Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Preliminary Datasheet RNA50C27A R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 CMOS System-Reset IC Description This IC facilitates complicated power-on and power-monitoring resets of microcomputers that require the 3.3-V and 1.8-V dual power supplies. It also facilitates change of delay time of reset signal by externally setting resistance and capacity for delay time. By employing complementary open-drain output, desired output such as open-drain output and CMOS output can be obtained. Functions 3.3-V detection voltage Accuracy of 3.3-V detection voltage Hysteresis of 3.3-V detection voltage 1.8-V detection voltage Open-drain/CMOS output 1.8-V PMOS drive output Package Operating temperature : 2.7 V : 1.0% : 5% Typ. : 0.9 V Typ. : 8-pin SSOP-8/MMPAK-8 : –40 to +85°C Ordering Information Part Name RNA50C27AUSEL-E RNA50C27AMMEL-E Package Type SSOP-8 MMPACK-8 Package Code PVSP0008KA-A PLSP0008JC-A Package Abbreviation US MM Taping Abbreviation (Quantity) EL (3,000 pcs / Reel) EL (3,000 pcs / Reel) Surface Treatment E (Sn-Bi) E (Sn-Bi) Block Diagram MR 8 CRext 7 VDD33 1 – + Delay 2 RESP 3 RESN Vref VDD18 6 5 SWG GND 4 R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 1 of 29 RNA50C27A Preliminary Pin Arrangement VDD33 1 8 MR RESP 2 7 CRext RESN 3 6 VDD18 GND 4 5 SWG (Top view) Pin Description Pin No. 1 Pin Name VDD33 Function Input power supply pin for 3.3 V voltage. Recommended operating range is VTH33 to 3.6 V. Set input voltage to 0.033 V/s or less when starting up. If input voltage terminal VDD33 was momentary (VDD33 pin input voltage is lower than detection voltage state period of short), for discharge of external capacitance becomes insufficient, delay time will be very short. Please check if there is any problem as a system. 2 RESP Pull-down when reset signal output pin. By connecting to RESN pin, CMOS output can be used. 3 RESN 4 5 GND SWG Pull-up when reset signal output pin. By connecting to RESP pin, CMOS output can be used. GND pin 6 VDD18 Input power supply pin for 1.8 V voltage. Recommended operating range is 1.65 V to VDD33. When terminal voltage is below 0.9 V Typ, and outputs high-level signal SWG. 7 CRext Terminal is for determining Rext resistance and Cext capacitance of reset signal delay time. Resistance is recommended for more than 3.3 k. Delay time is given by tDLY = Cext Rext [s] Does not output reset signal when this pin is not high-level. Connect external resistor for VDD33 necessarily. 8 MR This terminal outputs a reset signal manually. Has been pull-up internally 2 M. If behavior is unstable, behavior is stabilized by connecting 220 pF to this pin to GND. In addition, or when connected to potential, such as VDD33 to force this pin to external, pulse width input to the MR be shorter than discharge time of CRext is, please note for delay normal can not be obtained. To be installed between 1.8 V power supply and 1.8 V voltage input of microcomputer, gate of PMOS is external control signal. It has been designed with load capacity of 2200 pF Typ., will change size of rise time/fall time of SWG capacity. R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 2 of 29 RNA50C27A Preliminary Absolute Maximum Ratings (Ta = 25°C) Item Supply voltage Input voltage Output voltage Symbol VDD33 VDD18 VI VO Input current Output current Supply