1 − sin θ ) − sin π 5π cos θ − 1 = 0 cos θ = 1 θ =0 1 − 2sin 2 θ + 6sin 2 θ = 4 2π 4π θ= , 3 3 ⎧ π 2π 4π 3π ⎫ , , The solution set is ⎨ , ⎬. 3 2 ⎭ ⎩2 3 12. or ⎧ π 5π ⎫ The solution set is ⎨0, , ⎬. ⎩ 3 3 ⎭ 2 cos 2 θ + cos θ = 0 cos θ = 0 ) 2 1 − cos 2 θ = 3 (1 − cos θ ) sin 2 θ − cos 2 θ = 1 + cos θ (1 − cos θ ) − cos 2sin 2 θ = 3 (1 − cos θ ) 14. ⎧ 3π 7π ⎫ The solution set is ⎨ , ⎬. 4 ⎭ ⎩ 4 11. θ =π The solution set is {π } . 1 =0 2 1 csc θ = 2 (not possible) cot θ = −1 cos θ = −1 (not possible) csc θ − or cos θ + 1 = 0 or cos θ = −5 1⎞ ⎛ 10. (cot θ + 1) ⎜ csc θ − ⎟ = 0 2⎠ ⎝ cot θ + 1 = 0 sin 2 θ = 6 ( cos θ + 1) 13. π 2 302 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.8: Trigonometric Equations (II) 17. cos θ = sin θ sin θ =1 cos θ tan θ = 1 π 5π θ= , 4 4 21. ⎧ π 5π ⎫ The solution set is ⎨ , ⎬. ⎩4 4 ⎭ 18. cos θ + sin θ sin θ sin θ cos θ tan θ ⎧ π 3π ⎫ The solution set is ⎨ , ⎬. ⎩2 2 ⎭ =0 = − cos θ 22. tan θ = cot θ 1 tan θ = tan θ tan 2 θ = 1 tan θ = ±1 π 3π 5π 7 π θ= , , , 4 4 4 4 ⎧ π 3π 5π 7π ⎫ , , The solution set is ⎨ , ⎬. 4 4 ⎭ ⎩4 4 23. cos(2θ ) = cos θ = −1 = −1 3π 7 π θ= , 4 4 ⎧ 3π 7π ⎫ The solution set is ⎨ , ⎬. 4 ⎭ ⎩4 19. 20. sin θ = csc θ 1 sin θ = sin θ sin 2 θ = 1 sin θ = ±1 π 3π θ= , 2 2 tan θ = 2sin θ sin θ = 2sin θ cos θ sin θ = 2sin θ cos θ 0 = 2sin θ cos θ − sin θ 0 = sin θ (2 cos θ − 1) 2 cos θ − 1 = 0 or sin θ = 0 θ = 0, π 1 cos θ = 2 π 5π θ= , 3 3 5π ⎫ ⎧ π The solution set is ⎨0, , π , ⎬. 3 3 ⎭ ⎩ 2 cos 2 θ − 1 = cos θ 2 cos 2 θ − cos θ − 1 = 0 (2 cos θ + 1)(cos θ − 1) = 0 2 cos θ + 1 = 0 or cos θ − 1 = 0 1 cos θ = 1 cos θ = − 2 θ =0 2π 4π θ= , 3 3 ⎧ 2π 4π ⎫ , The solution set is ⎨0, ⎬. 3 3 ⎭ ⎩ 24. sin(2θ ) = cos θ 2sin θ cos θ = cos θ 2sin θ cos θ − cos θ = 0 (cos θ )(2sin θ − 1) = 0 cos θ = 0 or 2sin θ = 1 cos θ = 0 1 sin θ = 2 π 3π θ= , π 5π 2 2 θ= , 6 6 ⎧ π π 5π 3π ⎫ The solution set is ⎨ , , , ⎬. 2 ⎭ ⎩6 2 6 sin(2θ ) sin θ = cos θ 2sin θ cos θ sin θ = cos θ 2sin 2 θ cos θ − cos θ = 0 (2sin 2 θ − 1) cos θ = 0 2sin 2 θ − 1 = 0 1 sin 2 θ = 2 or cos θ = 0 π 3π θ= , 2 2 2 2 π 3π 5π 7π θ= , , , 4 4 4 4 ⎧ π π 3π 5π 3π 7π ⎫ The solution set is ⎨ , , , , , ⎬ . ⎩4 2 4 4 2 4 ⎭ sin θ = ± 303 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 25. sin(2θ ) + sin(4θ ) = 0 sin(2θ ) + 2sin(2θ ) cos(2θ ) = 0 sin(2θ ) (1 + 2 cos(2θ ) ) = 0 sin(2θ ) = 0 ⎛ 4θ − 6θ 2sin ⎜ ⎝ 1 + 2 cos(2θ ) = 0 1 cos(2θ ) = − 2 2θ = 0 + 2k π or 2θ = π + 2k π or θ = kπ π θ = + kπ 2 2π 4π 2θ = + 2k π or 2θ = + 2k π 3 3 π 2π θ = + kπ θ= + kπ 3 3 On the interval 0 ≤ θ < 2π , the solution set is 4π 3π 5π ⎫ ⎧ π π 2π , π, , , ⎨0, , , ⎬. 3 2 3 3 2 3 ⎭ ⎩ or π 3π + 2k π + 2k π or 5θ = 2 2 π 2k π 3π 2k π θ= + θ= + 10 5 10 5 On the interval 0 ≤ θ < 2π , the solution set is 11π 13π 3π 17π 19π ⎫ ⎧ π 3π π 7π 9π , , , , ⎨0, , , , , , π , ⎬. 5θ = ⎩ 10 10 2 10 10 29. π 3π + 2k π or 3θ = + 2k π or 2 2 π 2k π π 2k π θ= + θ= + 6 3 2 3 π 3π θ = + 2k π or θ = + 2k π 2 2 On the interval 0 ≤ θ < 2π , the solution set is ⎧ π π 5π 7π 3π 11π ⎫ , , , ⎨ , , ⎬. 6 2 6 ⎭ ⎩6 2 6 3θ = 30. sin 2 θ = 2 cos θ + 2 2 =0 cos θ + 1 = 0 cos θ = −1 θ =π The solution set is {π } . 2sin ( 5θ ) sin θ = 0 5 1 + sin θ = 2 cos 2 θ ( cos θ + 1) sin(5θ ) = 0 or sin θ = 0 5θ = 0 + 2k π or 5θ = π + 2k π or 2k π π 2k π θ= θ= + 5 5 5 θ = 0 + 2k π or θ = π + 2k π On the interval 0 ≤ θ < 2π , the solution set is 6π 7π 8π 9π ⎫ ⎧ π 2π 3π 4π ⎨0, , , , , π , , , , ⎬ . 5 10 ⎭ cos 2 θ + 2 cos θ + 1 = 0 4θ + 6θ ⎞ ⎛ 4θ − 6θ ⎞ = 0 −2sin ⎛⎜ ⎟ sin ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ − 2sin(5θ ) sin(− θ ) = 0 5 10 1 − cos 2 θ = 2 cos θ + 2 cos(4θ ) − cos(6θ ) = 0 5 2 2sin 2 θ + sin θ − 1 = 0 (2sin θ − 1)(sin θ + 1) = 0 2sin θ − 1 = 0 or sin θ + 1 = 0 1 sin θ = −1 sin θ = 2 3π θ= π 5π 2 θ= , 6 6 ⎧ π 5π 3π ⎫ The solution set is ⎨ , , ⎬. 2 ⎭ ⎩6 6 cos(3θ ) = 0 or cos θ = 0 5 10 1 + sin θ = 2 − 2sin 2 θ 2 cos ( 3θ ) cos θ = 0 ⎩ 5 5 10 1 + sin θ = 2(1 − sin 2 θ ) ⎛ 2θ + 4θ ⎞ ⎛ 2θ − 4θ ⎞ 2 cos ⎜ ⎟ cos ⎜ ⎟=0 ⎝ 2 ⎠ ⎝ 2 ⎠ 2 cos(3θ ) cos(− θ ) = 0 27. ⎞ cos ⎛ 4θ + 6θ ⎞ = 0 ⎟ ⎜ ⎟ 2 ⎠ ⎝ 2 ⎠ 2sin(− θ ) cos(5θ ) = 0 − 2sin θ cos(5θ ) = 0 cos(5θ ) = 0 or sin θ = 0 θ = 0 + 2k π or θ = π + 2k π or cos(2θ ) + cos(4θ ) = 0 26. sin(4θ ) − sin(6θ ) = 0 28. 31. 2sin 2 θ − 5sin θ + 3 = 0 ( 2sin θ − 3)( sin θ + 1) = 0 2sin θ − 3 = 0 or sin θ − 1 = 0 3 π sin θ = (not possible) θ= 2 2 ⎧π ⎫ The solution set is ⎨ ⎬ . ⎩2⎭ 5 ⎭ 304 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.8: Trigonometric Equations (II) 32. 2 cos 2 θ − 7 cos θ − 4 = 0 36. ( 2 cos θ + 1)( cos θ − 4 ) = 0 2 cos θ + 1 = 0 or 1 + cot 2 θ = cot θ + 1 cos θ − 4 = 0 cos θ = 4 (not possible) cot 2 θ − cot θ = 0 cot θ (cot θ − 1) = 0 1 2 2π 4 π θ= , 3 3 ⎧ 2π 4π ⎫ The solution set is ⎨ , ⎬. 3 ⎭ ⎩ 3 sin θ = − 33. cot θ = 0 or cot θ = 1 3 π π π 5π θ= , θ= , 2 2 4 4 π π 5π 3π ⎫ ⎧ The solution set is ⎨ , , , ⎬. 2 ⎭ ⎩4 2 4 3(1 − cos θ ) = sin 2 θ 37. 3 − 3cos θ = 1 − cos θ 2 2sin 2 θ − sin θ + 2 = 0 This equation is quadratic in sin θ . The discriminant is b 2` − 4ac = 1 − 16 = −15 < 0 . The equation has no real solutions. ( cos θ − 1)( cos θ − 2 ) = 0 cos θ − 1 = 0 or cos θ − 2 = 0 cos θ = 1 cos θ = 2 θ =0 (not possible) 38. The solution set is {0} . 2 cos 2 θ + 5cos θ + 2 = 0 (2 cos θ + 1)(cos θ + 2) = 0 4 + 4sin θ = 1 − sin 2 θ 2 cos θ = −1 1 cos θ = − 2 2π 4π θ= , 3 3 sin 2 θ + 4sin θ + 3 = 0 ( sin θ + 1)( sin θ + 3) = 0 or sin θ + 3 = 0 sin θ = −3 (not possible) or cos θ = − 2 (not possible) ⎧ 2π 4π ⎫ The solution set is ⎨ , ⎬. 3 ⎭ ⎩ 3 ⎧ 3π ⎫ The solution set is ⎨ ⎬ . ⎩2 ⎭ 35. cos(2θ ) + 5cos θ + 3 = 0 2 cos 2 θ − 1 + 5cos θ + 3 = 0 4(1 + sin θ ) = cos 2 θ sin θ + 1 = 0 sin θ = −1 3π θ= 2 3 − sin θ = cos(2θ ) 3 − sin θ = 1 − 2sin 2 θ cos 2 θ − 3cos θ + 2 = 0 34. csc2 θ = cot θ + 1 39. sec 2 θ + tan θ = 0 tan 2 θ + 1 + tan θ = 0 This equation is quadratic in tan θ . The discriminant is b 2` − 4ac = 1 − 4 = −3 < 0 . The equation has no real solutions. 3 tan 2 θ = sec θ 2 3 2 sec θ − 1 = sec θ 2 2 2sec θ − 2 = 3sec θ 2sec2 θ − 3sec θ − 2 = 0 (2sec θ + 1)(sec θ − 2) = 0 2sec θ + 1 = 0 or sec θ − 2 = 0 1 sec θ = 2 sec θ = − 2 π 5π θ= , (not possible) 3 3 ⎧ π 5π ⎫ The solution set is ⎨ , ⎬. ⎩3 3 ⎭ 305 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 40. sec θ 1 cos θ 1 cos θ 1 cos θ sin θ cos θ cos θ sin θ = tan θ + cot θ sin θ cos θ = + cos θ sin θ sin 2 θ + cos 2 θ = sin θ cos θ 1 = sin θ cos θ 42. =1 =1 π 2 ⎛π⎞ ⎛π⎞ Since sec ⎜ ⎟ and tan ⎜ ⎟ do not exist, the 2 ⎝ ⎠ ⎝2⎠ equation has no real solutions. θ= 41. sin θ − 3 cos θ = 1 Divide each side by 2: 1 3 1 sin θ − cos θ = 2 2 2 Rewrite in the difference of two angles form π 1 3 using cos φ = , sin φ = , and φ = : 3 2 2 1 sin θ cos φ − cos θ sin φ = 2 1 sin(θ − φ ) = 2 π 5π or θ − φ = θ −φ = 6 6 π π π 5π θ− = θ− = 3 6 3 6 π 7π θ= θ= 2 6 3 sin θ + cos θ = 1 Divide each side by 2: 3 1 1 sin θ + cos θ = 2 2 2 Rewrite in the sum of two angles form using π 1 3 , sin φ = , and φ = : cos φ = 6 2 2 1 sin θ cos φ + cos θ sin φ = 2 1 sin(θ + φ ) = 2 π 5π or θ + φ = θ +φ = 6 6 π π π 5π or θ + = θ+ = 6 6 6 6 2π θ = 0 or θ= 3 ⎧ 2π ⎫ The solution set is ⎨0, ⎬. 3 ⎭ ⎩ tan(2θ ) + 2sin θ = 0 43. sin(2θ ) + 2sin θ = 0 cos(2θ ) sin 2θ + 2sin θ cos 2θ =0 cos 2θ 2sin θ cos θ + 2sin θ (2 cos 2 θ − 1) = 0 ( 2sin θ ( 2 cos ) θ + cos θ − 1) = 0 2sin θ cos θ + 2 cos 2 θ − 1 = 0 2 2sin θ (2 cos θ − 1)(cos θ + 1) = 0 2 cos θ − 1 = 0 or 2sin θ = 0 1 2 π 5π θ= , 3 3 cos θ = ⎧ π 7π ⎫ The solution set is ⎨ , ⎬. ⎩2 6 ⎭ or sin θ = 0 θ = 0, π cos θ + 1 = 0 cos θ = −1 θ =π 5π ⎫ ⎧ π The solution set is ⎨0, , π , ⎬. 3 3 ⎭ ⎩ 306 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.8: Trigonometric Equations (II) tan(2θ ) + 2 cos θ = 0 44. Rewrite in the sum of two angles form using 1 1 π , sin φ = , and φ = : cos φ = 4 2 2 sin θ cos φ + cos θ sin φ = −1 sin(θ + φ ) = −1 3π θ +φ = 2 π 3π θ+ = 4 2 5π θ= 4 ⎧ 5π ⎫ The solution set is ⎨ ⎬ . ⎩ 4 ⎭ sin(2θ ) + 2 cos θ = 0 cos(2θ ) sin ( 2θ ) + 2 cos θ cos 2θ cos ( 2θ ) =0 2sin θ cos θ + 2 cos θ (1 − 2sin 2 θ ) = 0 ( − 2 cos θ ( 2sin ) θ − sin θ − 1) = 0 2 cos θ sin θ + 1 − 2sin 2 θ = 0 2 − 2 cos θ (2sin θ + 1)(sin θ − 1) = 0 −2 cos θ = 0 or 2sin θ + 1 = 0 cos θ = 0 π 3π 2 2 θ= , or 1 2 7π 11π θ= , 6 6 sin θ = − 47. sin θ − 1 = 0 sin θ = 1 θ= f ( x) = 0 4 cos x − 1 = 0 1 cos 2 x = 4 2 π 2 cos x = ± ⎧ π 7π 3π 11π ⎫ , , The solution set is ⎨ , ⎬. 2 6 ⎭ ⎩2 6 1 1 =± 4 2 The zeros on 0 ≤ x < 2π are 48. 45. sin θ + cos θ = 2 Divide each side by 2 : 1 1 sin θ + cos θ = 1 2 2 Rewrite in the sum of two angles form using 1 1 π cos φ = , sin φ = , and φ = : 4 2 2 sin θ cos φ + cos θ sin φ = 1 sin(θ + φ ) = 1 π θ +φ = 2 π π θ+ = 4 2 π θ= 4 ⎧π ⎫ The solution set is ⎨ ⎬ . ⎩4⎭ π 2π 4π 5π , 3 3 , 3 , 3 . f ( x) = 0 4sin x − 3 = 0 4sin 2 x = 3 3 sin 2 x = 4 2 cos x = ± 3 3 =± 4 2 The zeros on 0 ≤ x < 2π are 49. π 2π 4π 5π , 3 , 3 . or 2 cos x − 1 = 0 1 cos x = 2 x= π 5π 3 The zeros on 0 ≤ x < 2π are 0, Divide each side by 2 : 1 1 sin θ + cos θ = −1 2 2 3 f ( x) = 0 sin ( 2 x ) − sin x = 0 2sin x cos x − sin x = 0 sin x ( 2 cos x − 1) = 0 sin x = 0 x = 0, π 46. sin θ + cos θ = − 2 , 3 , π 3 3 ,π , 5π . 