Download Class Exercise Introduction

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
BGU Physics Dept. Introduction to Mathematical Methods in Physics
Class Exercise
Integrals
Introduction
Integration by parts:
For integral of the sort
Z b
f (x)g(x)dx ,
a
introduce two intermediary functions U(x) and V(x)
U = f (x)
,
dV = g(x)dx
and find
dU =Rf 0 (x)dx
,
V = g(x)dx
to use the formula
Z
b
U dV = (U V
a
)|ba
Z
−
b
V dU
a
Polynomial over Polynomial
For integral of the sort
Z
P (x)
dx ,
Q(x)
where P(x) and Q(x) are polynomials, we solve in few steps:
I If deg[F ] > deg[G], then it is necessary to perform the division
P (x)
R(x)
= D(x) +
,
Q(x)
Q(x)
via polynomial long division or otherwise. D(x) is now a simple polynomial which we can easily
integrate and we left with
Z
R(x)
dx ,
Q(x)
which by definition has deg[R] < deg[Q].
II Write Q(x) as multiplication of irreducible factors. (e.g. x2 − 4 = (x − 4)(x + 4))
III Use partial fractions method to simplify the integral
1
• The thumb rule is that each nominator N (x) should be a polynomial with one degree
below the order of the denominator, e.g.:
1
a
bx + c
d
= + 2
+
x(3x2 + 5)(2x + 5)
x 3x + 5 2x + 5
(1)
• If one of the factors is of the sort (x − α)−r than we write has r partial fractions with
constant nominator and a decreasing power dwnominator e.g.:
3x + 5
a
b
=
+
(2x − 1)2
(2x − 1)2 (2x − 1)
IV Solve the integral. Some useful integrals:
Z
1
= ln |x − a| + C
x−a
Z
1
1
= arctan xa + C
x2 + a2
a
Z
x
1
= ln(x2 + a2 )
x2 + a2
2
Trigonometric integrals
For integrals composed from trigonometric functions R(sin x, cos x)
• If R(− sin x, cos x) = −R(sin x, cos x) use t = cos x.
• If R(sin x, − cos x) = −R(sin x, cos x) use t = sin x.
• If R(− sin x, − cos x) = R(sin x, cos x) use t = tan x or t = cot x.
• If nothing else works we can use Universal Trigonometric Substitution (UTS) tan
that
1 − t2
1 + t2
2t
sin(x) =
1 + t2
2
dx =
dt
1 + t2
cos(x) =
Exrecises
1. Solve
R
(a) tan xdx
R
3 +1
(b) m4m+4m+1
dm
R dx
(c) x lnn (x) dx
Solution
2
x
2
= t so
(a)
Z
Z
sin x
dx =
cos x
tan xdx =
Z
dt
cos x = t
=−
− sin xdx = dt
t
= − ln t + C = − ln(cos x) + C
(b)
Z
m3 + 1
dm =
m4 + 4m + 1
=
m4 + 4m + 1 = t
(m3 + 1)dm = dt
4
Z
=
dt
1
= ln t + C
4t
4
1
ln(m4 + 4m + 1) + C
4
(c)
Z
dx
dx =
x lnn (x)
=
ln(x) = t
dx
x = dt
Z
=
dt
t1−n
=
=
tn
1−n
ln1−n (x)
1−n
2. Solve
R
dθ
(a) 1+sin(θ)
R
(b) sin5 (u) cos2 (u)du
Solution
(a) First Way:
Z
Z
2dt
θ
1
UTS: tan
=t =
2t 1 + t2
2
1 + 1+t2
Z
Z
2dt
2dt
2
2
=
=
=−
+C = −
2
2
1 + 2t + t
(1 + t)
1+t
1 + tan
dθ
=
1 + sin(θ)
θ
2
+C
Second Way:
Z
Z
Z
Z
1
dθ
1 − sin θ
sin θ
dθ =
=
dθ −
dθ
2
2
1 + sin(θ)
cos θ
cos2 θ
1 − sin θ
Z
sin θ
cos θ = t
dθ =
= tan θ −
− sin θdθ = dt
cos2 θ
Z
dt
1
1
= tan θ +
= tan θ − + C = tan θ −
+C
t2
t
cos θ
which is same as the first up to a constant
(b)
Z
5
Z
2
2
2
sin(u)(1 − cos (u)) cos (u)du =
sin (u) cos (u)du =
Z
=
2
2 2 2
(1 − z ) z dz =
3
= cos (u)
Z
cos(u) = z
− sin(u)du = dz
z 2 − 2z 4 + z 6 dz =
1 2
1
− cos2 (u) + cos4 (u) + C
3 5
7
3
z3
z5 z7
−2 +
+C
3
5
7
3. Solve
R
(a) ln(x)dx
R
(b) x2 sin(x)dx
Solution
(a)
Z
U = ln(x) dU = dx
x
ln(x)dx =
dV = dx
V =x
Z
= x ln(x) − dx = x ln(x) − x
Z
x2 sin(x)dx =
(b)
Z
U = x2
dU = 2xdx
= −x2 cos(x) + 2 x cos(x)dx
dV = sin(x)dx V = − cos(x)
Z
U =x
dU = dx
2
=
= −x cos(x) + 2x sin(x) − 2 sin(x)dx
dV = cos(x)dx V = sin(x)
= (2 − x2 ) cos(x) + 2x sin(x)
4. Solve
ex cos x
R
Solution
Z
x
x
Z
e cos x = e cos x +
Z
5. Solve
R
(a)
R
(b)
ex cos x =
x
x
x
e sin x = e cos x + e sin x −
Z
ex cos x
ex (cos x + sin x)
2
4x2 −13x+13
dx
(x−1)(x−2)2
x
dx
x2 −3x+2
Solution
(a) First we decompose to partial fractions:
4x2 −13x+13
(x−1)(x−2)2
A
B
C
= (x−1)
+ (x−2)
+ (x−2)
2
4x2 − 13x + 13 = A(x − 2)2 + B(x − 1)(x − 2) + C(x − 1)
4x2 − 13x + 13 = (A +
B)x2 + (−4A − 3B + C)x + (4A + 2B − C)
4=A+B

⇒ −4A − 3B + C = −13

4A + 2B − C = 13
A = 4; B = 0; C = 3;
Now we can solve:
Z
Z
Z
4x2 − 13x + 13
4
3
dx
=
dx
+
dx
2
(x − 1)(x − 2)
x−1
(x − 2)2
= 4 ln |x − 1| −
4
3
x−2
(b)
Z
x
dx =
2
x − 3x + 2
Z
x
dx
(x − 1)(x − 2)
x
(x−1)(x−2)

B
+ (x−2)

=
1=A+B
x = A(x − 2) + B(x − 1) →
⇒ A = −1; B = 2
0 = −2A − B
Z 2
1
=
dx = 2 ln |x − 2| − ln |x − 1| + C
−
(x − 2) (x − 1)


=
A
(x−1)
if any typos or corrections found please let me know: Ben Yellin [email protected]
5
Related documents