Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
SOLUTION KV JMO 2001 Q1. (i) 7 (ii) 6 litres (iii) 20 m (iv) Friday (v) 13 Q2. (a) 25555, 33333, 62222 25 = 32 33 = 27 62 = 36 33< 25< 62 33333 < 25555 < 62222 The required order of the three numbers is :- 33333 , 25555 , 62222 Q2(b) 4 Two rectangles each measuring 3cm x 7 cm are placed in this manner. The four triangles formed must be congruent to each other. EAG BCG AG = BG and EG = CG Let, BG = x AG = AB – BG =7–x CG = AG = 7-x In BCG, we have, BC = 3 BG = x CG = 7 – x By Pythagoras theorem, In BCG, we have, CG2 = BC2 + BG2 (7-x)2 = 32 + x2 49 – 14x + x2 = 9 + x2 49 – 9 =14 x 5 40 = 14 x x= 40 14 x= 20 7 AG = 7 – x 20 =77 = 49 20 7 = 29 7 DC || AB HC || AG Similarly AH || GC AG CH is a parallelogram Area of the AGCH = (Base) x (Height) = AG x BC = 29 x3 7 = 87 7 3 7 = 12 cm 2 6 3.(a) log 10 (35 x 3 ) 3 log 10 (5 x ) log 10 (35 – x3) = 3.log10 (5-x) log 10 (35 – x3) = log10 (5-x)3 35 – x3 = (5-x)3 35 – x3 = 125 – x3 + 3(5) (-x) (5-x) 35 = 125 – 15 x (5-x) 35 = 125 – 75 x + 15x2 15x2 – 75 x + 125- 35 = 0 15x2 – 75 x + 90 = 0 x2 – 5 x + 6 = 0 x2 – 3 x –2x + 6 = 0 x (x - 3) – 2 (x – 3) = 0 (x - 3) (x – 2) = 0 x = 3 or 2 Q3. (b) a b b c c a (a b)( b c)(c a ) a b b c c a (a b)( b c)(c a ) = (a-b) (b+c) (c+a) + (b-c) (a+b) (c+a) = (c a )(a b)( b c) (a b) (b c)(c a ) (a b)( b c)(c a ) 7 = (c+a) [(a-b) (b+c) +(b-c) (a+b)] = (c a )[( a b) (b c) (a b)( b c)] (a b)( b c)(c a ) = (c+a) [ab + ac - b2 – bc + ab + b2 – ac - bc] (c a )[ab ac - b2 bc ab b 2 - ac bc] = (a b)(b c)(c a ) = (c a )( 2ab - 2bc) (c - a) (2ab 2bc) (a b)( b c)(c a ) 2abc 2bc 2 2a 2 b 2bc 2abc 2bc 2 2a 2 b 2abc = (a b)( b c)(c a ) = 0 (a b)( b c)(c a ) =0 4. (a) = (x-y)3 + (y-z)3 + (z-x)3 = (x – y + y - z) [(x-y)2 + (y-z)2 + (x-y) (y-z)] + (z-x)3 = (x –z) [x2+y2-2xy+y2+z2-2yz+xy-xz-y2+yz] + (z-x)3 = (x –z) (x2+y2+z2 –xy-yz-zx) - (x-z)3 = (x –z) [x2+y2+z2 –xy-yz-zx) - (x-z)2] = (x –z) [x2+y2+z2 –xy-yz-zx – x2-z2 +2xz] = (x-z) [y2-yz-xy+xz] = (x-z) [y(y-z)-x(y-z)] 8 = (x-z)(y-x)(y-z) =(x-y) (y-z) (z-x) 4. (b) x2 – x – 1 = 0 x3 – 2x + 1 = ? Dividing (x3 – 2x + 1) by (x2 – x - 1), we get, x x 1 2 x 1 x 2x 1 3 x3 x 2 x x2 x 1 x 2 x 1 2 x3 – 2x + 1 = (x2-x-1) (x+1) + 2 x3 - 2x + 1 = 0 x (x + 1) + 2 x3 - 2x + 1 = 0 + 2 x3 - 2x + 1 = 2 x3 – 2x + 1 = 2 Q5 9 . Given : ABCD is a square BG = 3 GF = 1 BE = ? Let, AB = BC=CD = DA = a Now, In BCG and FAG, BCG = FAG (Each = 45o) BGC = AGF (Vertically opposite angles) BCG ~ FAG by AA rule BC BG AF GF a 3 AF 1 10 AF a 3 DF = AD – AF = a a 2 a 3 3 Now, In ABF and DEF, A = D = 90o AFB = DFE (Vertically opposite angles) ABF ~ DEF by AA rule BF EF AF DF BF EF a 2 a 3 3 2.BF EF 2 X 4 = EF EF = 8 BE = BF + FE = 4+ 8 = 12 units. 