3 307 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 50. f ( x) = 0 cos ( 2 x ) + cos x = 0 2 cos 2 x − 1 + cos x = 0 2 cos 2 x + cos x − 1 = 0 ( 2 cos x − 1)( cos x + 1) = 0 2 cos x − 1 = 0 1 cos x = 2 x= π 5π 3 , 10 3π −3π −10 10 π 3 ,π , −10 f ( x) = 0 2 sin x + 2 cos x + 2 = 0 1 − cos 2 x + 2 cos x + 2 = 0 − cos 2 x + 2 cos x + 3 = 0 cos 2 x − 2 cos x − 3 = 0 ( cos x − 3)( cos x + 1) = 0 x ≈ −1.31, 1.98, 3.84 54. x − 4sin x = 0 Find the zeros (x-intercepts) of Y1 = x − 4sin x : 10 3π −3π −10 10 3π −10 3π −3π −10 π 3π x ≈ − 2.47, 0, 2.47 , 2 2 The zeros on 0 ≤ x < 2π are 10 −3π f ( x) = 0 cos ( 2 x ) + sin 2 x = 0 cos 2 x − sin 2 x + sin 2 x = 0 cos 2 x = 0 cos x = 0 x= 3π −3π 5π . 3 3π −10 3 cos x − 3 = 0 or cos x + 1 = 0 cos x = 3 cos x = −1 (not possible) x =π The only zero on 0 ≤ x < 2π is π . 52. 10 −3π or cos x + 1 = 0 cos x = −1 x =π The zeros on 0 ≤ x < 2π are 51. 53. x + 5cos x = 0 Find the zeros (x-intercepts) of Y1 = x + 5cos x : π 3π , 2 2 55. 22 x − 17 sin x = 3 Find the intersection of Y1 = 22 x − 17 sin x and Y2 = 3 : . 5 π −π −5 x ≈ 0.52 308 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.8: Trigonometric Equations (II) 56. 19 x + 8cos x = 2 Find the intersection of Y1 = 19 x + 8cos x and Y2 = 2 : 60. x 2 + 3sin x = 0 Find the zeros (x-intercepts) of Y1 = x 2 + 3sin x : 3 5 π −π −π π −π 3 π −3 −5 −3 x ≈ −1.72, 0 x ≈ − 0.30 61. x 2 − 2sin ( 2 x ) = 3 x 57. sin x + cos x = x Find the intersection of Y1 = sin x + cos x and Y2 = x : Find the intersection of Y1 = x 2 − 2sin ( 2 x ) and Y2 = 3 x : 3 12 12 π −π __ 3π −π −π __ 3π 2 −3 2 −3 x ≈ 1.26 −3 x ≈ 0, 2.15 58. sin x − cos x = x Find the intersection of Y1 = sin x − cos x and Y2 = x : 62. x 2 = x + 3cos(2 x) Find the intersection of Y1 = x 2 and Y2 = x + 3cos(2 x) : 3 10 10 π −π 2π −2π −2π 2π −3 x ≈ −1.26 −5 x ≈ − 0.62, 0.81 59. x 2 − 2 cos x = 0 Find the zeros (x-intercepts) of Y1 = x 2 − 2 cos x : 3 −3 63. 6sin x − e x = 2, x > 0 3 π −π −π −5 Find the intersection of Y1 = 6sin x − e x and Y2 = 2 : π 6 −3 6 2π 0 0 2π x ≈ −1.02, 1.02 −6 −6 x ≈ 0.76, 1.35 309 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry d. Graph Y1 = 16sin x ( cos x + 1) and use the 64. 4 cos(3 x) − e x = 1, x > 0 MAXIMUM feature: Find the intersection of Y1 = 4 cos(3 x) − e and Y2 = 1 : x 25 6 π 0 0 The maximum area is approximately 20.78 in.2 when the angle is 60˚. −6 x ≈ 0.31 65. a. 66. a. cos(2θ ) + cos θ = 0 , 0º < θ < 90º 2 cos 2 θ + cos θ − 1 = 0 (2 cos θ − 1)(cos θ + 1) = 0 2 cos θ − 1 = 0 or cos θ + 1 = 0 1 cos θ = −1 2 θ = 180º θ = 60º , 300º On the interval 0º < θ < 90º , the solution is 60˚. cos θ = cos(2θ ) + cos θ = 0, 0º < θ < 90º ⎛ 3θ ⎞ ⎛θ ⎞ 2 cos ⎜ ⎟ cos ⎜ ⎟ = 0 ⎝ 2 ⎠ ⎝2⎠ ⎛ 3θ ⎞ ⎛θ ⎞ cos ⎜ ⎟ = 0 or cos ⎜ ⎟ = 0 2 ⎝ ⎠ ⎝2⎠ 3θ 3θ θ θ = 90º ; = 270º ; = 90º ; = 270º ; 2 2 2 2 θ =60º θ =180º θ = 180º θ = 540º On the interval 0º < θ < 90º , the solution is 60˚. c. b. sin(2θ ) = − cos(2θ ) 3⎛1 ⎞ ⎜ + 1⎟ 2 ⎝2 ⎠ = 12 3 in ≈ 20.78 in 2 sin(2θ ) + cos(2θ ) = 0 sin(2θ ) = −1 cos(2θ ) tan(2θ ) = −1 A(60º ) = 16sin ( 60º ) ⎡⎣cos ( 60º ) + 1⎤⎦ = 16 ⋅ sin(2θ ) + cos(2θ ) = 0 Divide each side by 2 : 1 1 sin(2θ ) + cos(2θ ) = 0 2 2 Rewrite in the sum of two angles form using 1 1 π cos φ = and sin φ = and φ = : 4 2 2 sin(2θ ) cos φ + cos(2θ ) sin φ = 0 sin(2θ + φ ) = 0 2θ + φ = 0 + k π π 2θ + = 0 + k π 4 π 2θ = − + k π 4 π kπ θ =− + 8 2 3π θ= = 67.5º 8 2 cos 2 θ − 1 + cos θ = 0 b. 90 0 3π 4 3π θ= = 67.5º 8 2θ = 2 310 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Section 3.8: Trigonometric Equations (II) c. R= b. 322 2 ( sin(2 ⋅ 67.5º ) − cos(2 ⋅ 67.5º ) − 1) 32 3sec θ tan θ − 4 csc θ cot θ = 0 3sec θ tan θ = 4 csc θ cot θ sec θ tan θ 4 = csc θ cot θ 3 4 tan 3 θ = 3 = 32 2 ( sin (135º ) − cos (135º ) − 1) ⎛ 2 ⎛ 2⎞ ⎞ = 32 2 ⎜ − ⎜⎜ − ⎟⎟ − 1⎟⎟ ⎜ 2 ⎝ 2 ⎠ ⎠ ⎝ = 32 2 ( ( ) 4 ≈ 1.10064 3 θ ≈ 47.74º 2 −1 ) tan θ = = 32 2 − 2 feet ≈ 18.75 feet 322 2 ( sin(2 x) − cos(2 x) − 1) 32 and use the MAXIMUM feature: c. d. Graph Y1 = L ( 47.74º ) = 3 3 4 + cos ( 47.74º ) sin ( 47.74º ) ≈ 9.87 feet 20 3 4 + and use the cos x sin x MINIMUM feature: d. Graph Y1 = 20 45 90 0 The angle that maximizes the distance is 67.5˚, and the maximum distance is 18.75 feet. 0 An angle of θ ≈ 47.74° minimizes the length at L ≈ 9.87 feet . 67. Find the first two positive intersection points of Y1 = − x and Y2 = tan x . 2 e. 2 2π 0 0 −12 2π −12 The first two positive solutions are x ≈ 2.03 and x ≈ 4.91 . 68. a. 69. a. Let L be the length of the ladder with x and y being the lengths of the two parts in each hallway. L = x+ y 3 cos θ = x x= L(θ ) = 3 cos θ For this problem, only one minimum length exists. This minimum length is 9.87 feet, and it occurs when θ ≈ 47.74° . No matter if we find the minimum algebraically (using calculus) or graphically, the minimum will be the same. 107 = (34.8) 2 sin ( 2θ ) 9.8 107(9.8) ≈ 0.8659 sin ( 2θ ) = (34.8) 2 2θ ≈ sin −1 ( 0.8659 ) 2θ ≈ 60º or 120º 4 sin θ = y y= 90 0 θ ≈ 30º or 60º b. Notice that the answers to part (a) add up to 90° . The maximum distance will occur when the angle of elevation is 90° ÷ 2 = 45° : (34.8) 2 sin ⎡⎣ 2 ( 45° ) ⎤⎦ ≈ 123.6 R ( 45° ) = 9.8 The maximum distance is 123.6 meters. 4 sin θ 3 4 + = 3sec θ + 4 csc θ cos θ sin θ 311 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry c. Let Y1 = 125 Chapter 3 Review Exercises (34.8) 2 sin(2 x) 9.8 1. sin −1 1 Find the angle θ , − π π ≤ θ ≤ , whose sine 2 2 equals 1. 0 90 0 sin θ = 1, d. θ= − π 2 π π ≤θ ≤ 2 2 Thus, sin −1 (1) = 70. a. 2. cos −1 0 Find the angle θ , 0 ≤ θ ≤ π, whose cosine equals 0. cos θ = 0, 0 ≤ θ ≤ π π θ= 2 π Thus, cos −1 ( 0 ) = . 2 (40) 2 sin(2θ ) 9.8 110 ⋅ 9.8 sin(2θ ) = ≈ 0.67375 402 2θ ≈ sin −1 ( 0.67375 ) 110 = 3. tan −1 1 2θ ≈ 42.4º or 137.6º θ ≈ 21.2º or 68.8º Find the angle θ , − Let Y1 = 170 tan θ = 1, θ= π 4 − π π <θ < 2 2 Thus, tan −1 (1) = (40) 2 sin(2 x) : 9.8 π . 4 ⎛ 1⎞ 4. sin −1 ⎜ − ⎟ ⎝ 2⎠ Find the angle θ , − 0 0 π π < θ < , whose tangent 2 2 equals 1. b. The maximum distance will occur when the angle of elevation is 45° : (40) 2 sin [ 2(45°) ] R ( 45° ) = ≈ 163.3 9.8 The maximum distance is approximately 163.3 meter c. π . 2 π π ≤ θ ≤ , whose sine 2 2 1 equals − . 2 1 π π sin θ = − , − ≤ θ ≤ 2 2 2 π θ =− 6 π ⎛ 1⎞ Thus, sin −1 ⎜ − ⎟ = − . 6 ⎝ 2⎠ 90 d. 312 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Review Exercises ⎛ 3⎞ 5. cos −1 ⎜⎜ − ⎟⎟ ⎝ 2 ⎠ Find the angle θ , 0 ≤ θ ≤ π, whose cosine ⎛ ⎛ 3π 9. sin −1 ⎜⎜ sin ⎜ ⎝ ⎝ 8 ( ( θ =− π 3 ( ( ) π . 3 ( ⎞⎞ ⎟ ⎟⎟ follows the form of the ⎠⎠ ) ( ) cannot use the formula directly since 2π is not 3 ⎡ π π⎤ in the interval ⎢ − , ⎥ . We need to find an ⎣ 2 2⎦ ⎡ π π⎤ angle θ in the interval ⎢ − , ⎥ for which ⎣ 2 2⎦ 2π ⎛ 2π ⎞ is in quadrant tan ⎜ ⎟ = tan θ . The angle 3 3 ⎝ ⎠ II so tangent is negative. Therefore, we want θ to be in quadrant IV so tangent will still be ⎡ π π⎤ negative and in the interval ⎢ − , ⎥ . Thus, we ⎣ 2 2⎦ 0 ≤θ ≤ π Thus, sec −1 2 = ) equation f −1 f ( x ) = tan −1 tan ( x ) = x but we 2. sec θ = 2, π θ= 4 ( ⎛ ⎛ 2π 11. tan −1 ⎜⎜ tan ⎜ ⎝ 3 ⎝ 7. sec −1 2 Find the angle θ , 0 ≤ θ ≤ π, whose secant equals ) 3π ⎞ 3π ⎛ directly and get cos −1 ⎜ cos ⎟ = . 4 ⎠ 4 ⎝ π π <θ < 2 2 Thus, tan −1 − 3 = − ) 3π ⎞ ⎛ 10. cos −1 ⎜ cos ⎟ follows the form of the equation 4 ⎠ ⎝ 3π f −1 f ( x ) = cos −1 cos ( x ) = x . Since is 4 in the interval ⎡⎣ 0, π ⎤⎦ , we can apply the equation π π Find the angle θ , − < θ < , whose tangent 2 2 equals − 3 . − ( 3π ⎡ π π⎤ is in the interval ⎢ − , ⎥ , we can apply 8 ⎣ 2 2⎦ the equation directly and get ⎛ ⎛ 3π ⎞ ⎞ 3π . sin −1 ⎜⎜ sin ⎜ ⎟ ⎟⎟ = ⎝ ⎝ 8 ⎠⎠ 8 ) tan θ = − 3, ) equation f −1 f ( x ) = sin −1 sin ( x ) = x . Since 3 equals − . 2 3 cos θ = − , 0 ≤θ ≤ π 2 5π θ= 6 ⎛ 3 ⎞ 5π Thus, cos −1 ⎜⎜ − . ⎟⎟ = ⎝ 2 ⎠ 6 6. tan −1 − 3 ⎞⎞ ⎟ ⎟⎟ follows the form of the ⎠⎠ π . 4 8. cot −1 ( −1) Find the angle θ , 0 < θ < π , whose cotangent equals −1 . cot θ = −1, 0 < θ < π 3π θ= 4 3π Thus, cot −1 ( −1) = . 4 π ⎛ 2π ⎞ ⎛ π⎞ have tan ⎜ ⎟ = tan ⎜ − ⎟ . Since − is in the 3 ⎝ 3 ⎠ ⎝ 3⎠ ⎡ π π⎤ interval ⎢ − , ⎥ , we can apply the equation ⎣ 2 2⎦ above and get ⎛ π ⎛ 2π ⎞ ⎞ ⎛ π ⎞⎞ −1 ⎛ tan −1 ⎜⎜ tan ⎜ ⎟ ⎟⎟ = tan ⎜⎜ tan ⎜ − ⎟ ⎟⎟ = − . 3 ⎝ 3 ⎠⎠ ⎝ 3 ⎠⎠ ⎝ ⎝ 313 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry ⎡ π π⎤ negative and in the interval ⎢ − , ⎥ . Thus, we ⎣ 2 2⎦ π ⎛ 8π ⎞ ⎛ π⎞ have sin ⎜ − ⎟ = sin ⎜ − ⎟ . Since − is in 9 9 9 ⎝ ⎠ ⎝ ⎠ ⎛ ⎛ π ⎞⎞ 12. sin −1 ⎜⎜ sin ⎜ − ⎟ ⎟⎟ follows the form of the ⎝ ⎝ 8 ⎠⎠ ( ) ( ) equation f −1 f ( x ) = sin −1 sin ( x ) = x . Since π ⎡ π π⎤ is in the interval ⎢ − , ⎥ , we can apply 8 ⎣ 2 2⎦ the equation directly and get ⎛ ⎛ π ⎞⎞ π sin −1 ⎜⎜ sin ⎜ − ⎟ ⎟⎟ = − . 8 ⎝ ⎝ 8 ⎠⎠ − ⎛ ⎛ 15π 13. cos −1 ⎜⎜ cos ⎜ ⎝ 7 ⎝ ( ⎡ π π⎤ the interval ⎢ − , ⎥ , we can apply the equation ⎣ 2 2⎦ above and get ⎛ ⎛ 8π ⎞ ⎞ ⎛ ⎛ π ⎞⎞ π sin −1 ⎜⎜ sin ⎜ − ⎟ ⎟⎟ = sin −1 ⎜⎜ sin ⎜ − ⎟ ⎟⎟ = − . 