Download SOLUTION KV JMO 2001 Q1. (i) 7

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
SOLUTION KV JMO 2001
Q1.
(i)
7
(ii)
6 litres
(iii)
20 m
(iv)
Friday
(v)
13
Q2.
(a)
25555, 33333, 62222
25 = 32
33 = 27
62 = 36

33< 25< 62


33333 < 25555 < 62222
The required order of the three numbers is :-
33333 , 25555 , 62222
Q2(b)
4

Two rectangles each measuring 3cm x 7 cm are placed in this
manner.
The four triangles formed must be congruent to each other.
EAG BCG
AG = BG
and EG = CG
Let, BG = x
AG = AB – BG
=7–x
CG = AG = 7-x
In BCG, we have,
BC = 3
BG = x
CG = 7 – x
By Pythagoras theorem, In BCG, we have,
CG2 = BC2 + BG2
 (7-x)2 = 32 + x2
 49 – 14x + x2 = 9 + x2
 49 – 9 =14 x
5
 40 = 14 x
 x=
40
14
 x=
20
7
AG = 7 – x
20
=77
=
49  20
7
=
29
7

DC || AB

HC || AG
Similarly AH || GC
AG CH is a parallelogram
Area of the AGCH = (Base) x (Height)
= AG x BC
=
29
x3
7
=
87
7
3
7
= 12 cm 2
6
3.(a)
log 10 (35  x 3 )
3
log 10 (5  x )
 log 10 (35 – x3) = 3.log10 (5-x)
 log 10 (35 – x3) = log10 (5-x)3
 35 – x3 = (5-x)3
 35 – x3 = 125 – x3 + 3(5) (-x) (5-x)
 35 = 125 – 15 x (5-x)
 35 = 125 – 75 x + 15x2
 15x2 – 75 x + 125- 35 = 0
 15x2 – 75 x + 90 = 0
 x2 – 5 x + 6 = 0
 x2 – 3 x –2x + 6 = 0
 x (x - 3) – 2 (x – 3) = 0
 (x - 3) (x – 2) = 0
x = 3 or 2
Q3. (b)
a  b b  c c  a (a  b)( b  c)(c  a )



a  b b  c c  a (a  b)( b  c)(c  a )
= (a-b) (b+c) (c+a) + (b-c) (a+b) (c+a)
=
 (c  a )(a  b)( b  c)  (a  b)  (b  c)(c  a )
(a  b)( b  c)(c  a )
7
= (c+a) [(a-b) (b+c) +(b-c) (a+b)]
=
 (c  a )[( a  b)  (b  c)  (a  b)( b  c)]
(a  b)( b  c)(c  a )
= (c+a) [ab + ac - b2 – bc + ab + b2 – ac - bc]
 (c  a )[ab  ac - b2  bc  ab  b 2 - ac  bc]
=
(a  b)(b  c)(c  a )
=
(c  a )( 2ab - 2bc)  (c - a) (2ab  2bc)
(a  b)( b  c)(c  a )
2abc  2bc 2  2a 2 b  2bc  2abc  2bc 2  2a 2 b  2abc
=
(a  b)( b  c)(c  a )
=
0
(a  b)( b  c)(c  a )
=0
4. (a)
= (x-y)3 + (y-z)3 + (z-x)3
= (x – y + y - z) [(x-y)2 + (y-z)2 + (x-y) (y-z)] + (z-x)3
= (x –z) [x2+y2-2xy+y2+z2-2yz+xy-xz-y2+yz] + (z-x)3
= (x –z) (x2+y2+z2 –xy-yz-zx) - (x-z)3
= (x –z) [x2+y2+z2 –xy-yz-zx) - (x-z)2]
= (x –z) [x2+y2+z2 –xy-yz-zx – x2-z2 +2xz]
= (x-z) [y2-yz-xy+xz]
= (x-z) [y(y-z)-x(y-z)]
8
= (x-z)(y-x)(y-z)
=(x-y) (y-z) (z-x)
4. (b) x2 – x – 1 = 0
x3 – 2x + 1 = ?
Dividing (x3 – 2x + 1) by (x2 – x - 1), we get,
x  x 1
2
x 1
x  2x  1
3
x3  x 2  x
x2  x 1


x 2  x 1
2
x3 – 2x + 1 = (x2-x-1) (x+1) + 2
 x3 - 2x + 1 = 0 x (x + 1) + 2
 x3 - 2x + 1 = 0 + 2
 x3 - 2x + 1 = 2
x3 – 2x + 1 = 2
Q5
9
.
Given :
ABCD is a square
BG = 3
GF = 1
BE = ?
Let, AB = BC=CD = DA = a
Now,
In BCG and FAG,
BCG = FAG (Each = 45o)
BGC = AGF (Vertically opposite angles)
BCG ~ FAG by AA rule
BC BG



AF GF

a
3
 
AF 1
10
 AF 
a

3
DF
= AD – AF = a 

a 2
 a
3 3
Now,
In ABF and DEF,
A = D = 90o
AFB = DFE (Vertically opposite angles)
ABF ~ DEF by AA rule