11 Q6.(a) (n2-n-1) n+2 = 1 (n2-n-1) n+2 = (1)n+2 n2 – n – 1 = 1 n2 – n – 2 = 0 n2 - 2n + n – 2 = 0 n (n - 2) + 1 (n – 2) = 0 (n - 2) (n + 1) = 0 n = 2 or -1 Q6. (b) 4ab x= ab x 2a x 2b ? x 2a x 2b x 2a x 2b x 2a x 2b x 2a x 2b 1 1 x 2a x 2b x 2a x 2a x 2b x 2b x 2a x 2b 2x 4b x 2a x 2b 2x 4b 2 2 x 2a x 2b 12 2x 2x 4a 4b 2x 4b x 2a x 2b 4a 2x x 2a x 2 b 4ab 4a ab 4ab 4ab 2b ab ab 2x 4a (a b) 8ab 2 4ab 2a 2ab 4ab 2ab 2b 2 4a 2 4ab 8ab 2ab 2a 2 2ab 2b 2 2a 2b 4a ba ab 2a 2b 4a ab 2a 2 b ab 2(a b) (a b) =2 Q7. (a) 99 = (33)9 = (3)27 13 The positive perfect cubes that divide 99 are : 13, 33, (32)3, (33)3, (34)3, (35)3, (36)3, (37)3, (39)3. i.e. 10 numbers (b) 100 (12- 143 ) 143 144 i.e. 143 < 12 and 143 is less than 12 by a very small margin. The closest integer to 100 (12 - 143 ) is , 100. 8. A F x+z y C x+y x z E B Given : BCA = 90o AE = AC BF = BC ECF = ? BCA = 90 x + y + z = 90o In ACE 14 AE = AC AEC = ACE = x + y In BCF, BF = CF BCF = BFC = x + z In CFE, FCE + CFE + CEF = 180 x + x + z + x + y = 180 2x + x + y + z = 180 2x + 90 = 180 2x = 90 x = 45o ECF = x = 45o ECF = 45o 9. 2cm (W) 3 cm (s) 1 cm (N) 4 cm (E) 15 So, we get that, The ant always travels (4k+1) cm North, The ant always travels (4k+2) cm West, The ant always travels (4k+3) cm South, The ant always travels (4k+4) cm East, In 1 min the ant travels, distance = 60 x 1 cm = 60 cm We get the following AP, 1, 2, 3, ……. a=1 d=1 n Sn = 2a + (n-1)d 2 60 = n 2 x 1 + (n-1) x 1 2 120 = n2 + n-1 120 = nn+1 120 = n2n n2 + n 1 12 4(1)( 120) n = 2x1 16 1 1 480 2 1 481 2 1 22 2 21 Taking the positive value 2 1 10 2 But we’ll have to take, n = 11 a11 = 1 + 10 x 1 = 1 + 10 = 11 =4x2+3 The ant was traveling towards South. Q10. A B C 17 ha = 20 hb = 28 hc = 35 = 1 a x ha a = 2 = = = 2 20 10 1 b x hb b = 2 = 2 2 = hc 35 2 20 b = 2 28 c = 2 35 S = 2 hb 2 28 14 1 c x hc c = 2 a = 2 ha abc 1 2 2 2 = 28 35 2 2 20 1 1 1 = 20 28 35 18 S-a 1 1 2 1 = 20 28 35 20 1 1 1 = 28 35 20 35x 20 28x 20 28x 35 = 20 x 28x 35 700 560 980 = 20 x 28x 35 10 280 = 20 x 28x35 2 1 = 70 = S-b 70 1 1 2 1 = 20 28 35 28 1 1 1 = 20 35 28 35x 28 28x 20 20 x 35 = 20 x 28x 35 980 560 700 = 20 x 28x 35 19 42 63 840 = 20 x 28 x 35 14 5 3 = 70 = S-c 3 70 1 1 2 1 = 20 28 35 35 1 1 1 = 20 28 35 35x 28 20x35 20x 28 = 20x 28x 35 980 700 560 = 20 x 28x 35 56 2 1120 = 20 x 28x 35 2 = 35 = = 2 35 s(s a )(s b)(s c) 20 1 1 3 2 1 20 28 35 70 70 35 = = 2 2240 1 3 2 x x x 20x 28x35 70 70 35 = 2 16x3 28x35x10x35x35 = 2 6 35x35x35x35 = 2 6 35x 35 2 6 = 35x 35 35x 35 6 a= 2 20 a= 245 6 6 b= 2 28 b= 175 6 12 c= 2 35 6 = units. 35 3 21