9 9 9 ⎠⎠ ⎠⎠ ⎝ ⎝ ⎝ ⎝ ⎞⎞ ⎟ ⎟⎟ follows the form of the ⎠⎠ ) ( ( 7 ⎛ ⎛ 8π 14. sin −1 ⎜⎜ sin ⎜ − ⎝ ⎝ 9 ( ( ) ( ) ( ) directly and get cos cos −1 0.6 = 0.6 . ( ) 17. cos cos −1 ( −0.3) follows the form of the ( ) ( ) equation f f −1 ( x ) = cos cos −1 ( x ) = x . π⎞ π ⎞⎞ −1 ⎛ ⎟ ⎟⎟ = cos ⎜ cos ⎟ = . 7⎠ 7 ⎠⎠ ⎝ ( ) in the interval ⎡⎣ −1,1⎤⎦ , we can apply the equation . Thus, we Since −0.3 is in the interval ⎡⎣ −1,1⎤⎦ , we can apply the equation directly and get ( ⎞⎞ ⎟ ⎟⎟ follows the form of the ⎠⎠ ) ( f f −1 ( x ) = cos cos −1 ( x ) = x . Since 0.6 is interval ⎡⎣ 0, π ⎤⎦ , we can apply the equation above ⎛ 15π and get cos ⎜⎜ cos ⎜ ⎝ 7 ⎝ ) 16. cos cos −1 0.6 follows the form of the equation π π ⎛ 15π ⎞ is in the have cos ⎜ ⎟ = cos . Since 7 7 ⎝ 7 ⎠ −1 ⎛ ) ( 15π ⎞ is in ⎟ = cos θ . The angle 7 ⎠ π ( directly and get sin sin −1 0.9 = 0.9 . angle θ in the interval ⎣⎡ 0, π ⎦⎤ for which quadrant I and coterminal with ) the interval ⎡⎣ −1,1⎤⎦ , we can apply the equation 15π is 7 not in the interval ⎡⎣0, π ⎤⎦ . We need to find an ⎛ 15π cos ⎜ ⎝ 7 ) f f −1 ( x ) = sin sin −1 ( x ) = x . Since 0.9 is in ) equation f −1 f ( x ) = cos −1 cos ( x ) = x , but we cannot use the formula directly since ( 15. sin sin −1 0.9 follows the form of the equation ) cos cos −1 ( −0.3) = −0.3 . ) ( ) equation f −1 f ( x ) = sin −1 sin ( x ) = x , but we 18. tan tan −1 5 follows the form of the equation 8π is not 9 f f −1 ( x ) = tan tan −1 ( x ) = x . Since 5 is a cannot use the formula directly since − ( ) ( ) real number, we can apply the equation directly ⎡ π π⎤ in the interval ⎢ − , ⎥ . We need to find an ⎣ 2 2⎦ ⎡ π π⎤ angle θ in the interval ⎢ − , ⎥ for which ⎣ 2 2⎦ 8π ⎛ 8π ⎞ is in sin ⎜ − ⎟ = sin θ . The angle − 9 ⎝ 9 ⎠ quadrant III so sine is negative. Therefore, we want θ to be in quadrant IV so sine will still be ( ) and get tan tan −1 5 = 5 . 19. Since there is no angle θ such that cos θ = −1.6 , the quantity cos −1 ( −1.6 ) is not defined. Thus, ( ) cos cos −1 ( −1.6 ) is not defined. 314 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Review Exercises 20. Since there is no angle θ such that sin θ = 1.6 , the quantity sin −1 1.6 is not defined. Thus, ( ⎛ 3⎞ 27. sec ⎜⎜ tan −1 ⎟ 3 ⎟⎠ ⎝ ) sin sin −1 1.6 is not defined. Find the angle θ , − 2π ⎞ π −1 ⎛ −1 ⎛ 1 ⎞ 21. sin ⎜ cos ⎟ = sin ⎜ − ⎟ = − 3 2 6 ⎝ ⎠ ⎝ ⎠ π π < θ < , whose tangent is 2 2 3 3 3 π π , − <θ < 3 2 2 π θ= 6 3 π So, tan −1 = . 3 6 ⎛ 3⎞ ⎛π⎞ 2 3 . Thus, sec ⎜⎜ tan −1 ⎟⎟ = sec ⎜ ⎟ = 3 ⎠ 3 ⎝6⎠ ⎝ tan θ = 3π ⎞ ⎛ −1 22. cos ⎜ tan ⎟ = cos ( −1) = π 4 ⎝ ⎠ −1 7π ⎞ π −1 ⎛ −1 23. tan ⎜ tan ⎟ = tan ( −1) = − 4 ⎠ 4 ⎝ ⎛ 7π ⎞ 3 ⎞ 5π ⎛ 24. cos −1 ⎜ cos ⎟ = cos −1 ⎜⎜ − ⎟⎟ = 6 ⎠ ⎝ ⎝ 2 ⎠ 6 ⎛ ⎡ ⎛ 3 ⎞⎤ 25. tan ⎢sin −1 ⎜⎜ − ⎟⎟ ⎥ ⎝ 2 ⎠ ⎥⎦ ⎣⎢ 28. csc ⎜ sin −1 ⎝ 3⎞ ⎟ 2 ⎠ Find the angle θ , − π π Find the angle θ , − ≤ θ ≤ , whose sine 2 2 3 . equals − 2 3 π π sin θ = − , − ≤θ ≤ 2 2 2 π θ =− 3 ⎛ 3⎞ π So, sin −1 ⎜⎜ − ⎟⎟ = − . 3 ⎝ 2 ⎠ π π ≤ θ ≤ , whose sine equals 2 2 3 . 2 3 π π , − ≤θ ≤ 2 2 2 π θ= 3 3 π = . So, sin −1 2 3 ⎛ −1 3 ⎞ ⎛ π⎞ 2 3 Thus, csc ⎜ sin . ⎟ = csc ⎜ ⎟ = 2 3 ⎝3⎠ ⎝ ⎠ sin θ = ⎡ ⎛ 3 ⎞⎤ ⎛ π⎞ Thus, tan ⎢sin −1 ⎜⎜ − ⎟⎟ ⎥ = tan ⎜ − ⎟ = − 3 . 2 ⎝ 3⎠ ⎝ ⎠ ⎥⎦ ⎣⎢ 3 29. sin ⎛⎜ cot −1 ⎞⎟ 4⎠ ⎝ 3 4 ⎡ ⎛ 1 ⎞⎤ 26. tan ⎢cos −1 ⎜ − ⎟ ⎥ ⎝ 2 ⎠⎦ ⎣ Find the angle θ , 0 ≤ θ ≤ π, whose cosine Since cot θ = , 0 < θ < π , θ is in quadrant I. Let x = 3 and y = 4 . Solve for r: 9 + 16 = r 2 r 2 = 25 1 equals − . 2 1 cos θ = − , 0 ≤ θ ≤ π 2 2π θ= 3 ⎛ 1 ⎞ 2π So, cos −1 ⎜ − ⎟ = ⎝ 2⎠ 3 ⎡ ⎛ 1 ⎞⎤ ⎛ 2π ⎞ Thus, tan ⎢cos −1 ⎜ − ⎟ ⎥ = tan ⎜ ⎟ = − 3 . 2 ⎝ ⎠⎦ ⎝ 3 ⎠ ⎣ r =5 3 y 4 Thus, sin ⎛⎜ tan −1 ⎞⎟ = sin θ = = . 4⎠ r 5 ⎝ 315 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry find the domain of f −1 ( x ) we note that the 30. cos ⎛⎜ csc−1 ⎞⎟ 3 5 ⎝ ⎠ x and 2 that it must lie in the interval ⎣⎡ −1,1⎦⎤ . That is, 5 π π ≤ θ ≤ , let r = 5 and y = 3 . 3 2 2 Solve for x: x 2 + 9 = 25 argument of the inverse sine function is Since cscθ = , − x ≤1 2 −2 ≤ x ≤ 2 The domain of f −1 ( x ) is { x | −2 ≤ x ≤ 2} , or x 2 = 16 −1 ≤ x = ±4 Since θ is in quadrant I, x = 4 . x 4 5 Thus, cos ⎛⎜ csc−1 ⎞⎟ = cosθ = = . 3⎠ ⎝ ⎡ r 5 ⎡⎣ −2, 2 ⎤⎦ in interval notation. 4 ⎤ 31. tan ⎢sin −1 ⎛⎜ − ⎞⎟ ⎥ ⎝ 5⎠ 34. ⎣ ⎦ 4 π π Since sin θ = − , − ≤ θ ≤ , let y = − 4 and 5 2 2 2 r = 5 . Solve for x: x + 16 = 25 y = tan ( 2 x + 3) − 1 x = tan ( 2 y + 3) − 1 x + 1 = tan ( 2 y + 3) x2 = 9 2 y + 3 = tan −1 ( x + 1) x = ±3 Since θ is in quadrant IV, x = 3 . ⎡ 4 ⎤ −4 2 y = tan −1 ( x + 1) − 3 Thus, tan ⎢sin −1 ⎛⎜ − ⎞⎟ ⎥ = tan θ = = =− x 3 3 ⎝ 5 ⎠⎦ ⎣ y 4 1 3 tan −1 ( x + 1) − = f −1 ( x ) 2 2 The domain of f ( x ) is all real numbers such y= ⎡ ⎛ 3 ⎞⎤ 32. tan ⎢cos −1 ⎜ − ⎟ ⎥ ⎝ 5 ⎠⎦ ⎣ 3 Since cos θ = − , 0 ≤ θ ≤ π , let x = − 3 and 5 that x ≠ ( 2k + 1) π − 3 where k is an integer. To 4 2 find the domain of f −1 ( x ) we note that the argument of the inverse tangent function can be any real number. Thus, the domain of f −1 ( x ) is r = 5 . Solve for y: 9 + y 2 = 25 y 2 = 16 y = ±4 Since θ is in quadrant II, y = 4 . all real numbers, or ( −∞, ∞ ) in interval notation. ⎡ y 4 4 ⎛ 3 ⎞⎤ =− Thus, tan ⎢cos −1 ⎜ − ⎟ ⎥ = tan θ = = x 5 − 3 3 ⎝ ⎠ ⎣ ⎦ 33. f ( x ) = tan ( 2 x + 3) − 1 35. f ( x ) = − cos x + 3 y = − cos x + 3 x = − cos y + 3 f ( x ) = 2sin ( 3 x ) x − 3 = − cos y y = 2sin ( 3x ) 3 − x = cos y x = 2sin ( 3 y ) y = cos −1 ( 3 − x ) = f −1 ( x ) x = sin ( 3 y ) 2 ⎛ x⎞ 3 y = sin −1 ⎜ ⎟ ⎝2⎠ The domain of f ( x ) is the set of all real numbers, or ( −∞, ∞ ) in interval notation. To find the domain of f −1 ( x ) we note that the 1 ⎛x⎞ y = sin −1 ⎜ ⎟ = f −1 ( x ) 3 ⎝2⎠ argument of the inverse cosine function is 3 − x and that it must lie in the interval ⎡⎣ −1,1⎤⎦ . That The domain of f ( x ) is the set of all real is, numbers, or ( −∞, ∞ ) in interval notation. To 316 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Review Exercises −1 ≤ 3 − x ≤ 1 38. Let θ = csc −1 u so that csc θ = u , − −4 ≤ − x ≤ −2 4≥ x≥2 ( ) cos csc−1 u = cos θ = cos θ ⋅ The domain of f −1 ( x ) is { x | 2 ≤ x ≤ 4} , or ⎡⎣ 2, 4 ⎤⎦ in interval notation. = f ( x ) = 2sin ( − x + 1) = y = 2sin ( − x + 1) x = 2sin ( − y + 1) ≤θ ≤ π 2 u2 −1 u ( ) sin csc −1 u = sin θ = π 2 ≤θ ≤ π 2 1 1 = csc θ u 40. Let θ = csc −1 u so that csc θ = u , − ( x and 2 that it must lie in the interval ⎡⎣ −1,1⎤⎦ . That is, = x ≤1 2 −2 ≤ x ≤ 2 The domain of f −1 ( x ) is { x | −2 ≤ x ≤ 2} , or 2 u2 −1 42. sin θ csc θ − sin 2 θ = sin θ ⋅ 2 1 − sin 2 θ tan θ = 1 − sin 2 θ = cos 2 θ ⎡⎣ −2, 2 ⎤⎦ in interval notation. π 1 csc 2 θ − 1 1 41. tan θ cot θ − sin 2 θ = tan θ ⋅ −1 ≤ 2 π ) = sec 2 θ − 1 = argument of the inverse sine function is ≤θ ≤ 2 ≤θ ≤ tan csc−1 u = tan θ = tan 2 θ find the domain of f −1 ( x ) we note that the π π and θ ≠ 0 , u ≥ 1 . Then, numbers, or ( −∞, ∞ ) in interval notation. To −1 ≤ u ≤ 1 . Then, cot θ cot 2 θ csc 2 θ − 1 = = csc θ csc θ csc θ and θ ≠ 0 , u ≥ 1 . Then, ⎛ x⎞ y = 1 − sin −1 ⎜ ⎟ ⎝2⎠ The domain of f ( x ) is the set of all real 37. Let θ = sin −1 u so that sin θ = u , − sin θ = cot θ sin θ sin θ 39. Let θ = csc −1 u so that csc θ = u , − x = sin ( − y + 1) 2 ⎛ x⎞ − y + 1 = sin −1 ⎜ ⎟ ⎝2⎠ ⎛ x⎞ − y = sin −1 ⎜ ⎟ − 1 ⎝2⎠ ( 2 u ≥ 1 . Then, 2≤ x≤4 36. π 1 − sin 2 θ sin θ = 1 − sin 2 θ = cos 2 θ , ) 43. sin 2 θ (1 + cot 2 θ ) = sin 2 θ ⋅ csc2 θ 1 = sin 2 θ ⋅ 2 sin θ =1 cos sin −1 u = cos θ = cos 2 θ = 1 − sin 2 θ = 1 − u 2 44. (1 − sin 2 θ )(1 + tan 2 θ ) = cos 2 θ ⋅ sec2 θ 1 = cos 2 θ ⋅ cos 2 θ =1 317 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. , Chapter 3: Analytic Trigonometry 45. 5cos 2 θ + 3sin 2 θ = 2 cos 2 θ + 3cos 2 θ + 3sin 2 θ = 2 cos 2 θ + 3 cos 2 θ + sin 2 θ ( 50. 1 − ) ( = 2 cos θ + 3 ⋅1 = 3 + 2 cos 2 θ 2 ( ) 46. 4sin 2 θ + 2 cos 2 θ = 4 1 − cos 2 θ + 2 cos 2 θ = 4 − 4 cos θ + 2 cos 2 θ = 4 − 2 cos 2 θ 2 47. ) 1 csc θ θ ⋅ sin θ sin 51. = 1 + csc θ 1 + 1 sin θ sin θ 1 = sin θ + 1 1 1 − sin θ = ⋅ 1 + sin θ 1 − sin θ 1 − sin θ = 1 − sin 2 θ 1 − sin θ = cos 2 θ 1 − cosθ sin θ (1 − cosθ ) 2 + sin 2 θ + = sin θ 1 − cosθ sin θ (1 − cosθ ) 1 − 2cosθ + cos 2 θ + sin 2 θ = sin θ (1 − cosθ ) 1 − 2cosθ + 1 sin θ (1 − cosθ ) 2 − 2cosθ = sin θ (1 − cosθ ) 2(1 − cosθ ) = sin θ (1 − cosθ ) 2 = sin θ = 2cscθ = 48. sin 2 θ 1 + cosθ − sin 2 θ = 1 + cosθ 1 + cosθ 1 + cosθ − 1 − cos 2 θ = 1 + cosθ cosθ + cos 2 θ = 1 + cosθ cosθ (1 + cosθ ) = 1 + cosθ = cosθ 1 cos θ ⋅ cos θ 1 cos θ cos θ 1 + cos θ = 1 1 + cos θ 1 − cos θ = ⋅ 1 1 − cos θ 1 − cos 2 θ = 1 − cos θ sin 2 θ = 1 − cos θ 1 + sec θ 52. = sec θ sin θ 1 + cos θ sin 2 θ + (1 + cos θ )2 + = 1 + cos θ sin θ sin θ (1 + cos θ ) sin 2 θ + 1 + 2 cos θ + cos 2 θ = sin θ (1 + cos θ ) 1 + 2 cos θ + 1 sin θ (1 + cos θ ) 2 + 2 cos θ = sin θ (1 + cos θ ) 2(1 + cos θ ) = sin θ (1 + cos θ ) 2 = sin θ = 2 csc θ = 1+ 1 − sin θ sin θ 1 − sin 2 θ = sin θ cos 2 θ = sin θ cos θ = cos θ ⋅ sin θ = cos θ cot θ 53. csc θ − sin θ = 1 cosθ cosθ cos θ 49. = ⋅ 1 cosθ − sin θ cosθ − sin θ cosθ 1 = sin θ 1− cosθ 1 = 1 − tan θ 318 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Review Exercises ( 2sin 1 csc θ 1 + cos θ 54. = sin θ ⋅ 1 − cos θ 1 − cos θ 1 + cos θ 1 1 + cos θ = ⋅ sin θ 1 − cos 2 θ 1 + cos θ = sin θ sin 2 θ 1 + cos θ = sin 3 θ θ − 1) ( = 2 )( [ − cos(2θ )] ( ) −1 cos 2 θ − sin 2 θ ⋅1 cos ( 2θ ) 2 = − cos ( 2θ ) = − cos ( 2θ ) ( ) = −1 2 cos 2 θ − 1 = 1 − 2 cos θ 2 1 + sin θ = cos θ (1 − sin θ ) ⋅ 1 + sin θ cos θ 1 − sin 2 θ = 1 + sin θ cos θ cos 2 θ = 1 + sin θ cos3 θ = 1 + sin θ ( ) 2 1 − sin θ 55. = cos θ (1 − sin θ ) sec θ ( ( 2 ⎡ − 1 − 2sin 2 θ ⎤ ⎣ ⎦ = 58. sin 4 θ − cos 4 θ sin 2 θ − cos 2 θ sin 2 θ + cos 2 θ 2 59. ) ) 1 − cos θ 1 − cos θ 56. = sin θ 1 + cos θ 1 + cos θ sin θ csc θ − cot θ csc θ − cot θ = ⋅ csc θ + cot θ csc θ − cot θ (csc θ − cot θ ) 2 = csc2 θ − cot 2 θ (csc θ − cot θ ) 2 = 1 = (csc θ − cot θ )2 60. 