BF EF


AF DF
BF EF

 a
2 
a
3
3
 2.BF  EF 
 2 X 4 = EF
 EF = 8
BE = BF + FE
= 4+ 8
= 12 units.
11
Q6.(a) (n2-n-1) n+2 = 1
 (n2-n-1) n+2 = (1)n+2
 n2 – n – 1 = 1
 n2 – n – 2 = 0
 n2 - 2n + n – 2 = 0
 n (n - 2) + 1 (n – 2) = 0
 (n - 2) (n + 1) = 0
n = 2 or -1
Q6. (b)
4ab
x=

ab
x  2a x  2b

?
x  2a x  2b

x  2a x  2b


x  2a x  2b

x  2a
x  2b
 1
1 
x  2a
x  2b
x  2a  x  2a x  2b  x  2b



x  2a
x  2b

2x
4b


x  2a x  2b
2x
4b

2

2

x  2a
x  2b
12
2x  2x  4a 4b  2x  4b



x  2a
x  2b

4a
2x


x  2a x  2 b
4ab
4a
ab

 4ab

4ab
 2b
ab ab
2x

4a (a  b)
8ab


2
4ab  2a  2ab 4ab  2ab  2b 2
4a 2  4ab
8ab



2ab  2a 2 2ab  2b 2
2a  2b
4a



ba
ab

 2a  2b  4a

ab

2a  2 b

ab
2(a  b)

(a  b) 
=2
Q7. (a) 99
= (33)9
= (3)27
13
The positive perfect cubes that divide 99 are :
13, 33, (32)3, (33)3, (34)3, (35)3, (36)3, (37)3, (39)3.
i.e. 10 numbers
(b)
100 (12- 143 )
 143  144
i.e.
143 < 12
and 143 is less than 12 by a very small margin.
The closest integer to 100 (12 - 143 )
is , 100.
8.
A
F
x+z
y
C
x+y
x
z
E
B
Given :
BCA = 90o
AE = AC
BF = BC
ECF = ?
 BCA = 90
 x + y + z = 90o
In ACE
14
AE = AC
AEC = ACE = x + y
In BCF,
 BF = CF
BCF = BFC = x + z
In CFE,
FCE + CFE + CEF = 180
 x + x + z + x + y = 180
 2x + x + y + z = 180
 2x + 90 = 180
 2x = 90
 x = 45o
ECF = x
= 45o
ECF = 45o
9.
2cm (W)
3 cm (s)
1 cm (N)
4 cm (E)
15
So, we get that,
The ant always travels (4k+1) cm North,
The ant always travels (4k+2) cm West,
The ant always travels (4k+3) cm South,
The ant always travels (4k+4) cm East,
In 1 min the ant travels, distance
= 60 x 1 cm
= 60 cm
We get the following AP,
1, 2, 3, …….
a=1
d=1
n
Sn = 2a + (n-1)d
2
 60 =
n
2 x 1 + (n-1) x 1
2
 120 = n2 + n-1
 120 = nn+1
 120 = n2n
 n2 + n
 1  12  4(1)( 120)
n =

2x1
16
 1  1  480


2
 1 481

2
 1  22

2
21
Taking the positive value
2
1
 10 
2
But we’ll have to take, n = 11
 a11 = 1 + 10 x 1
= 1 + 10
= 11
=4x2+3
The ant was traveling towards South.
Q10.
A
B
C
17
ha = 20
hb = 28
hc = 35
=
1
a x ha  a =
2
=
=
=
2 

20 10
1
b x hb  b =
2
=
2
2
=
hc
35
2
20
b =
2
28
c =
2
35
S =
2
hb
2 

28 14
1
c x hc  c =
2
a =
2
ha
abc
1  2  2  2 
=

28 35 
2
2  20
1
1 
1

=  
 20 28 35 
18
S-a
1
1  2
1

=  
 20 28 35  20
1 1 
1
=  
 28 35 20 
 35x 20  28x 20  28x 35 
= 

20 x 28x 35

 700  560  980 
= 

 20 x 28x 35
10

280
=   20 x 28x35
 2




1 
= 
 70 
=
S-b

70
1
1  2
1

=  
 20 28 35  28
1 1 
1
=  
 20 35 28 
 35x 28  28x 20  20 x 35 
= 

20 x 28x 35

 980  560  700 
= 

 20 x 28x 35
19
42

63
 840
=   20 x 28 x 35
14
5





3 
= 
 70 
=
S-c
3
70
1
1  2
1

=  
 20 28 35  35
1 1 
1
=  
 20 28 35 
 35x 28  20x35  20x 28 
= 

20x 28x 35

 980  700  560 
= 

 20 x 28x 35
56

2
 1120
=   20 x 28x 35





2 
= 
 35 
=
 =
2
35
s(s  a )(s  b)(s  c)
20
1
1      3   2 
1
 
     
 20 28 35   70   70   35 
=
= 2
2240
1 3 2
x x x
20x 28x35 70 70 35
= 2
16x3
28x35x10x35x35
= 2
6
35x35x35x35
= 2
6
35x 35
2
6
=
35x 35

35x 35
6
a=
2
20
a=
245 6
6
b=
2
28
b=
175 6
12
c=
2
35 6
=
units.
35
3
21
Related documents