Download Homework No. 10 (Spring 2015) PHYS 420: Electricity and Magnetism II

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Homework No. 10 (Spring 2015)
PHYS 420: Electricity and Magnetism II
Due date: Wednesday, 2015 May 6, 4.30pm
1. (20 points.) Using Maxwell’s equations, without introducing potentials, show that the
electric and magnetic fields satisfy the inhomogeneous wave equations
1 ∂2
1
1 1 ∂
2
−∇ + 2 2 E(r, t) = − ∇ρ(r, t) −
J(r, t),
(1a)
c ∂t
ε0
ε0 c2 ∂t
1 ∂2
2
(1b)
−∇ + 2 2 B(r, t) = µ0 ∇ × J(r, t).
c ∂t
2. (20 points.) Consider the retarded Green’s function
1
1
′
′
′
′
G(r − r , t − t ) =
δ t − t − |r − r | .
|r − r′ |
c
(2)
(a) For r′ = 0 and t′ = 0 show that
1 r
.
G(r, t) = δ t −
r
c
(b) Then, evalauate
Z
(3)
∞
dt G(r, t).
(4)
−∞
(c) RFrom the answer above, what can you comment on the physical interpretation of
∞
dt G(r, t).
−∞
3. (20 points.) Using the identity
δ(F (x)) =
X δ(x − ar )
,
dF r dx x=a r
(5)
where the sum on r runs over the roots ar of the equation F (x) = 0, evaluate
δ(ax2 + bx + c).
(6)
4. (20 points.) Using the identity
δ(F (x)) =
X δ(x − ar )
,
dF r dx x=a r
(7)
where the sum on r runs over the roots ar of the equation F (x) = 0, evaluate
δ(sin x).
1
(8)
5. (20 points.) A charged
particle with charge q moves on the z-axis with constant speed
p
v, β = v/c, γ = 1/ 1 − β 2 . The scalar and vector potential generated by this charged
particle is
1
q
p
,
2
2
4πε0 (x + y ) + γ 2 (z − vt)2
ẑ
q
p
cA(r, t) = βγ
.
4πε0 (x2 + y 2) + γ 2 (z − vt)2
φ(r, t) = γ
(a) Using
E = −∇φ −
∂
A,
∂t
A = ∇ × A,
(9a)
(9b)
(10a)
(10b)
evaluate the electric and magnetic field generated by the charged particle to be
E(r, t) = γ
xî + y ĵ + (z − vt)k̂
q
,
4πε0 [(x2 + y 2 ) + γ 2 (z − vt)2 ] 32
cB(r, t) = βγ
q
−y î + xĵ
.
4πε0 [(x2 + y 2) + γ 2 (z − vt)2 ] 23
(11a)
(11b)
(b) Evaluate the electromagnetic momentum density for this configuration by evaluating
G(r, t) = ε0 E(r, t) × B(r, t).
2
(12)
Related documents