61. cos θ sin θ − sin θ cos θ cos 2 θ − sin 2 θ = sin θ cos θ 1 − sin 2 θ − sin 2 θ = sin θ cos θ 1 − 2sin 2 θ = sin θ cos θ 62. 57. cot θ − tan θ = cos(α + β ) cos α cos β − sin α sin β = cos α sin β cos α sin β cos α cos β sin α sin β = − cos α sin β cos α sin β cos β sin α = − sin β cos α = cot β − tan α sin(α − β ) sin α cos β − cos α sin β = sin α cos β sin α cos β sin α cos β cos α sin β = − sin α cos β sin α cos β = 1 − cot α tan β cos(α − β ) cos α cos β + sin α sin β = cos α cos β cos α cos β cos α cos β sin α sin β = + cos α cos β cos α cos β = 1 + tan α tan β cos(α + β ) cos α cos β − sin α sin β = sin α cos β sin α cos β cos α cos β sin α sin β = − sin α cos β sin α cos β cos α sin β = − sin α cos β = cot α − tan β 63. (1 + cos θ ) tan 64. sin θ tan θ 2 θ 2 = (1 + cos θ ) ⋅ = sin θ ⋅ sin θ = sin θ 1 + cos θ 1 − cos θ = 1 − cos θ sin θ 319 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. ) Chapter 3: Analytic Trigonometry 65. 2 cot θ cot ( 2θ ) = 2 ⋅ = cos θ cos ( 2θ ) ⋅ sin θ sin ( 2θ ) 70. ( 2 cos θ cos 2 θ − sin 2 θ sin θ ( 2sin θ cos θ ) cos 2 θ − sin 2 θ = sin 2 θ 2 cos θ sin 2 θ = − sin 2 θ sin 2 θ 2 = cot θ − 1 ( ) ) 68. sin ( 2θ ) =− = sin ( 2 ⋅ 2θ ) = sin ( 4θ ) sin ( 3θ ) cos θ − sin θ cos ( 3θ ) = = tan ( 3θ ) + sin ( 2θ ) − sin ( 4θ ) tan θ 2θ + 4θ ⎞ ⎛ 2θ − 4θ ⎞ 2sin ⎛⎜ ⎟ cos ⎜ ⎟ 2 ⎝ ⎠ ⎝ 2 ⎠ + tan ( 3θ ) = 2θ − 4θ ⎞ tan θ ⎛ 2θ + 4θ ⎞ 2sin ⎛⎜ ⎟ cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ 2sin ( 3θ ) cos ( −θ ) tan ( 3θ ) = + 2sin ( −θ ) cos ( 3θ ) tan θ = tan ( 3θ ) cot ( − θ ) + 66. 2sin ( 2θ ) 1 − 2sin 2 θ = 2sin ( 2θ ) cos ( 2θ ) 67. 1 − 8sin 2 θ cos 2 θ = 1 − 2 ( 2sin θ cos θ ) = 1 − 2sin 2 ( 2θ ) = cos ( 2 ⋅ 2θ ) = cos ( 4θ ) sin ( 2θ ) + sin ( 4θ ) =0 71. 2 sin ( 3θ − θ ) sin ( 2θ ) sin ( 2θ ) 72. sin ( 2θ ) =1 2θ + 4θ ⎞ ⎛ 2θ − 4θ ⎞ 2sin ⎛⎜ ⎟ cos ⎜ ⎟ sin ( 2θ ) + sin ( 4θ ) 2 ⎝ ⎠ ⎝ 2 ⎠ = 69. cos ( 2θ ) + cos ( 4θ ) 2cos ⎛ 2θ + 4θ ⎞ cos ⎛ 2θ + 4θ ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ 2sin ( 3θ ) cos ( −θ ) = 2cos ( 3θ ) cos ( −θ ) sin ( 3θ ) = cos ( 3θ ) = tan ( 3θ ) tan ( 3θ ) tan θ + tan ( 3θ ) tan ( 3θ ) tan θ tan θ cos(2θ ) − cos(4θ ) − tan θ tan(3θ ) cos(2θ ) + cos(4θ ) − 2sin(3θ ) sin(− θ ) = − tan θ tan(3θ ) 2 cos(3θ ) cos(− θ ) 2sin(3θ )sin θ = − tan θ tan(3θ ) 2 cos(3θ ) cos θ = tan(3θ ) tan θ − tan θ tan(3θ ) =0 cos(2θ ) − cos(10θ ) ⎛ 2θ + 10θ ⎞ ⎛ 2θ − 10θ ⎞ = − 2sin ⎜ ⎟ sin ⎜ ⎟ 2 2 ⎝ ⎠ ⎝ ⎠ = − 2sin(6θ ) sin(− 4θ ) = 2sin(6θ ) sin(4θ ) = = sin ( 4θ ) cos ( 4θ ) sin ( 4θ ) cos ( 4θ ) ⋅ 2sin ( 6θ ) cos ( 4θ ) 1 ⋅ 2 ⋅ ⎡⎣sin ( 6θ + 4θ ) sin ( 6θ − 4θ ) ⎤⎦ 2 = tan ( 4θ ) ⎡⎣sin (10θ ) + sin ( 2θ ) ⎤⎦ = tan ( 4θ ) ⎡⎣sin ( 2θ ) + sin (10θ ) ⎤⎦ 73. sin165º = sin (120º + 45º ) = sin120º ⋅ cos 45º + cos120º ⋅ sin 45º ⎛ 3⎞ ⎛ 2⎞ ⎛ 1⎞ ⎛ 2⎞ = ⎜⎜ ⎟⎟ ⋅ ⎜⎜ ⎟⎟ + ⎜ − ⎟ ⋅ ⎜⎜ ⎟⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2⎠ ⎝ 2 ⎠ 6 2 = − 4 4 1 6− 2 = 4 ( ) 320 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Review Exercises 74. tan105º = tan ( 60º + 45º ) tan 60º + tan 45º = 1 − tan 60º tan 45º 3 +1 = 1 − 3 ⋅1 3 +1 1+ 3 = ⋅ 1− 3 1+ 3 π ⎛π⎞ 1 − cos 1− ⎜4⎟ π 4 = 79. tan = tan ⎜ ⎟ = π 8 ⎝2⎠ 1 + cos 1+ 4 = = 1+ 2 3 + 3 1− 3 4+2 3 = −2 = −2− 3 = 75. cos = 2+ 2 2− 2 2− 2 ⋅ 2+ 2 2− 2 (2 − 2 ) 2 ⎛ 2⎞ 5π ⎛ 5π ⎞ 1 − ⎜⎜ − ⎟⎟ 1 − cos 2 ⎜ ⎟ 5π ⎝ ⎠ 4 = = sin ⎜ 4 ⎟ = 80. sin ⎝ 2 ⎠ 2 8 2 ) ⎛ π⎞ ⎛ 2π 3π ⎞ − ⎟ 76. sin ⎜ − ⎟ = sin ⎜ ⎝ 12 ⎠ ⎝ 12 12 ⎠ π π π π = sin ⋅ cos − cos ⋅ sin 6 4 6 4 1 2 3 2 = ⋅ − ⋅ 2 2 2 2 2 6 = − 4 4 1 = 2− 6 4 ( 2− 2 4 2− 2 2 = ⋅ 2 2 2 2 −2 = 2 = 2 −1 5π ⎛ 3π 2π ⎞ = cos ⎜ + ⎟ 12 ⎝ 12 12 ⎠ π π π π = cos ⋅ cos − sin ⋅ sin 4 6 4 6 2 3 2 1 = ⋅ − ⋅ 2 2 2 2 6 2 = − 4 4 1 = 6− 2 4 ( 2 2 2 2 4 π 81. sin α = , 0 < α < ; 5 2 sin β = = 2+ 2 4 = 2+ 2 2 5 π , <β <π 13 2 For α : x 2 + y 2 = r 2 x 2 + 4 2 = 52 x 2 + 16 = 25 ) x2 = 9 x = 3 (since α is in quadrant I) 77. cos80º ⋅ cos 20º + sin 80º ⋅ sin 20º = cos ( 80º − 20º ) = cos 60º 1 = 2 For β : x 2 + y 2 = r 2 x 2 + 52 = 132 x 2 + 25 = 169 x 2 = 144 78. sin 70º ⋅ cos 40º − cos 70º ⋅ sin 40º = sin ( 70º − 40º ) = sin 30º 1 = 2 x = −12 (since β is in quadrant II) 3 4 12 5 cos α = , tan α = , cos β = − , tan β = − , 5 3 13 12 α π π β π 0< < , < < 2 4 4 2 2 321 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry a. b. c. sin(α + β ) = sin α cos β + cos α sin β ⎛ 4 ⎞ ⎛ 12 ⎞ ⎛ 3 ⎞ ⎛ 5 ⎞ = ⎜ ⎟⋅⎜ − ⎟ + ⎜ ⎟⋅⎜ ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ − 48 + 15 = 65 33 =− 65 h. e. f. cos(2 β ) = cos 2 β − sin 2 β 2 16 + y 2 = 25 y2 = 9 y = 3 (since α is in quadrant I) 2 For β : x + y 2 = r 2 52 + y 2 = 132 25 + y 2 = 169 y 2 = 144 y = −12 (since β is in quad. IV) 3 3 12 12 sin α = , tan α = , sin β = − , tan β = − , 5 4 13 5 α π π β 0< < , − < <0 2 4 4 2 a. sin(α + β ) = sin α cos β + cos α sin β ⎛ 3 ⎞ ⎛ 5 ⎞ ⎛ 4 ⎞ ⎛ 12 ⎞ = ⎜ ⎟⋅⎜ ⎟ + ⎜ ⎟⋅⎜ − ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ 15 − 48 = 65 33 =− 65 b. cos(α + β ) = cos α cos β − sin α sin β ⎛ 4 ⎞ ⎛ 5 ⎞ ⎛ 3 ⎞ ⎛ 12 ⎞ = ⎜ ⎟⋅⎜ ⎟ − ⎜ ⎟⋅⎜ − ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ 20 + 36 = 65 56 = 65 c. sin(α − β ) = sin α cos β − cos α sin β 3 5 4 −12 = ⋅ − ⋅ 5 13 5 13 15 + 48 = 65 63 = 65 2 ⎛ 12 ⎞ ⎛ 5 ⎞ 144 25 119 = ⎜− ⎟ −⎜ ⎟ = − = ⎝ 13 ⎠ ⎝ 13 ⎠ 169 169 169 g. sin β 4 2 2 5 = = 5 5 5 4 2 + y 2 = 52 tan α + tan β 1 − tan α tan β 4 ⎛ 5⎞ +⎜− ⎟ 3 ⎝ 12 ⎠ = ⎛4⎞ ⎛ 5 ⎞ 1− ⎜ ⎟ ⋅⎜ − ⎟ ⎝ 3 ⎠ ⎝ 12 ⎠ 11 11 9 33 12 = = ⋅ = 14 12 14 56 9 4 3 24 sin(2α ) = 2sin α cos α = 2 ⋅ ⋅ = 5 5 25 1 + cos α 2 2 3 8 1+ 5 = = 5 = 2 2 = For α : x 2 + y 2 = r 2 sin(α − β ) = sin α cos β − cos α sin β ⎛ 4 ⎞ ⎛ 12 ⎞ ⎛ 3 ⎞ ⎛ 5 ⎞ = ⎜ ⎟⋅⎜ − ⎟ − ⎜ ⎟⋅⎜ ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ − 48 − 15 = 65 63 =− 65 tan(α + β ) = α 4 π 5 π 82. cos α = , 0 < α < ; cos β = , − < β < 0 5 2 13 2 cos(α + β ) = cos α cos β − sin α sin β ⎛ 3 ⎞ ⎛ 12 ⎞ ⎛ 4 ⎞ ⎛ 5 ⎞ = ⎜ ⎟⋅⎜ − ⎟ − ⎜ ⎟ ⋅⎜ ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ −36 − 20 = 65 56 =− 65 d. cos 1 − cos β 2 2 ⎛ 12 ⎞ 1− ⎜ − ⎟ ⎝ 13 ⎠ = 2 25 25 5 5 26 13 = = = = 2 26 26 26 = 322 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Review Exercises d. tan(α + β ) = tan α + tan β 1 − tan α tan β For β : 122 + y 2 = 132 3 ⎛ 12 ⎞ +⎜− ⎟ 4 ⎝ 5⎠ = ⎛ 3 ⎞ ⎛ 12 ⎞ 1− ⎜ ⎟ ⋅⎜ − ⎟ ⎝4⎠ ⎝ 5 ⎠ 33 − 20 = 20 ⋅ 56 20 20 33 =− 56 e. ⎛ 3 ⎞ ⎛ 4 ⎞ 24 sin(2α ) = 2sin α cos α = 2 ⋅ ⎜ ⎟ ⋅ ⎜ ⎟ = ⎝ 5 ⎠ ⎝ 5 ⎠ 25 f. cos(2 β ) = cos 2 β − sin 2 β 2 144 + y 2 = 169 y 2 = 25 y = −5 (since β is in quad. IV) 4 3 5 5 cos α = − , tan α = , sin β = − , tan β = − , 5 4 13 12 π α 3π 3π β < < < <π , 2 2 4 4 2 a. sin(α + β ) = sin α cos β + cos α sin β ⎛ 3 ⎞ ⎛ 12 ⎞ ⎛ 4 ⎞ ⎛ 5 ⎞ = ⎜ − ⎟⋅⎜ ⎟ + ⎜ − ⎟⋅⎜ − ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ −36 + 20 = 65 16 =− 65 2 25 144 119 ⎛ 5 ⎞ ⎛ 12 ⎞ = ⎜ ⎟ −⎜− ⎟ = − =− 169 ⎝ 13 ⎠ ⎝ 13 ⎠ 169 169 g. h. sin cos β 1 − cos β 2 2 5 1− 13 =− 2 8 4 2 2 13 13 =− =− =− =− 2 13 13 13 α 2 b. cos(α + β ) = cos α cos β − sin α sin β ⎛ 4 ⎞ ⎛ 12 ⎞ ⎛ 3 ⎞ ⎛ 5 ⎞ = ⎜ − ⎟⋅⎜ ⎟ − ⎜ − ⎟ ⋅⎜ − ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ − 48 − 15 = 65 63 =− 65 c. sin(α − β ) = sin α cos β − cos α sin β ⎛ 3 ⎞ ⎛ 12 ⎞ ⎛ 4 ⎞ ⎛ 5 ⎞ = ⎜ − ⎟ ⋅⎜ ⎟ − ⎜ − ⎟⋅⎜ − ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ −36 − 20 = 65 56 =− 65 d. tan(α + β ) = =− 1 + cos α 2 4 9 1+ 5 = 5 = 9 = 3 = 3 10 = 2 2 10 10 10 = 3 3π 12 3π 83. sin α = − , π < α < ; cos β = , < β < 2π 5 2 13 2 For α : x2 + y2 = r 2 tan α + tan β 1 − tan α tan β 3 ⎛ 5⎞ 1 +⎜− ⎟ 1 16 16 4 ⎝ 12 ⎠ = = 3 = ⋅ = 21 3⎛ 5 ⎞ 3 21 63 1− ⎜ − ⎟ 4 ⎝ 12 ⎠ 16 x2 + y2 = r 2 x 2 + ( −3) = 52 2 e. x 2 + 9 = 25 x 2 = 16 x = −4 (since α is in quad. III) sin(2α ) = 2sin α cos α ⎛ 3 ⎞ ⎛ 4 ⎞ 24 = 2⋅⎜ − ⎟⋅⎜ − ⎟ = ⎝ 5 ⎠ ⎝ 5 ⎠ 25 323 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry f. cos(2 β ) = cos 2 β − sin 2 β 2 b. cos(α + β ) = cos α cos β − sin α sin β ⎛ 3 ⎞ ⎛ 5 ⎞ ⎛ 4 ⎞ ⎛ 12 ⎞ = ⎜ ⎟ ⋅⎜ − ⎟ − ⎜ − ⎟⋅⎜ ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ −15 48 = + 65 65 33 = 65 c. sin(α − β ) = sin α cos β − cos α sin β ⎛ 4 ⎞ ⎛ 5 ⎞ ⎛ 3 ⎞ ⎛ 12 ⎞ = ⎜ − ⎟⋅⎜ − ⎟ − ⎜ ⎟⋅⎜ ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ 20 36 = − 65 65 16 =− 65 d. tan(α + β ) = 2 ⎛ 12 ⎞ ⎛ 5 ⎞ = ⎜ ⎟ −⎜− ⎟ ⎝ 13 ⎠ ⎝ 13 ⎠ 144 25 119 = − = 169 169 169 g. h. sin cos β 1 − cos β 2 2 12 1 1− 13 13 = = = 2 2 α 2 = 1 1 26 = = 26 26 26 1 + cos α 2 ⎛ 4⎞ 1+ ⎜ − ⎟ ⎝ 5⎠ =− 2 1 1 1 10 =− 5 =− =− =− 2 10 10 10 =− 4 ⎛ 12 ⎞ − +⎜− ⎟ 3 ⎝ 5⎠ = ⎛ 4 ⎞⎛ 12 ⎞ 1 − ⎜ − ⎟⎜ − ⎟ ⎝ 3 ⎠⎝ 5 ⎠ 56 − ⎛ 56 ⎞ ⎛ 15 ⎞ 56 15 = = − − = 33 ⎜⎝ 15 ⎟⎠ ⎜⎝ 33 ⎟⎠ 33 − 15 4 π 5 π 84. sin α = − , − < α < 0; cos β = − , < β < π 5 2 13 2 For α : x2 + y2 = r 2 x 2 + ( −4 ) = 52 2 e. x 2 + 16 = 25 x2 = 9 2 x + y2 = r 2 ( −5) 2 24 ⎛ 4 ⎞⎛ 3 ⎞ sin(2α ) = 2sin α cos α = 2 ⎜ − ⎟⎜ ⎟ = − 5 5 25 ⎝ ⎠⎝ ⎠ 2 f. x = 3 (since α is in quad. IV) For β : tan α + tan β 1 − tan α tan β + y 2 = 132 25 + y 2 = 169 y 2 = 144 g. y = 12 (since β is in quad. II) 3 4 12 12 cos α = , tan α = − , sin β = , tan β = − , 5 3 13 5 π α π β π − < < 0, < < 4 2 4 2 2 a. sin(α + β ) = sin α cos β + cos α sin β ⎛ 4 ⎞ ⎛ 5 ⎞ 3 12 = ⎜ − ⎟⋅⎜ − ⎟ + ⋅ ⎝ 5 ⎠ ⎝ 13 ⎠ 5 13 20 36 = + 65 65 56 = 65 ⎛ 5 ⎞ ⎛ 12 ⎞ cos(2 β ) = cos 2 β − sin 2 β = ⎜ − ⎟ − ⎜ ⎟ ⎝ 13 ⎠ ⎝ 13 ⎠ 25 144 = − 169 169 119 =− 169 sin β 2 1 − cos β 2 ⎛ 5⎞ 1− ⎜ − ⎟ ⎝ 13 ⎠ = 2 18 9 3 3 13 = 13 = = = 2 13 13 13 = 324 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 2 Chapter 3 Review Exercises h. cos α 1 + cos α 2 2 3 1+ 5 = 2 8 4 2 2 5 = 5 = = = 2 5 5 5 = c. sin(α − β ) = sin α cos β − cos α sin β ⎛ 3 ⎞ ⎛ 5 ⎞ ⎛ 4 ⎞ ⎛ 12 ⎞ = ⎜ − ⎟⋅⎜ ⎟ − ⎜ − ⎟⋅⎜ ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ 15 48 =− + 65 65 33 = 65 d. tan(α + β ) = e. ⎛ 3 ⎞ ⎛ 4 ⎞ 24 sin(2α ) = 2sin α cos α = 2 ⎜ − ⎟ ⎜ − ⎟ = ⎝ 5 ⎠ ⎝ 5 ⎠ 25 f. cos(2 β ) = cos 2 β − sin 2 β tan α + tan β 1 − tan α tan β 3 12 + 4 5 = ⎛ 3 ⎞ ⎛ 12 ⎞ 1− ⎜ ⎟⎜ ⎟ ⎝ 4 ⎠⎝ 5 ⎠ 63 63 ⎛ 5 ⎞ 63 = 20 = ⎜ − ⎟ = − 4 20 ⎝ 4 ⎠ 16 − 5 3 3π 12 π 85. tan α = , π < α < ; tan β = , 0 < β < 4 2 5 2 For α : x2 + y2 = r 2 ( − 3 ) + ( −4 ) 2 2 = r 2 (α in quad. III) 9 + 16 = r 2 For β : r 2 = 25 r =5 2 2 2 x +y =r 52 + 122 = r 2 (β in quad I) 25 + 144 = r 2 2 b. 2 25 144 119 ⎛ 5 ⎞ ⎛ 12 ⎞ = ⎜ ⎟ −⎜ ⎟ = − =− 169 ⎝ 13 ⎠ ⎝ 13 ⎠ 169 169 r 2 = 169 r = 13 3 4 12 5 sin α = − , cos α = − , sin β = , cos β = , 5 5 13 13 π α 3π β π < < , 0< < 2 2 4 2 4 sin( α + β ) = sin α cos β + cos α sin β a. ⎛ 3 ⎞ ⎛ 5 ⎞ ⎛ 4 ⎞ ⎛ 12 ⎞ = ⎜ − ⎟⋅⎜ ⎟ + ⎜ − ⎟⋅⎜ ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ 15 48 =− − 65 65 63 =− 65 cos(α + β ) = cos α cos β − sin α sin β ⎛ 4 ⎞ ⎛ 5 ⎞ ⎛ 3 ⎞ ⎛ 12 ⎞ = ⎜ − ⎟⋅⎜ ⎟ − ⎜ − ⎟⋅⎜ ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ 20 36 =− + 65 65 16 = 65 g. sin h. cos β 1 − cos β 2 2 5 8 1− 4 2 2 13 13 13 = = = = = 2 2 13 13 13 α 2 = 1 + cos α 2 ⎛ 4⎞ 1+ ⎜ − ⎟ ⎝ 5⎠ =− 2 1 1 1 10 =− 5 =− =− =− 2 10 10 10 =− 325 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 4 π 12 3π 86. tan α = − , < α < π; cot β = , π < β < 3 2 5 2 For α : tan α + tan β 1 − tan α tan β 4 5 − + 3 12 = ⎛ 4⎞ ⎛ 5 ⎞ 1− ⎜ − ⎟ ⋅⎜ ⎟ ⎝ 3 ⎠ ⎝ 12 ⎠ −11 = 12 56 36 11 36 =− ⋅ 12 56 33 =− 56 d. tan(α + β ) = e. 24 ⎛ 4 ⎞⎛ 3 ⎞ sin(2α ) = 2sin α cos α = 2 ⎜ ⎟ ⎜ − ⎟ = − 25 ⎝ 5 ⎠⎝ 5 ⎠ f. cos(2 β ) = cos 2 β − sin 2 β x2 + y2 = r 2 ( −3 ) + ( 4 ) 2 2 = r 2 (α in quad. II) 9 + 16 = r 2 For β : r 2 = 25 r =5 x2 + y2 = r 2 (−12) 2 + (−5) 2 = r 2 (β in quad III) 144 + 25 = r 2 r 2 = 169 r = 13 4 3 5 12 sin α = , cos α = − , sin β = − , cos β = − , 5 5 13 13 π α π π β 3π < < , < < 4 2 2 2 2 4 a. sin(α + β ) = sin α cos β + cos α sin β ⎛ 4 ⎞ ⎛ 12 ⎞ ⎛ 3 ⎞ ⎛ 5 ⎞ = ⎜ ⎟ ⋅⎜ − ⎟ + ⎜ − ⎟⋅⎜ − ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ − 48 + 15 = 65 33 =− 65 b. cos(α + β ) = cos α cos β − sin α sin β ⎛ 3 ⎞ ⎛ 12 ⎞ ⎛ 4 ⎞ ⎛ 5 ⎞ = ⎜ − ⎟⋅⎜ − ⎟ − ⎜ ⎟⋅⎜ − ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ 36 + 20 = 65 56 = 65 c. sin(α − β ) = sin α cos β − cos α sin β ⎛ 4 ⎞ ⎛ 12 ⎞ ⎛ 3 ⎞ ⎛ 5 ⎞ = ⎜ ⎟⋅⎜ − ⎟ − ⎜ − ⎟⋅⎜ − ⎟ ⎝ 5 ⎠ ⎝ 13 ⎠ ⎝ 5 ⎠ ⎝ 13 ⎠ − 48 − 15 = 65 63 =− 65 2 ⎛ 12 ⎞ ⎛ 5 ⎞ = ⎜− ⎟ −⎜− ⎟ ⎝ 13 ⎠ ⎝ 13 ⎠ 144 25 = − 169 169 119 = 169 g. sin h. cos β 2 1 − cos β 2 2 ⎛ 12 ⎞ 1− ⎜ − ⎟ ⎝ 13 ⎠ = 2 25 25 5 5 26 = 13 = = = 2 26 26 26 α = 1 + cos α 2 2 ⎛ 3⎞ 1+ ⎜ − ⎟ ⎝ 5⎠ = = 2 = 2 5 = 1= 1 = 5 2 5 5 5 326 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Review Exercises π 3π < α < 0; sec β = 3, < β < 2π 2 2 For α : x 2 + y 2 = r 2 87. sec α = 2, − 2 2 1 +y =2 d. tan(α + β ) = = 2 1 + y2 = 4 y =3 y = 3 (α in quad. IV) −9 3 − 8 2 − 23 8 2 +9 3 = 23 = 2 For β : x + y 2 = r 2 12 + y 2 = 32 2 + y2 = 9 y2 = 8 y = −2 2 (β in quad IV) 3 1 , cos α = , tan α = − 3, 2 2 2 2 1 sin β = − , cos β = , tan β = − 2 2, 3 3 3π β π α − < < 0, < <π 4 2 4 2 a. sin(α + β ) = sin α cos β + cos α sin β 3 ⎛1⎞ 1⎛ 2 2 ⎞ =− ⎟ ⎜ ⎟+ ⎜− 2 ⎝ 3 ⎠ 2 ⎜⎝ 3 ⎟⎠ − 3−2 2 = 6 sin α = − c. ( ) 1 − ( − 3 )( − 2 2 ) − 3 + −2 2 ⎛ − 3 − 2 2 ⎞ ⎛ 1+ 2 6 ⎞ = ⎜⎜ ⎟⎟ ⋅ ⎜⎜ ⎟⎟ ⎝ 1− 2 6 ⎠ ⎝ 1+ 2 6 ⎠ 2 b. tan α + tan β 1 − tan α tan β e. ⎛ 3 ⎞⎛ 1 ⎞ 3 sin(2α ) = 2sin α cos α = 2 ⎜⎜ − ⎟⎟ ⎜ ⎟ = − 2 ⎝ 2 ⎠⎝ 2 ⎠ f. cos(2 β ) = cos 2 β − sin 2 β 2 2 1 8 7 ⎛1⎞ ⎛ 2 2 ⎞ = ⎜ ⎟ − ⎜⎜ − ⎟⎟ = − = − 3 ⎠ 9 9 9 ⎝3⎠ ⎝ cos(α + β ) = cos α cos β − sin α sin β 1 1 ⎛ 3 ⎞⎛ 2 2 ⎞ = ⋅ − ⎜⎜ − ⎟⎜ − ⎟ 2 3 ⎝ 2 ⎟⎠ ⎜⎝ 3 ⎟⎠ 1− 2 6 = 6 g. sin h. cos β 2 α 1 − cos β 2 1 2 1− 3 = 3 = 1= 1 = 3 = 2 2 3 3 3 = 1 + cos α 2 2 1 3 1+ 2 = 2 = = 2 2 = 3 3 = 4 2 sin(α − β ) = sin α cos β − cos α sin β 3 1 1 ⎛ 2 2⎞ =− ⋅ − ⋅⎜ − ⎟ 2 3 2 ⎜⎝ 3 ⎟⎠ − 3+2 2 = 6 327 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry π π < α < π; sec β = −3, < β < π 2 2 2 2 2 For α : x + y = r 88. csc α = 2, d. tan α + tan β 1 − tan α tan β 3 − + −2 2 3 = ⎛ 3⎞ 1 − ⎜⎜ − ⎟⎟ − 2 2 ⎝ 3 ⎠ tan(α + β ) = ( x 2 + 12 = 22 ( x2 + 1 = 4 2 x =3 For β : x 2 + y 2 = r 2 12 + y 2 = 32 − 3 −6 2 3+ 2 6 ⋅ 3− 2 6 3+ 2 6 − 27 3 − 24 2 = −15 9 3 +8 2 = 5 2 + y2 = 9 = y2 = 8 y = 2 2 (β in quad II) 1 3 3 , cos α = − , tan α = − , 2 2 3 2 2 1 sin β = , cos β = − , tan β = − 2 2, 3 3 π α π π β π < < , < < 4 2 2 4 2 2 a. sin(α + β ) = sin α cos β + cos α sin β 3⎞ ⎛2 2⎞ ⎛ 1⎞ ⎛ 1⎞ ⎛ = ⎜ ⎟ ⋅ ⎜ − ⎟ + ⎜⎜ − ⎟⋅⎜ ⎟ ⎝ 2 ⎠ ⎝ 3 ⎠ ⎝ 2 ⎟⎠ ⎜⎝ 3 ⎟⎠ −1 − 2 6 = 6 sin α = c. ) − 3 −6 2 3 = 3− 2 6 3 x = − 3 (α in quad. III) b. ) e. sin(2α ) = 2sin α cos α 3⎞ 3 ⎛ 1 ⎞⎛ = 2 ⎜ ⎟ ⎜⎜ − ⎟⎟ = − 2 2 2 ⎝ ⎠⎝ ⎠ f. cos(2 β ) = cos 2 β − sin 2 β 2 ⎛ 1⎞ ⎛ 2 2 ⎞ = ⎜ − ⎟ − ⎜⎜ ⎟ ⎝ 3 ⎠ ⎝ 3 ⎟⎠ 1 8 7 = − =− 9 9 9 cos(α + β ) = cos α cos β − sin α sin β ⎛ 3 ⎞⎛ 1 ⎞ ⎛ 1 ⎞⎛ 2 2 ⎞ = ⎜⎜ − ⎟⎟ ⎜ − ⎟ − ⎜ ⎟ ⎜⎜ ⎟⎟ ⎝ 2 ⎠⎝ 3 ⎠ ⎝ 2 ⎠⎝ 3 ⎠ 3−2 2 = 6 g. sin(α − β ) = sin α cos β − cos α sin β 1⎛ 1⎞ ⎛ 3 ⎞⎛ 2 2 ⎞ = ⎜ − ⎟ − ⎜⎜ − ⎟⎜ ⎟ 2 ⎝ 3 ⎠ ⎝ 2 ⎟⎠ ⎜⎝ 3 ⎟⎠ −1 + 2 6 = 6 h. sin cos β 1 − cos β 2 2 ⎛ 1⎞ 1− ⎜ − ⎟ ⎝ 3⎠ = 2 4 2 = 3 = = 2 3 α 2 2 = 2 3 ⋅ 3 3 = 6 3 1 + cos α 2 ⎛ 3⎞ 1 + ⎜⎜ − ⎟ 2 ⎟⎠ ⎝ = 2 = = 2− 3 2 = 2 2− 3 = 4 2− 3 2 328 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Review Exercises 2 3π 2 3π 89. sin α = − , π < α < ; cos β = − , π < β < 3 2 3 2 For α : d. tan(α + β ) = x2 + y 2 = r 2 2 2 2 5 5 + 2 = 5 2 5 5 1− ⋅ 5 2 4 5 +5 5 10 = 1−1 9 5 = 10 ; Undefined 0 2 x + (−2) = 3 x2 + 4 = 9 x2 = 5 x = − 5 (α in quad. III) 2 x + y2 = r 2 For β : (−2) 2 + y 2 = 32 4 + y2 = 9 y2 = 5 y = − 5 (β in quad III) 5 2 5 5 , tan α = , sin β = − , 3 5 3 5 π α 3π π β 3π tan β = , < < , < < 2 2 2 4 2 2 4 a. sin(α + β ) = sin α cos β + cos α sin β 5 ⎞⎛ 5⎞ ⎛ 2 ⎞⎛ 2 ⎞ ⎛ = ⎜ − ⎟ ⎜ − ⎟ + ⎜⎜ − ⎟⎜ − ⎟ ⎟⎜ ⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎠⎝ 3 ⎟⎠ 4 5 = + 9 9 =1 e. sin(2α ) = 2sin α cos α 5⎞ 4 5 ⎛ 2 ⎞⎛ = 2 ⎜ − ⎟ ⎜⎜ − ⎟= 9 ⎝ 3 ⎠ ⎝ 3 ⎟⎠ f. cos(2 β ) = cos 2 β − sin 2 β cos α = − b. c. tan α + tan β 1 − tan α tan β 2 2 5⎞ 4 5 1 ⎛ 2⎞ ⎛ = ⎜ − ⎟ − ⎜⎜ − ⎟⎟ = − = − 3 3 9 9 9 ⎝ ⎠ ⎝ ⎠ g. cos(α + β ) = cos α cos β − sin α sin β ⎛ 5 ⎞⎛ 2 ⎞ ⎛ 2 ⎞⎛ 5⎞ = ⎜⎜ − ⎟ ⎜ − ⎟ − ⎜ − ⎟ ⎜⎜ − ⎟⎟ ⎟ ⎝ 3 ⎠⎝ 3 ⎠ ⎝ 3 ⎠⎝ 3 ⎠ 2 5 2 5 = − 9 9 =0 h. sin β 1 − cos β 2 2 ⎛ 2⎞ 1− ⎜ − ⎟ ⎝ 3⎠ = = 2 = 5 3 = 5 = 30 2 6 6 ⎛ 5⎞ 1 + ⎜⎜ − ⎟⎟ 3 α 1 + cos α ⎝ ⎠ cos = − =− 2 2 2 3− 5 3 =− 2 sin(α − β ) = sin α cos β − cos α sin β 5 ⎞⎛ 5⎞ ⎛ 2 ⎞⎛ 2 ⎞ ⎛ = ⎜ − ⎟ ⎜ − ⎟ − ⎜⎜ − ⎟⎟ ⎜⎜ − ⎟ ⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎟⎠ 4 5 = − 9 9 1 =− 9 =− =− 3− 5 6 ( 6 3− 5 ) 6 6 3− 5 =− 6 329 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 90. tan α = − 2, For α : π π < α < π; cot β = − 2, < β < π 2 2 2 2 2 x +y =r tan α + tan β 1 − tan α tan β ⎛ 1⎞ −2+⎜ − ⎟ ⎝ 2⎠ = ⎛ 1⎞ 1 − (− 2) ⋅ ⎜ − ⎟ ⎝ 2⎠ 5 − = 2 ; undefined 0 d. tan(α + β ) = e. 4 ⎛ 2 ⎞⎛ 1 ⎞ sin(2α ) = 2sin α cos α = 2 ⎜ ⎟⎜ − ⎟=− 5 5⎠ ⎝ 5 ⎠⎝ f. cos(2 β ) = cos 2 β − sin 2 β (−1) 2 + (2) 2 = r 2 (α in quad. II) 1+ 4 = r r2 = 5 r= 5 For β : 2 2 x + y = r2 (−2)2 + 12 = r 2 (β in quad II) 4 +1 = r2 r2 = 5 r= 5 1 2 1 1 tan β = − , sin α = , cos α = − ,sin β = , 2 5 5 5 π α π π β π 2 < < , < < cos β = − , 5 4 2 2 4 2 2 a. sin(α + β ) = sin α cos β + cos α sin β ⎛ 2 ⎞⎛ 2 ⎞ ⎛ 1 ⎞⎛ 1 ⎞ =⎜ ⎟⎜ − ⎟+⎜− ⎟⎜ ⎟ 5⎠ ⎝ 5 ⎠⎝ 5 ⎠ ⎝ 5 ⎠⎝ 4 1 =− − 5 5 5 =− 5 = −1 b. c. cos(α + β ) = cos α cos β − sin α sin β ⎛ 1 ⎞⎛ 2 ⎞ ⎛ 2 ⎞ ⎛ 1 ⎞ = ⎜− ⎟⎜ − ⎟−⎜ ⎟⎜ ⎟ 5 ⎠⎝ 5 ⎠ ⎝ 5 ⎠⎝ 5 ⎠ ⎝ 2 2 = − 5 5 =0 2 g. β 1 − cos β = sin = 2 2 = = h. sin(α − β ) = sin α cos β − cos α sin β ⎛ 2 ⎞ ⎛ 2 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ =⎜ ⎟⋅⎜ − ⎟−⎜− ⎟⋅⎜ ⎟ 5⎠ ⎝ 5⎠ ⎝ 5⎠ ⎝ 5⎠ ⎝ 4 1 =− + 5 5 3 =− 5 2 ⎛ 2 ⎞ ⎛ 1 ⎞ 4 1 3 = ⎜− ⎟ −⎜ ⎟ = − = 5 5 5 5⎠ ⎝ 5⎠ ⎝ ⎛ 2 ⎞ 1− ⎜ − ⎟ 5⎠ ⎝ 2 5+2 5 2 5+2 2 5 = 5+2 5 10 = 10 5 + 2 5 10 α 1 + cos α = cos = 2 2 = = ⎛ 1 ⎞ 1+ ⎜ − ⎟ 5⎠ ⎝ 2 5 −1 5 2 5 −1 2 5 = 5− 5 10 = 10 5 − 5 10 330 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Review Exercises 3 1⎞ ⎛ 91. cos ⎜ sin −1 − cos −1 ⎟ 5 2⎠ ⎝ 3 1 Let α = sin −1 and β = cos −1 . α is in 5 2 quadrant I; β is in quadrant I. Then sin α = ⎡ 3⎤ ⎛ 1⎞ 93. tan ⎢sin −1 ⎜ − ⎟ − tan −1 ⎥ 2 4⎦ ⎝ ⎠ ⎣ 3 ⎛ 1⎞ Let α = sin −1 ⎜ − ⎟ and β = tan −1 . α is in 4 ⎝ 2⎠ quadrant IV; β is in quadrant I. Then, 3 , 5 1 π 3 , 0 ≤ α ≤ , and tan β = , 2 4 2 π 0<β < . 