Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
BGU Physics Dept. Introduction to Mathematical Methods in Physics Class Exercise Integrals Introduction Integration by parts: For integral of the sort Z b f (x)g(x)dx , a introduce two intermediary functions U(x) and V(x) U = f (x) , dV = g(x)dx and find dU =Rf 0 (x)dx , V = g(x)dx to use the formula Z b U dV = (U V a )|ba Z − b V dU a Polynomial over Polynomial For integral of the sort Z P (x) dx , Q(x) where P(x) and Q(x) are polynomials, we solve in few steps: I If deg[F ] > deg[G], then it is necessary to perform the division P (x) R(x) = D(x) + , Q(x) Q(x) via polynomial long division or otherwise. D(x) is now a simple polynomial which we can easily integrate and we left with Z R(x) dx , Q(x) which by definition has deg[R] < deg[Q]. II Write Q(x) as multiplication of irreducible factors. (e.g. x2 − 4 = (x − 4)(x + 4)) III Use partial fractions method to simplify the integral 1 • The thumb rule is that each nominator N (x) should be a polynomial with one degree below the order of the denominator, e.g.: 1 a bx + c d = + 2 + x(3x2 + 5)(2x + 5) x 3x + 5 2x + 5 (1) • If one of the factors is of the sort (x − α)−r than we write has r partial fractions with constant nominator and a decreasing power dwnominator e.g.: 3x + 5 a b = + (2x − 1)2 (2x − 1)2 (2x − 1) IV Solve the integral. Some useful integrals: Z 1 = ln |x − a| + C x−a Z 1 1 = arctan xa + C x2 + a2 a Z x 1 = ln(x2 + a2 ) x2 + a2 2 Trigonometric integrals For integrals composed from trigonometric functions R(sin x, cos x) • If R(− sin x, cos x) = −R(sin x, cos x) use t = cos x. • If R(sin x, − cos x) = −R(sin x, cos x) use t = sin x. • If R(− sin x, − cos x) = R(sin x, cos x) use t = tan x or t = cot x. • If nothing else works we can use Universal Trigonometric Substitution (UTS) tan that 1 − t2 1 + t2 2t sin(x) = 1 + t2 2 dx = dt 1 + t2 cos(x) = Exrecises 1. Solve R (a) tan xdx R 3 +1 (b) m4m+4m+1 dm R dx (c) x lnn (x) dx Solution 2 x 2 = t so (a) Z Z sin x dx = cos x tan xdx = Z dt cos x = t =− − sin xdx = dt t = − ln t + C = − ln(cos x) + C (b) Z m3 + 1 dm = m4 + 4m + 1 = m4 + 4m + 1 = t (m3 + 1)dm = dt 4 Z = dt 1 = ln t + C 4t 4 1 ln(m4 + 4m + 1) + C 4 (c) Z dx dx = x lnn (x) = ln(x) = t dx x = dt Z = dt t1−n = = tn 1−n ln1−n (x) 1−n 2. Solve R dθ (a) 1+sin(θ) R (b) sin5 (u) cos2 (u)du Solution (a) First Way: Z Z 2dt θ 1 UTS: tan =t = 2t 1 + t2 2 1 + 1+t2 Z Z 2dt 2dt 2 2 = = =− +C = − 2 2 1 + 2t + t (1 + t) 1+t 1 + tan dθ = 1 + sin(θ) θ 2 +C Second Way: Z Z Z Z 1 dθ 1 − sin θ sin θ dθ = = dθ − dθ 2 2 1 + sin(θ) cos θ cos2 θ 1 − sin θ Z sin θ cos θ = t dθ = = tan θ − − sin θdθ = dt cos2 θ Z dt 1 1 = tan θ + = tan θ − + C = tan θ − +C t2 t cos θ which is same as the first up to a constant (b) Z 5 Z 2 2 2 sin(u)(1 − cos (u)) cos (u)du = sin (u) cos (u)du = Z = 2 2 2 2 (1 − z ) z dz = 3 = cos (u) Z cos(u) = z − sin(u)du = dz z 2 − 2z 4 + z 6 dz = 1 2 1 − cos2 (u) + cos4 (u) + C 3 5 7 3 z3 z5 z7 −2 + +C 3 5 7 3. Solve R (a) ln(x)dx R (b) x2 sin(x)dx Solution (a) Z U = ln(x) dU = dx x ln(x)dx = dV = dx V =x Z = x ln(x) − dx = x ln(x) − x Z x2 sin(x)dx = (b) Z U = x2 dU = 2xdx = −x2 cos(x) + 2 x cos(x)dx dV = sin(x)dx V = − cos(x) Z U =x dU = dx 2 = = −x cos(x) + 2x sin(x) − 2 sin(x)dx dV = cos(x)dx V = sin(x) = (2 − x2 ) cos(x) + 2x sin(x) 4. Solve ex cos x R Solution Z x x Z e cos x = e cos x + Z 5. Solve R (a) R (b) ex cos x = x x x e sin x = e cos x + e sin x − Z ex cos x ex (cos x + sin x) 2 4x2 −13x+13 dx (x−1)(x−2)2 x dx x2 −3x+2 Solution (a) First we decompose to partial fractions: 4x2 −13x+13 (x−1)(x−2)2 A B C = (x−1) + (x−2) + (x−2) 2 4x2 − 13x + 13 = A(x − 2)2 + B(x − 1)(x − 2) + C(x − 1) 4x2 − 13x + 13 = (A + B)x2 + (−4A − 3B + C)x + (4A + 2B − C) 4=A+B ⇒ −4A − 3B + C = −13 4A + 2B − C = 13 A = 4; B = 0; C = 3; Now we can solve: Z Z Z 4x2 − 13x + 13 4 3 dx = dx + dx 2 (x − 1)(x − 2) x−1 (x − 2)2 = 4 ln |x − 1| − 4 3 x−2 (b) Z x dx = 2 x − 3x + 2 Z x dx (x − 1)(x − 2) x (x−1)(x−2) B + (x−2) = 1=A+B x = A(x − 2) + B(x − 1) → ⇒ A = −1; B = 2 0 = −2A − B Z 2 1 = dx = 2 ln |x − 2| − ln |x − 1| + C − (x − 2) (x − 1) = A (x−1) if any typos or corrections found please let me know: Ben Yellin [email protected] 5