Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Homework No. 10 (Spring 2015) PHYS 420: Electricity and Magnetism II Due date: Wednesday, 2015 May 6, 4.30pm 1. (20 points.) Using Maxwell’s equations, without introducing potentials, show that the electric and magnetic fields satisfy the inhomogeneous wave equations 1 ∂2 1 1 1 ∂ 2 −∇ + 2 2 E(r, t) = − ∇ρ(r, t) − J(r, t), (1a) c ∂t ε0 ε0 c2 ∂t 1 ∂2 2 (1b) −∇ + 2 2 B(r, t) = µ0 ∇ × J(r, t). c ∂t 2. (20 points.) Consider the retarded Green’s function 1 1 ′ ′ ′ ′ G(r − r , t − t ) = δ t − t − |r − r | . |r − r′ | c (2) (a) For r′ = 0 and t′ = 0 show that 1 r . G(r, t) = δ t − r c (b) Then, evalauate Z (3) ∞ dt G(r, t). (4) −∞ (c) RFrom the answer above, what can you comment on the physical interpretation of ∞ dt G(r, t). −∞ 3. (20 points.) Using the identity δ(F (x)) = X δ(x − ar ) , dF r dx x=a r (5) where the sum on r runs over the roots ar of the equation F (x) = 0, evaluate δ(ax2 + bx + c). (6) 4. (20 points.) Using the identity δ(F (x)) = X δ(x − ar ) , dF r dx x=a r (7) where the sum on r runs over the roots ar of the equation F (x) = 0, evaluate δ(sin x). 1 (8) 5. (20 points.) A charged particle with charge q moves on the z-axis with constant speed p v, β = v/c, γ = 1/ 1 − β 2 . The scalar and vector potential generated by this charged particle is 1 q p , 2 2 4πε0 (x + y ) + γ 2 (z − vt)2 ẑ q p cA(r, t) = βγ . 4πε0 (x2 + y 2) + γ 2 (z − vt)2 φ(r, t) = γ (a) Using E = −∇φ − ∂ A, ∂t A = ∇ × A, (9a) (9b) (10a) (10b) evaluate the electric and magnetic field generated by the charged particle to be E(r, t) = γ xî + y ĵ + (z − vt)k̂ q , 4πε0 [(x2 + y 2 ) + γ 2 (z − vt)2 ] 32 cB(r, t) = βγ q −y î + xĵ . 4πε0 [(x2 + y 2) + γ 2 (z − vt)2 ] 23 (11a) (11b) (b) Evaluate the electromagnetic momentum density for this configuration by evaluating G(r, t) = ε0 E(r, t) × B(r, t). 2 (12)