2 sin α = − π 1 π 0 ≤ α ≤ , and cos β = , 0 ≤ β ≤ . 2 2 2 cos α = 1 − sin 2 α cos α = 1 − sin 2 α 2 9 16 4 ⎛3⎞ = 1− ⎜ ⎟ = 1− = = 5 25 25 5 ⎝ ⎠ 2 1 ⎛ 1⎞ = 1− ⎜ − ⎟ = 1− = 4 ⎝ 2⎠ sin β = 1 − cos β 2 2 1 3 3 ⎛1⎞ = 1− ⎜ ⎟ = 1− = = 2 4 4 2 ⎝ ⎠ 1⎞ ⎛ −1 3 cos ⎜ sin − cos −1 ⎟ = cos (α − β ) 5 2⎠ ⎝ = cos α cos β + sin α sin β 4 1 3 3 = ⋅ + ⋅ 5 2 5 2 4 3 3 4+3 3 = + = 10 10 10 tan α = − 0≤α ≤ =− 3 3 3 ⎡ −1 ⎛ 1 ⎞ ⎛ 3 ⎞⎤ tan ⎢sin ⎜ − ⎟ − tan −1 ⎜ ⎟ ⎥ = tan (α − β ) ⎝ 2⎠ ⎝ 4 ⎠⎦ ⎣ tan α − tan β = 1 + tan α tan β 3 3 − 3 4 = ⎛ ⎞ 3 ⎛3⎞ 1 + ⎜⎜ − ⎟⎟ ⎜⎝ 4 ⎟⎠ 3 ⎝ ⎠ − 5 4⎞ ⎛ 92. sin ⎜ cos −1 − cos −1 ⎟ 13 5⎠ ⎝ 5 4 and β = cos −1 . α is in Let α = cos −1 13 5 quadrant I; β is in quadrant I. Then cos α = 1 3 3 = 4 2 −4 3 −9 12 = 3 3 1− 12 −9 − 4 3 12 + 3 3 = ⋅ 12 − 3 3 12 + 3 3 5 , 13 4 π π , and cos β = , 0 ≤ β ≤ . 5 2 2 −144 − 75 3 117 − 48 − 25 3 = 39 48 + 25 3 =− 39 = sin α = 1 − cos α 2 2 25 144 12 ⎛5⎞ = 1− ⎜ ⎟ = 1− = = 13 169 169 13 ⎝ ⎠ sin β = 1 − cos 2 β 2 16 9 3 ⎛4⎞ = 1− ⎜ ⎟ = 1− = = 5 25 25 5 ⎝ ⎠ 4⎞ ⎛ −1 5 sin ⎜ cos − cos −1 ⎟ = sin (α − β ) 13 5⎠ ⎝ = sin α cos β − cos α sin β 12 4 5 3 = ⋅ − ⋅ 13 5 13 5 48 15 33 = − = 65 65 65 331 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 4⎞ ⎛ 96. cos ⎜ 2 tan −1 ⎟ 3⎠ ⎝ 4 Let α = tan −1 . α is in quadrant I. Then 3 4 π tan α = , 0 < α < . 3 2 ⎡ ⎛ 4 ⎞⎤ 94. cos ⎢ tan −1 (−1) + cos −1 ⎜ − ⎟ ⎥ ⎝ 5 ⎠⎦ ⎣ ⎛ 4⎞ ⎝ ⎠ Let α = tan −1 (−1) and β = cos −1 ⎜ − ⎟ . α is in 5 quadrant IV; β is in quadrant II. Then tan α = −1, − π 2 4 π < α < 0 , and cos β = − , 5 2 sec α = tan 2 α + 1 2 16 ⎛4⎞ = ⎜ ⎟ +1 = +1 = 9 ⎝3⎠ 3 cos α = 5 4⎞ ⎛ cos ⎜ 2 tan −1 ⎟ = cos ( 2α ) 3⎠ ⎝ = 2 cos 2 α − 1 ≤β ≤π. sec α = 1 + tan 2 α = 1 + (−1) 2 = 2 cos α = 1 2 = 2 2 sin α = − 1 − cos 2 α 2 ⎛ 2⎞ 1 1 2 = − 1 − ⎜⎜ =− ⎟⎟ = − 1 − = − 2 2 2 2 ⎝ ⎠ 25 5 = 9 3 2 7 ⎛3⎞ ⎛ 9 ⎞ = 2 ⎜ ⎟ −1 = 2 ⎜ ⎟ −1 = − 25 ⎝5⎠ ⎝ 25 ⎠ sin β = 1 − cos 2 β 2 97. cos θ = 16 9 3 ⎛ 4⎞ = 1− ⎜ − ⎟ = 1− = = 25 25 5 ⎝ 5⎠ 5π + 2kπ , k is any integer 3 ⎧ π 5π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , ⎬. ⎩3 3 ⎭ θ= ⎡ ⎛ 4 ⎞⎤ cos ⎢ tan −1 (−1) + cos −1 ⎜ − ⎟ ⎥ = cos (α + β ) ⎝ 5 ⎠⎦ ⎣ = cos α cos β − sin α sin β ⎛ 2 ⎞⎛ 4 ⎞ ⎛ 2 ⎞⎛ 3 ⎞ = ⎜⎜ ⎟⎟ ⎜ − ⎟ − ⎜⎜ − ⎟⎟ ⎜ ⎟ ⎝ 2 ⎠⎝ 5 ⎠ ⎝ 2 ⎠⎝ 5 ⎠ −4 2 3 2 = + 10 10 2 =− 10 π 1 2 3 + 2kπ or θ = 98. sin θ = − 3 2 4π 5π + 2kπ or θ = + 2kπ , k is any integer 3 3 ⎧ 4π 5π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , ⎬. 3 ⎭ ⎩ 3 θ= ⎡ ⎛ 3 ⎞⎤ 95. sin ⎢ 2 cos −1 ⎜ − ⎟ ⎥ ⎝ 5 ⎠⎦ ⎣ ⎛ 3⎞ Let α = cos −1 ⎜ − ⎟ . α is in quadrant II. Then ⎝ 5⎠ 3 π cos α = − , ≤ α ≤ π . 5 2 99. 2 cos θ + 2 = 0 2 cos θ = − 2 cos θ = − 2 2 3π 5π + 2kπ or θ = + 2kπ , k is any integer 4 4 ⎧ 3π 5π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , ⎬. 4 ⎭ ⎩ 4 sin α = 1 − cos 2 α θ= 2 9 16 4 ⎛ 3⎞ = 1− ⎜ − ⎟ = 1− = = 5 25 25 5 ⎝ ⎠ ⎡ ⎛ 3 ⎞⎤ sin ⎢ 2cos −1 ⎜ − ⎟ ⎥ = sin 2α ⎝ 5 ⎠⎦ ⎣ = 2sin α cos α 24 ⎛ 4 ⎞⎛ 3 ⎞ = 2 ⎜ ⎟⎜ − ⎟ = − 5 5 25 ⎝ ⎠⎝ ⎠ 332 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Review Exercises 100. tan θ + 3 = 0 105. sec 2 θ = 4 sec θ = ±2 1 cos θ = ± 2 tan θ = − 3 2π θ= + k π , k is any integer 3 On the interval 0 ≤ θ < 2π , the solution set is ⎧ 2π 5π ⎫ ⎨ , ⎬. 3 ⎭ ⎩ 3 θ= π +k π or θ= 2π +kπ , 3 3 where k is any integer On the interval 0 ≤ θ < 2π , the solution set is ⎧ π 2π 4π 5π ⎫ , , ⎬. ⎨ , ⎩3 3 3 3 ⎭ 101. sin(2θ ) + 1 = 0 sin(2θ ) = −1 3π + 2kπ 2 3π θ= + kπ , k is any integer 4 On the interval 0 ≤ θ < 2π , the solution set is ⎧ 3π 7π ⎫ ⎨ , ⎬ 4 ⎭ ⎩ 4 2θ = 106. csc 2 θ = 1 csc θ = ±1 sin θ = ±1 θ= π +kπ , where k is any integer 2 On the interval 0 ≤ θ < 2π , the solution set is ⎧ π 3π ⎫ ⎨ , ⎬. ⎩2 2 ⎭ 102. cos ( 2θ ) = 0 π 3π + 2k π or 2θ = + 2k π 2 2 π 3π θ = + kπ θ = + k π, 4 4 where k is any integer On the interval 0 ≤ θ < 2π , the solution set is ⎧ π 3π 5π 7π ⎫ , ⎬. ⎨ , , ⎩4 4 4 4 ⎭ 2θ = sin θ = tan θ 107. sin θ cos θ sin θ cos θ = sin θ sin θ = sin θ cos θ − sin θ = 0 sin θ (cos θ − 1) = 0 cos θ − 1 = 0 or sin θ = 0 cos θ = 1 θ =0 θ =π On the interval 0 ≤ θ < 2π , the solution set is {0, π } . 103. tan ( 2θ ) = 0 2θ = 0 + k π kπ , where k is any integer 2 On the interval 0 ≤ θ < 2π , the solution set is 3π ⎫ ⎧ π ⎨0, , π , ⎬. 2 ⎭ ⎩ 2 θ= 108. cos θ = sec θ 1 cos θ cos 2 θ = 1 cos θ = 104. sin ( 3θ ) = 1 cos θ = ±1 π 3θ = + 2k π 2 π 2k π , where k is any integer θ= + 6 3 On the interval 0 ≤ θ < 2π , the solution set is ⎧ π 5π 3π ⎫ , ⎬. ⎨ , ⎩6 6 2 ⎭ θ = 0, π On the interval 0 ≤ θ < 2π , the solution set is {0, π } . 333 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 109. sin θ + sin(2θ ) = 0 113. sin θ + 2sin θ cos θ = 0 sin θ (1 + 2 cos θ ) = 0 1 + 2 cos θ = 0 2sin θ − 1 = 0 or sin θ = 0 sin θ = θ = 0, π 1 2 2π 4 π θ= , 3 3 cos θ = − θ= 114. (2sin θ − 1)(sin θ + 1) = 0 θ= sin θ + 1 = 0 sin θ = −1 1 sin θ = 2 θ= π 5π 6 , 3π 2 6 4sin 2 θ = 1 + 4 cos θ 2 cos θ − 1 = 0 cos θ = θ= θ =0 3 2 (not possible) cos θ = − π 5π 3 , 3 116. 8 − 12sin 2 θ = 4 cos 2 θ 8 − 12sin 2 θ = 4 1 − sin 2 θ ( θ= ) 8 − 12sin θ = 4 − 4sin θ 2 2 4 = 8sin 2 θ 4 1 sin 2 θ = = 8 2 or sin θ = 1 3 1 2 ⎧ π 5π ⎫ ⎬. ⎩3 3 ⎭ (2 cos θ − 1)(sin θ − 1) = 0 3 or 2 cos θ + 3 = 0 On 0 ≤ θ < 2π , the solution set is ⎨ , sin θ (2 cos θ − 1) − 1(2 cos θ − 1) = 0 , ) ( 2 cos θ − 1)( 2 cos θ + 3) = 0 2sin θ cos θ − sin θ − 2 cos θ + 1 = 0 π 5π 5π ⎫ ⎬. 3 ⎭ 4 cos θ + 4 cos θ − 3 = 0 sin(2θ ) − sin θ − 2 cos θ + 1 = 0 θ= 3 4 − 4 cos θ = 1 + 4 cos θ 6 1 cos θ = 2 , 2 ⎧ π 5π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨0, , ⎬ . ⎩ 6 6 ⎭ 112. 3 2 or cos θ = 1 , θ =π π 5π ( (2sin θ − 1)(cos θ − 1) = 0 π 5π cos θ = −1 1 2 4 1 − cos 2 θ = 1 + 4 cos θ cos θ (2sin θ − 1) − 1(2sin θ − 1) = 0 θ= or cos θ + 1 = 0 115. 6 2sin θ cos θ − cos θ − 2sin θ + 1 = 0 1 2 2 6 ⎧π ⎩3 sin(2θ ) − cos θ − 2sin θ + 1 = 0 sin θ = , On 0 ≤ θ < 2π , the solution set is ⎨ , π , ⎧ π 5π 3π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , , ⎬ . ⎩6 6 2 ⎭ 111. 6 π 2 cos 2 θ + cos θ − 1 = 0 (2 cos θ − 1)(cos θ + 1) = 0 cos θ = 2sin 2 θ + sin θ − 1 = 0 θ= θ= π 5π 2 cos θ − 1 = 0 1 − 2sin 2 θ = sin θ or sin θ = 1 1 2 ⎧ π π 5π ⎫ ⎬. ⎩6 2 6 ⎭ cos ( 2θ ) = sin θ 2sin θ − 1 = 0 sin θ − 1 = 0 or On 0 ≤ θ < 2π , the solution set is ⎨ , , 4π ⎫ ⎧ 2π ,π , ⎬ . On 0 ≤ θ < 2π , the solution set is ⎨0, 3 ⎭ ⎩ 3 110. 2sin 2 θ − 3sin θ + 1 = 0 (2sin θ − 1)(sin θ − 1) = 0 1 2 =± 2 2 π 3π 5π 7π θ= , , , 4 4 4 4 sin θ = ± π 2 ⎧ π π 5π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , , ⎬ . ⎩3 2 3 ⎭ ⎧ π 3π 5π 7π ⎫ , , ⎬. ⎩4 4 4 4 ⎭ On 0 ≤ θ < 2π , the solution set is ⎨ , 334 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Review Exercises sin ( 2θ ) = 2 cos θ 117. 120. sin θ − 3 cos θ = 2 Divide each side by 2sin θ cos θ = 2 cos θ 1 3 sin θ − cos θ = 1 2 2 Rewrite using the difference of two angles π 1 formula where φ = , so cos φ = and 3 2 2sin θ cos θ − 2 cos θ = 0 ( ) cos θ 2sin θ − 2 = 0 cos θ = 0 θ= or 2sin θ − 2 = 0 π 3π , 2 2 sin θ = θ= 2 2 3 . 2 sin θ cos φ − cos θ sin φ = 1 sin (θ − φ ) = 1 sin φ = π 3π , 4 4 ⎧ π π 3π 3π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , , ⎩4 2 4 118. , ⎬. 2 ⎭ π 2 π π θ− = 3 2 5π θ= 6 θ −φ = 1 + 3 cos θ + cos ( 2θ ) = 0 1 + 3 cos θ + 2 cos 2 (θ ) − 1 = 0 2 cos 2 (θ ) + 3 cos θ = 0 ( ⎧ 5π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ ⎬ . ⎩6⎭ ) cos θ 2 cos θ + 3 = 0 cos θ = 0 or 2 cos θ + 3 = 0 121. sin −1 ( 0.7 ) ≈ 0.78 π 3π 3 cos θ = − 2 2 2 5π 7π θ= , 6 6 ⎧ π 5π 7π 3π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , , , ⎬ . θ= , ⎩2 6 6 2 ⎭ ⎛4⎞ 122. cos −1 ⎜ ⎟ ≈ 0.64 ⎝5⎠ 119. sin θ − cos θ = 1 Divide each side by 2 : 1 1 1 sin θ − cos θ = 2 2 2 Rewrite in the difference of two angles form 1 1 π , sin φ = , and φ = : where cos φ = 4 2 2 1 sin θ cos φ − cos θ sin φ = 2 sin(θ − φ ) = 2: 123. tan −1 ( −2 ) ≈ −1.11 2 2 124. cos −1 ( −0.2 ) ≈ 1.77 π 3π or θ − φ = θ −φ = 4 4 π π π 3π θ − = or θ − = 4 4 4 4 π θ= or θ = π 2 ⎧π ⎫ On 0 ≤ θ < 2π , the solution set is ⎨ , π ⎬ . ⎩2 ⎭ 335 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 128. 2 x = 5sin x Find the intersection of Y1 = 2 x and Y2 = 5sin x : ⎛1⎞ 125. sec−1 ( 3) = cos −1 ⎜ ⎟ ⎝3⎠ We seek the angle θ , 0 ≤ θ ≤ π , whose cosine 6 1 1 equals . Now cos θ = , so θ lies in 3 3 1 quadrant I. The calculator yields cos −1 ≈ 1.23 , 3 which is an angle in quadrant I, so sec−1 ( 3) ≈ 1.23 . 6 2π −2π −2π −6 2π −6 On the interval 0 ≤ x ≤ 2π , x ≈ 0 or x ≈ 2.13 . The solution set is {0, 2.13} . 129. 2sin x + 3cos x = 4 x Find the intersection of Y1 = 2sin x + 3cos x and Y2 = 4 x : 6 ⎛ 1⎞ 126. cot −1 ( −4 ) = tan −1 ⎜ − ⎟ ⎝ 4⎠ We seek the angle θ , 0 ≤ θ ≤ π , whose tangent 2π −2π 1 1 equals − . Now tan θ = − , so θ lies in 4 4 quadrant II. The calculator yields −6 x ≈ 0.87 . The solution set is {0.87} . ⎛ 1⎞ tan −1 ⎜ − ⎟ ≈ −0.24 , which is an angle in ⎝ 4⎠ quadrant IV. Since θ lies in quadrant II, θ ≈ −0.24 + π ≈ 2.90 . Therefore, cot −1 ( −4 ) ≈ 2.90 . 130. 3cos x + x = sin x Find the intersection of Y1 = 3cos x + x and Y2 = sin x : 6 6 2π −2π −2π 127. 2 x = 5cos x Find the intersection of Y1 = 2 x and Y2 = 5cos x : −6 −6 On the interval 0 ≤ x ≤ 2π , x ≈ 1.89 or x ≈ 3.07 . The solution set is {1.89,3.07} . 6 2π −2π 2π 131. sin x = ln x Find the intersection of Y1 = sin x and Y2 = ln x : 2 −6 x ≈ 1.11 The solution set is {1.11} . 2π −2π −2 x ≈ 2.22 The solution set is {2.22} . 336 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Review Exercises Using a difference formula: sin15° = sin(45° − 30°) = sin(45°) cos(30°) − cos(45°) sin(30°) 132. sin x = e − x Find the intersection of Y1 = sin x and Y2 = e − x : 6 6 2 3 2 1 ⋅ − ⋅ 2 2 2 2 6 2 6− 2 1 = − = = 4 4 4 4 = 2π −2π −2π −6 2π −6 ( 133. −3sin −1 x = π π 3 = −2 cos −1 x = −π = π x = cos π = =0 2 The solution set is {0}. 135. Using a half-angle formula: ⎛ 30° ⎞ sin15° = sin ⎜ ⎟ ⎝ 2 ⎠ = 1 − cos 30° 2 1− ( ) 3 −1 4 ( −2 cos −1 x + π = 0 2 2 ) ⎞⎟ ⎛ 2 3 −1 = ⎜ ⎜ 4 ⎝ 2 cos −1 x + π = 4 cos −1 x cos −1 x = ) ) = 3 ⎛ π⎞ x = sin ⎜ − ⎟ = − 3 2 ⎝ ⎠ ⎧⎪ 3 ⎫⎪ The solution set is ⎨− ⎬. ⎩⎪ 2 ⎭⎪ 134. 6− 2 Verifying equality: 1 6− 2 6− 2 = 4 4 2⋅ 3− 2 = 4 On the interval 0 ≤ x ≤ 2π , x ≈ 0.59 or x ≈ 3.10 . The solution set is {0.59,3.10} . sin −1 x = − ( 2 ⎟ ⎠ ( ) 2 3 − 2 3 +1 16 ( 2 4−2 3 ) 16 ( 2⋅2 2 − 3 ) 16 = 2− 3 4 = 2− 3 2 136. Given the value of cos θ , the most efficient Double-angle Formula to use is cos ( 2θ ) = 2 cos 2 θ − 1 . 3 2 = 2− 3 2− 3 = 2 4 2 Note: since 15º lies in quadrant I, we have sin15° > 0 . = 337 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry Chapter 3 Test 7⎞ ⎛ 4. tan ⎜ tan −1 ⎟ follows the form 3⎠ ⎝ ⎛ 2 ⎞ 1. Let θ = sec−1 ⎜ ⎟ . We seek the angle θ , such ⎝ 3⎠ that 0 ≤ θ ≤ π and θ ≠ π 2 ( ( 5. cot csc−1 10 2 . The that − ≤ θ ≤ , whose sine equals − 2 2 2 only value in the restricted range with a sine of ⎛ 2 π 2⎞ π − is − . Thus, sin −1 ⎜ − ⎟=− . ⎜ ⎟ 4 4 2 ⎝ 2 ⎠ x 2 + 12 = ( 10 ) 2 x 2 + 1 = 10 x2 = 9 x=3 θ is in quadrant I. ⎛ 11π ⎞ 3. sin −1 ⎜ sin ⎟ follows the form of the equation 5 ⎠ ⎝ ( r π π = 10 , − ≤ θ ≤ , let 2 2 y r = 10 and y = 1 . Solve for x: π ) ) ) Since csc −1 θ = ⎛ 2⎞ 2. Let θ = sin −1 ⎜ − ⎟ . We seek the angle θ , such 2 ⎝ ⎠ ( ( domain of the inverse tangent is all real numbers, we can directly apply this equation to get 7⎞ 7 ⎛ tan ⎜ tan −1 ⎟ = . 3⎠ 3 ⎝ , whose secant equals 2 . The only value in the restricted range with 3 ⎛ 2 ⎞ π 2 π is . Thus, sec−1 ⎜ a secant of ⎟= . 6 3 ⎝ 3⎠ 6 π ) f f −1 ( x ) = tan tan −1 x = x . Since the ( ) Thus, cot csc −1 10 = cot θ = ) f −1 f ( x ) = sin −1 sin ( x ) = x , but because x 3 = = 3. y 1 ⎛ 3⎞ 6. Let θ = cos −1 ⎜ − ⎟ . ⎝ 4⎠ 11π ⎡ π π⎤ is not in the interval ⎢ − , ⎥ , we cannot 5 ⎣ 2 2⎦ directly use the equation. We need to find an angle θ in the interval 11π ⎡ π π⎤ ⎢ − 2 , 2 ⎥ for which sin 5 = sin θ . The angle ⎣ ⎦ ⎡ ⎛ 3 ⎞⎤ sec ⎢cos −1 ⎜ − ⎟ ⎥ = sec θ ⎝ 4 ⎠⎦ ⎣ 1 = cos θ 1 ⎡ −1 ⎛ 3 ⎞ ⎤ cos ⎢ cos ⎜ − ⎟ ⎥ ⎝ 4 ⎠⎦ ⎣ 1 = 3 −4 4 =− 3 = 11π π is in quadrant I and coterminal with , so 5 5 11π π π sin = sin . Since is in the interval 5 5 5 ⎡ π π⎤ ⎢ − 2 , 2 ⎥ , we can apply the equation above and ⎣ ⎦ 7. sin −1 ( 0.382 ) ≈ 0.392 radian 11π ⎞ π get sin ⎜ sin ⎟= . 5 ⎠ 5 ⎝ −1 ⎛ 338 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Test ⎛ 1 ⎞ 8. sec−1 1.4 = cos −1 ⎜ ⎟ ≈ 0.775 radian ⎝ 1.4 ⎠ 13. tan θ + cot θ = sin θ cos θ + cos θ sin θ sin 2 θ cos 2 θ + sin θ cos θ sin θ cos θ sin 2 θ + cos 2 θ = sin θ cos θ 1 = sin θ cos θ 2 = 2sin θ cos θ 2 = sin ( 2θ ) = 9. tan −1 3 ≈ 1.249 radians = 2 csc ( 2θ ) ⎛1⎞ 10. cot −1 5 = tan −1 ⎜ ⎟ ≈ 0.197 radian ⎝5⎠ 14. sin (α + β ) tan α + tan β sin α cos β + cos α sin β sin α sin β + cos α cos β sin α cos β + cos α sin β = sin α cos β cos α sin β + cos α cos β cos α cos β sin α cos β + cos α sin β = sin α cos β + cos α sin β cos α cos β sin α cos β + cos α sin β = 11. csc θ + cot θ sec θ + tan θ csc θ + cot θ csc θ − cot θ = ⋅ sec θ + tan θ csc θ − cot θ csc2 θ − cot 2 θ = ( sec θ + tan θ )( cscθ − cot θ ) = = = = 1 ( sec θ + tan θ )( cscθ − cot θ ) 1 ( sec θ + tan θ )( cscθ − cot θ ) (sec ⋅ 1 cos α cos β sin α cos β + cos α sin β = cos α cos β sec θ − tan θ sec θ − tan θ 15. sec θ − tan θ 2 ⋅ ) θ − tan 2 θ ( csc θ − cot θ ) sin ( 3θ ) = sin (θ + 2θ ) = sin θ cos ( 2θ ) + cos θ sin ( 2θ ) ( ) = sin θ cos 2 θ − sin 2 θ + cos θ ⋅ 2sin θ cos θ sec θ − tan θ = csc θ − cot θ = sin θ cos θ − sin θ + 2sin θ cos 2 θ = 3sin θ cos 2 θ − sin 3 θ = 3sin θ 1 − sin 2 θ − sin 3 θ 2 3 ( sin θ + cos θ cos θ 2 sin θ cos 2 θ = + cos θ cos θ 2 sin θ + cos 2 θ = cos θ 1 = cos θ = sec θ 12. sin θ tan θ + cos θ = sin θ ⋅ ) = 3sin θ − 3sin θ − sin 3 θ = 3sin θ − 4sin 3 θ 3 339 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry sin θ cos θ tan θ − cot θ cos θ − sin θ 16. = tan θ + cot θ sin θ cos θ + cos θ sin θ 3⎞ ⎛1 19. sin ⎜ cos −1 ⎟ 5⎠ ⎝2 3 π (from the Let θ = cos −1 . Since 0 < θ < 2 5 sin 2 θ − cos 2 θ θ cos θ = sin 2 sin θ + cos 2 θ sin θ cos θ sin 2 θ − cos 2 θ = sin 2 θ + cos 2 θ − cos ( 2θ ) = 1 = − 2 cos 2 θ − 1 ( range of cos −1 x ), 1 − cos θ ⎛1 ⎞ sin ⎜ θ ⎟ = 2 ⎝2 ⎠ 3 1 − cos ⎛⎜ cos −1 ⎞⎟ 5⎠ ⎝ = 2 1 − 53 = 2 1 = 5 5 = 5 ) = 1 − 2 cos θ 2 17. cos15° = cos ( 45° − 30° ) = cos 45° cos 30° + sin 45° sin 30° 2 3 2 1 = ⋅ + ⋅ 2 2 2 2 2 = 3 +1 4 6+ 2 1 = or 6+ 2 4 4 ( 6⎞ ⎛ 20. tan ⎜ 2sin −1 ⎟ 11 ⎝ ⎠ 6 −1 6 Let θ = sin . Then sin θ = and θ lies in 11 11 y 6 quadrant I. Since sin θ = = , let y = 6 and r 11 r = 11 , and solve for x: x 2 + 62 = 112 x 2 = 85 x = 85 ) ( ) 18. tan 75° = tan ( 45° + 30° ) tan 45° + tan 30° 1 − tan 45° tan 30° 3 1+ 3 = 3 1 − 1⋅ 3 3+ 3 = 3− 3 3+ 3 3+ 3 = ⋅ 3− 3 3+ 3 9+6 3+3 = 32 − 3 12 + 6 3 = 6 = 2+ 3 = y 6 6 85 = = x 85 85 2 tan θ tan ( 2θ ) = 1 − tan 2 θ ⎛ 6 85 ⎞ 2⎜ 85 ⎟⎠ = ⎝ 2 ⎛ 6 85 ⎞ 1− ⎜ ⎟ ⎝ 85 ⎠ tan θ = 12 85 = 85 36 1− 85 12 85 85 = ⋅ 85 49 12 85 = 49 340 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Test 23. 2 3⎞ ⎛ 21. cos ⎜ sin −1 + tan −1 ⎟ 3 2⎠ ⎝ 2 3 Let α = sin −1 and β = tan −1 . Then 3 2 2 3 sin α = and tan β = , and both α and β 3 2 y 2 lie in quadrant I. Since sin α = 1 = , let r1 3 ⎛ 75° + 15° ⎞ ⎛ 75° − 15° ⎞ = 2sin ⎜ cos ⎜ ⎟ ⎟ 2 2 ⎝ ⎠ ⎝ ⎠ ⎛ 2 ⎞⎛ 3 ⎞ 6 = 2sin ( 45° ) cos ( 30° ) = 2 ⎜ ⎟⎜ ⎟= 2 2 2 ⎝ ⎠⎝ ⎠ 24. cos 65° cos 20° + sin 65° sin 20° = cos ( 65° − 20° ) = cos ( 45° ) y1 = 2 and r1 = 3 . Solve for x1 : x12 + 22 = 32 x12 + 4 = 9 x12 = 5 x1 = 5 Thus, cos α = x1 5 = . r1 3 Since tan β = y2 3 = , let x2 = 2 and y2 = 3 . x2 2 = 4sin 2 θ = 3 3 sin 2 θ = 4 3 sin θ = ± 2 On the interval [ 0, 2π ) , the sine function takes on a value of sine takes on a value of − { 5 2 2 3 = ⋅ − ⋅ 3 13 3 13 2 13 ( 5 −3 ) 39 1 ⎡sin (α + β ) + sin (α − β ) ⎤⎦ , 2⎣ 1 ⎡sin ( 90° ) + sin ( 60° ) ⎤⎦ 2⎣ 1⎡ 3⎤ = ⎢1 + 2⎣ 2 ⎥⎦ 1 = 2+ 3 4 2+ 3 = 4 sin 75° cos15° = ( } ⎛π ⎞ 26. −3cos ⎜ − θ ⎟ = tan θ ⎝2 ⎠ −3sin θ = tan θ sin θ + 3sin θ 0= cos θ ⎛ 1 ⎞ 0 = sin θ ⎜ + 3⎟ θ cos ⎝ ⎠ 1 sin θ = 0 or +3= 0 cos θ 1 cos θ = − 3 On the interval [ 0, 2π ) , the sine function takes on 22. Let α = 75° , β = 15° . Since sin α cos β = 3 π 2π when θ = or θ = . The 3 2 3 3 4π when θ = and 3 2 π 2π 4π 5π 5π , , , θ= . The solution set is . 3 3 3 3 3 y2 3 = . r2 13 Therefore, cos (α + β ) = cos α cos β − sin α sin β Thus, sin β = 2 5 −6 = 3 13 2 2 25. 4sin 2 θ − 3 = 0 Solve for x2 : 22 + 32 = r2 2 4 + 9 = r2 2 r2 2 = 13 r2 = 13 = sin 75° + sin15° a value of 0 when θ = 0 or θ = π . The cosine 1 function takes on a value of − in the second and 3 1 third quadrants when θ = π − cos −1 and 3 −1 1 θ = π + cos . That is θ ≈ 1.911 and θ ≈ 4.373 . 3 The solution set is {0,1.911, π , 4.373} . ) 341 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 27. The second equation has no solution since −1 ≤ sin θ ≤ 1 for all values of θ . Therefore, we only need to find values of θ 1 between 0 and 2π such that sin θ = . These will 4 occur in the first and second quadrants. Thus, 1 1 θ = sin −1 ≈ 0.253 and θ = π − sin −1 ≈ 2.889 . 4 4 The solution set is {0.253, 2.889} . cos 2 θ + 2sin θ cos θ − sin 2 θ = 0 ( cos 2 θ − sin 2 θ ) + 2sin θ cos θ = 0 cos ( 2θ ) + sin ( 2θ ) = 0 sin ( 2θ ) = − cos ( 2θ ) tan ( 2θ ) = −1 The tangent function takes on the value −1 3π + kπ . Thus, we need when its argument is 4 3π 2θ = + kπ 4 3π π θ= +k 8 2 30. Using the average grade, we approximate the situation by considering the start of the route as the center of a circle of radius r = 15 (the length of the route). Then the end of the route is located at the point P ( x, y ) on the circle π ( 3 + 4k ) 8 On the interval [ 0, 2π ) , the solution set is θ= {π x 2 + y 2 = 152 = 225 . We have that y tan θ = = 0.079 x θ = tan −1 0.079 ≈ 4.5° y y sin θ = = r 15 y = 15sin θ = 15sin 4.5° ≈ 1.18 The change in elevation during the time trial was about 1.18 kilometers. } 3 7π 11π 15π , , , . 8 8 8 8 28. sin (θ + 1) = cos θ sin θ cos1 + cos θ sin1 = cos θ sin θ cos1 + cos θ sin1 cos θ = cos θ cos θ tan θ cos1 + sin1 = 1 tan θ cos1 = 1 − sin1 1 − sin1 tan θ = cos1 ⎛ 1 − sin1 ⎞ Therefore, θ = tan −1 ⎜ ⎟ ≈ 0.285 or ⎝ cos1 ⎠ 1 − sin1 ⎞ θ = π + tan −1 ⎛⎜ ⎟ ≈ 3.427 ⎝ cos1 ⎠ The solution set is {0.285,3.427} . 29. 4sin 2 θ + 7 sin θ = 2 4sin 2 θ + 7 sin θ − 2 = 0 Let u = sin θ . Then, 4u 2 + 7u − 2 = 0 ( 4u − 1)( u + 2 ) = 0 4u − 1 = 0 or u + 2 = 0 u = −2 4u = 1 1 u= 4 Substituting back in terms of θ , we have 1 sin θ = or sin θ = −2 4 342 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Cumulative Review Tests for symmetry: Chapter 3 Cumulative Review x-axis: Replace y with − y : 3x + ( − y ) = 9 2 1. 3x + x − 1 = 0 2 3x + y 2 = 9 Since we obtain the original equation, the graph is symmetric with respect to the x-axis. −b ± b − 4ac 2a 2 x= −1 ± 12 − 4 ( 3)( −1) = y-axis: Replace x with − x : 3 ( − x ) + y 2 = 9 2 ( 3) −3x + y 2 = 9 Since we do not obtain the original equation, the graph is not symmetric with respect to the y-axis. −1 ± 1 + 12 6 −1 ± 13 = 6 = Origin: Replace x with − x and y with − y : 3( − x ) + ( − y ) = 9 2 ⎧ −1 − 13 −1 + 13 ⎫ , The solution set is ⎨ ⎬. 6 6 ⎩ ⎭ −3x + y 2 = 9 Since we do not obtain the original equation, the graph is not symmetric with respect to the origin. 2. Line containing points (−2,5) and (4, −1) : m= y2 − y1 −1 − 5 −6 = = = −1 x2 − x1 4 − ( −2 ) 6 4. y = x − 3 + 2 Using the graph of y = x , shift horizontally to Using y − y1 = m( x − x1 ) with point (4, −1) , the right 3 units and vertically up 2 units. y − (−1) = −1( x − 4 ) y + 1 = −1( x − 4 ) y +1 = −x + 4 y = − x + 3 or x + y = 3 Distance between points (−2,5) and (4, −1) : d= = ( x2 − x1 ) 2 + ( y2 − y1 ) 2 ( 4 − ( −2 ) ) + ( −1 − 5)2 2 = 62 + ( −6 ) = 72 = 36 ⋅ 2 = 6 2 π⎞ ⎛ 5. y = cos ⎜ x − ⎟ − 1 2⎠ ⎝ Using the graph of y = cos x , horizontally shift 2 Midpoint of segment with endpoints (−2,5) and (4, −1) : to the right ⎛ x1 + x2 y1 + y2 ⎞ ⎛ −2 + 4 5 + ( −1) ⎞ ⎜ 2 , 2 ⎟ = ⎜ 2 , 2 ⎟ = (1, 2 ) ⎝ ⎠ ⎝ ⎠ π 2 units, and vertically shift down 1 unit. 3. 3x + y 2 = 9 x-intercept: 3x + 02 = 9 ; ( 3, 0 ) 3x = 9 x=3 y-intercepts: 3 ( 0 ) + y 2 = 9 ; ( 0, −3) , ( 0,3) y2 = 9 y = ±3 343 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry 6. a. y = x3 y 5 (1, 1) −5(−1,−1) (0, 0) x 5 −5 Inverse function: y = 3 x c. y y = cos x , 0 ≤ x ≤ π y 5 3 (1, 1) (0, 0) −5 x 5 ⎛π _ ⎞ ⎜ 2 , 0⎟ ⎝ ⎠ (0, 1) (−1,−1) −1 −1 −5 x 3 (π,−1) Inverse function: y = cos −1 x y (−1, π) 3 π⎞ ⎛ _ ⎜ 0, 2 ⎟ ⎝ ⎠ −1 −1 b. y = sin x , − y π ≤x≤ 2 2 x π 2 2 x −2 1 3π 7. sin θ = − , π < θ < , so θ lies in Quadrant 3 2 III. a. In Quadrant III, cos θ < 0 Inverse function: y = sin −1 x y 2 _⎞ ⎛ π ⎜ 1, 2 ⎟ ⎠ ⎝ (0, 0) −2 π ⎛ _⎞ ⎜ −1, − 2 ⎟ ⎝ ⎠ 3 π ⎞ ⎛_ ⎜ 2 , 1⎟ ⎠ ⎝ (0, 0) −2 π ⎛ _ ⎞ ⎜ − 2 , −1⎟ ⎝ ⎠ (1, 0) 2 ⎛ 1⎞ cos θ = − 1 − sin 2 θ = − 1 − ⎜ − ⎟ ⎝ 3⎠ x = − 1− −2 =− 2 1 8 =− 9 9 2 2 3 344 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Cumulative Review sin θ = tan θ = cos θ b. − 1 π 1 3π 9. sin α = , < α < π ; cos β = − , π < β < 3 2 3 2 π a. Since < α < π , we know that α lies in 2 Quadrant II and cos α < 0 . 1 3 2 2 3 1⎛ 3 ⎞ 1 2 = − ⎜− = = 3 ⎝ 2 2 ⎟⎠ 2 2 4 − c. sin(2θ ) = 2sin θ cos θ ⎛ 1 ⎞⎛ 2 2 ⎞ 4 2 = 2⎜ − ⎟⎜ − ⎟= 3 ⎠ 9 ⎝ 3 ⎠⎝ d. cos(2θ ) = cos θ − sin θ 2 cos α = − 1 − sin 2 α 2 1 8 ⎛1⎞ = − 1− ⎜ ⎟ = − 1− = − 9 9 ⎝3⎠ =− 2 2 ⎛ 2 2 ⎞ ⎛ 1 ⎞2 8 1 7 = ⎜− ⎟ −⎜ ⎟ = − = 3 ⎠ ⎝ 3⎠ 9 9 9 ⎝ e. Since π < θ < Thus, 3π π θ 3π , we have that < < . 2 2 2 4 3π , we know that β lies in 2 Quadrant III and sin β < 0 . π <β < sin β = − 1 − cos 2 β ( ) 1 1 θ lies in Quadrant II and sin θ > 0 . 2 2 ( ) 1 1 − cos θ sin θ = = 2 2 = f. b. Since ⎛ 2 2⎞ 1− ⎜ − ⎟ 3 ⎠ ⎝ 2 ⎛ 1⎞ = − 1− ⎜ − ⎟ ⎝ 3⎠ = − 1− c. 3+ 2 2 3+ 2 2 3 = 2 6 1 8 2 2 =− =− 9 9 3 2 ⎛ 2 2 ⎞ ⎛ 1 ⎞2 8 1 7 = ⎜− = − = ⎟ − 3 ⎠ ⎜⎝ 3 ⎟⎠ 9 9 9 ⎝ ( ) 1 1 θ lies in Quadrant II, cos θ < 0 . 2 2 d. cos(α + β ) = cos α cos β − sin α sin β =− ( ) = 3− 2 2 3−2 2 3 =− =− 2 6 ( 2 cos(2α ) = cos 2 α − sin 2 α ⎛ 2 2⎞ 1+ ⎜ − ⎟ 1 1 + cos θ 3 ⎠ ⎝ cos θ = − =− 2 2 2 8. cos tan −1 2 2 2 3 e. 2 2 ⎛ 1⎞ 1⎛ 2 2 ⎞ − − ⎜− ⎟ 3 ⎜⎝ 3 ⎟⎠ 3 ⎝ 3 ⎠ 2 2 2 2 4 2 + = 9 9 9 Since π < β < 3π π β 3π , we have that < < . 2 2 2 4 β β lies in Quadrant II and sin > 0 . 2 2 1 1 − ⎛⎜ − ⎞⎟ β 1 − cos β ⎝ 3⎠ = sin = 2 2 2 4 4 2 2 6 6 = 3 = = = = 2 6 6 3 6 Thus, ) Let θ = tan −1 2 . Then tan θ = y 2 = , x 1 π π ≤ θ ≤ . Let x = 1 and y = 2 . 2 2 Solve for r: r 2 = x 2 + y 2 − r 2 = 12 + 22 r2 = 5 r= 5 θ is in quadrant I. ( ) cos tan −1 2 = cos θ = x 1 1 5 5 = = ⋅ = r 5 5 5 5 345 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry ⎛ 2kx − 2ωt + φ ⎞ ⎛φ ⎞ y1 + y2 = 2 ym sin ⎜ ⎟ cos ⎜ 2 ⎟ 2 ⎝ ⎠ ⎝ ⎠ ⎛ 2 ⋅ 69.8 ⋅ 1 − 2 ⋅ 14.45t + 2.5 ⎞ ⎛ 2.5 ⎞ = 2 ⋅ 0.0045sin ⎜ ⎟ cos ⎜ 2 ⎟ 2 ⎝ ⎠ ⎝ ⎠ ⎛ 142.1 − 28.9t ⎞ = 0.009sin ⎜ ⎟ cos(1.25) 2 ⎝ ⎠ = 0.009sin ( 71.05 − 14.45t ) cos(1.25) Chapter 3 Projects Project I a. Amplitude = 0.00421 m b. ω = 2.68 radians/sec c. f = d. λ = ω 2π = 2.68 ≈ 0.4265 vibrations/sec 2π h. Let Y1 = 0.0045sin(69.8 − 14.45 x) , Y2 = 0.0045sin(72.3 − 14.45 x) , and 2π 2π = ≈ 0.09199 m 68.3 k Y3 = 0.009sin ( 71.05 − 14.45 x ) cos(1.25) . e. If x = 1 , the resulting equation is y = 0.00421sin(68.3 − 2.68t ) . To graph, let Y1 = 0.00421sin(68.3 − 2.68 x) . 0.01 0.4 −0.4 0.005 y2 −0.01 4 −4 y1 y1 + y2 i. ym = 0.0045 , φ = 0.4 , λ = 0.09 , f = 2.3 Let x = 1 : 2π ω λ = 0.09 = f = 2.3 = k 2π 200π ω = 4.6π = 14.45 = 69.8 k= 9 y1 = 0.0045sin(69.8 − 14.45t ) y2 = ym sin(kx − ωt + φ ) −0.005 f. Note: (kx − ωt ) + (kx − ωt + φ ) = 2kx − 2ωt + φ and (kx − ωt ) − (kx − ωt + φ ) = −φ . y1 + y2 = ym sin(kx − ωt ) + ym sin( kx − ωt + φ ) = ym [sin(kx − ωt ) + sin(kx − ωt + φ )] ⎡ ⎛ 2kx − 2 wt + φ ⎞ ⎛ −φ ⎞ ⎤ = ym ⎢ 2sin ⎜ cos ⎜ ⎟ ⎥ ⎟ 2 ⎝ ⎠ ⎝ 2 ⎠⎦ ⎣ ⎛ 2kx − 2 wt + φ ⎞ ⎛φ ⎞ = 2 ym sin ⎜ ⎟ cos ⎜ 2 ⎟ 2 ⎝ ⎠ ⎝ ⎠ = 0.0045sin(69.8 ⋅1 − 14.45t + 0.4) = 0.0045sin(70.2 − 14.45t ) ⎛ 2kx − 2ωt + φ ⎞ ⎛φ ⎞ y1 + y2 = 2 ym sin ⎜ ⎟ cos ⎜ 2 ⎟ 2 ⎝ ⎠ ⎝ ⎠ ⎛ 2 ⋅ 69.8 ⋅ 1 − 2 ⋅ 14.45t + 0.4 ⎞ ⎛ 0.4 ⎞ = 2 ⋅ 0.0045sin ⎜ ⎟ cos ⎜ 2 ⎟ 2 ⎝ ⎠ ⎝ ⎠ ⎛ 140 − 28.9t ⎞ = 0.009sin ⎜ ⎟ cos(0.2) 2 ⎝ ⎠ = 0.009sin ( 70 − 14.45t ) cos(0.2) g. ym = 0.0045 , φ = 2.5 , λ = 0.09 , f = 2.3 Let x = 1 : 2π ω λ = 0.09 = f = 2.3 = k 2π 200π ω = 4.6π ≈ 14.45 ≈ 69.8 k= 9 Let Y1 = 0.0045sin(69.8 − 14.45 x) , Y2 = 0.0045sin(70.2 − 14.45 x) , and y1 = ym sin(kx − ωt ) = 0.0045sin(69.8 ⋅1 − 14.45t ) = 0.0045sin(69.8 − 14.45t ) Y3 = 0.009sin ( 70 − 14.45 x ) cos(0.2) . y2 = ym sin(kx − ωt + φ ) = 0.0045sin(69.8 ⋅1 − 14.45t + 2.5) = 0.0045sin(72.3 − 14.45t ) 346 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3 Projects 0.01 Project III y1 + y2 y1 a. y2 0.4 −0.4 f ( x) = sin x (see table column 2) f ( x) 0 1 2 2 2 3 2 x 0 −0.01 π 6 j. The phase shift causes the amplitude of y1 + y2 to increase from 0.009 cos(1.25) ≈ 0.003 to 0.009 cos(0.2) ≈ 0.009 . π 4 π 3 π Project II y a. h π 2π 3π 4π 5π x −h b. Let Y1 = 1 + 3 sin(17 x) ⎞ 4 ⎛ sin x sin(3x ) c. Let Y1 = 1 + ⎜ + + ... + 3 17 ⎟⎠ π⎝ 1 3 5π −3 d. Let Y1 = 1 + 3 0 h( x ) k ( x) −0.311 −0.749 m( x ) 6.085 0.791 −0.703 2.437 4.011 0.607 −1.341 1.387 −3.052 0.256 −0.978 0.588 −1.243 −0.256 −0.670 −0.063 0.413 −0.607 −0.703 0.153 8.507 −0.791 −0.623 2.380 −6.822 −0.954 0.594 −2.695 −0.954 −0.791 6 5π −0.607 4 4π −0.256 3 3π −1 0.256 2 5π 3 0.607 − 3 2 7π 2 0.791 − 4 2 11π 1 0.954 − 6 2 2π 1 −3 0 3 2 2 2 1 2 0 1 − 2 2 − 2 3 − 2 π 7π 4 ⎛ sin x sin(3x ) sin(5 x) sin(7 x) ⎞ + + + 3 5 7 ⎟⎠ π ⎜⎝ 1 5π 0 1 2 2π 3 3π 4 5π 6 g ( x) 0.954 sin(37 x) ⎞ 4 ⎛ sin x sin(3x ) + + ... + 3 37 ⎟⎠ π ⎜⎝ 1 b. g ( x) = −0.117 −0.013 −5.248 1.341 −1.387 0.978 −0.588 1.243 0.670 0.063 0.703 −0.306 3.052 −0.705 0.623 f ( xi +1 ) − f ( xi ) (see table column 3) xi +1 − xi −0.5 −3 0.311 −0.817 1.536 1.2 c. 5π 0 6.5 −1.2 e. The best one is the one with the most terms. 347 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. Chapter 3: Analytic Trigonometry The shape looks like a sinusoidal graph. f. m( x) = k ( xi +1 ) − k ( xi ) (see table column 6) xi +1 − xi 12 Rounding a, b, c, and d to the nearest tenth, we have that y = sin( x + 1.8) . Barring error due to rounding and approximation, this looks like y = cos x 5.5 −0.5 −10 The sinusoidal features are gone. g ( xi +1 ) − g ( xi ) d. h( x) = (see table column 4) xi +1 − xi 1.8 Rounding a, b, c, and d to the nearest tenth, we have that y = 2.1sin(5.1x − 1.5) + 0.6 . 6.5 −0.5 g. It would seem that the curves would be less “involved”, but the rounding error has become incredibly great that the points are nowhere near accurate at this point in calculating the differences. −1.8 The shape is sinusoidal. It looks like an upsidedown sine wave. Rounding a, b, c, and d to the nearest tenth, we have that y = 0.5sin(6.4 x ) . e. k ( x) = h ( xi +1 ) − h ( xi ) (see table column 5) xi +1 − xi 3 6 −0.5 −2 This curve is losing its sinusoidal features, although it still looks like one. It takes on the features of an upside-down cosine curve . Rounding a, b, c, and d to the nearest tenth, we have that y = 0.8sin(1.1x) + 0.3 . Note: The rounding error is getting greater and greater. 348 © 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.