current Power dissipation II IO IDD PT Terminal VDD33 VDD18 MR, CRext RESP, RESN SWG MR, CRext RESP, RESN, SWG VDD33, VDD18 — Storage temperature Tstg — Ratings 4.6 4.6 –0.3 to VDD33 –0.3 to VDD33 –0.3 to VDD18 20 20 25 160 145 –55 to +125 Unit V Remarks V V mA mA mA mW SSOP-8 MMPAK-8 °C Recommended Operating Conditions (Ta = 25°C) Item Supply voltage Input voltage Output voltage Symbol VDD33 VDD18 VI VO External resistor External capacitor MR pin capacitor Drivable capacitor Operating temperature Rext Cext CMR CL Ta R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Terminal VDD33 VDD18 MR, CRext RESP RESN SWG CRext CRext MR SWG — Min VTH33 1.65 0 0 0 0 3.3 — — — –40 Typ — — — — — — — Nolimit 220 2200 — Max 3.6 VDD33 VDD33 VDD33 VDD33 VDD18 — — — — 85 Unit V Remarks V V k F pF pF °C VDD33 = 3.3V SWG output Page 3 of 29 RNA50C27A Preliminary Electrical Characteristics DC Characteristics (VDD33 = 3.3V, VDD18 = 1.8V, Ta = 25°C, Rext = 10k) Item Quiescent supply current Detection voltage temperature dependency Symbol IDD33 IDD18 VTH33 VTH18H VTH18L ΔVTH33 VTH33 ⋅ ΔTa Detection voltage hysteresis MR Low-level input voltage High-level input voltage Internal pull-up resistance CMOS Low-level output current High-level output current RESP Output leakage current High-level output current RESN Low-level output current Output leakage current SWG Low-level output current High-level output current Low-level output voltage High-level output voltage VHYS VIL VIH RMR IOL IOH IOLEAK IOH IOL IOLEAK IOL IOH VOL VOH Detection voltage Note: Min 0.6 0.3 2.673 1.2 — — Typ 2.0 1.0 2.700 — — (100) Max 8.0 3.0 2.727 — 0.6 — VTH331.03 — 2.805 — 5 5 — 5 5 — 0.2 1.0 — 1.7 VTH331.05 — — (2.0) 15 10 (0.1) 10 15 (0.1) 0.35 3.0 — — VTH331.08 0.495 — — 20 13 — 13 20 — 0.6 6.0 0.1 — Unit A Test Conditions V ppm/°C V V V M mA A mA mA A mA V VO = 0.5V VO = 2.8V VO = 0.5V VO = 2.8V VO = 0.5V VO = 2.8V VO = 0.5V VO = 1.3V SWG = OPEN When the voltage within VIL < VIN < VIH is applied to MR and VDD18 input by DC, oscillation may occur. When RESP output and RESN short out and CMOS output is used. AC Characteristics (VDD33 = 3.3V, VDD18 = 1.8V, Ta = 25°C, Rext = 10k, RL = 100k, CL = 15pF) CMOS Item Propagation delay time Response time RESP Propagation delay time Response time RESN Propagation delay time Response time SWG Propagation delay time Response time Delay time Symbol tpLH tpHL tr tf tpLH tpHL tr tf tpLH tpHL tr tf tpHL tpLH tf tr tDLY Min Typ Max Unit — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 3 (10) * 3 (5) * 2 (93) * (500) *1 (100) *1 (100) *1 (100) *1 500 *2 (100) *3 (100) *3 3 (100) * 2 500 * (100) *3 (100) *3 (100) *3 500 *2 100 *2 — — — s Test Conditions ns s ns s s s ns s CL = 2200pF s CL = 2200pF ms Cext = 0.1F, Rext = 1M Notes: ( ) is a design reference value. *1 Estimated from measured value of RESP, RESN (Will vary considerably depending on conditions). *2 Edge is triggered 0 V3.3 V, 3.3 V0 V when change of maximum delay path VDD33. *3 Signal to trigger MR. R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 4 of 29 RNA50C27A Preliminary Timing Chart VHYS VTH33 Vop_min VDD33 VTH18H VTH18L VDD18 *1 VIH VIL MR tDLY tDLY tDLY tDLY tDLY tDLY RES SWG Note: MR has been pulled up to VCC by the internal resistance. Timing diagram is in phase with signal of VDD33. R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 5 of 29 RNA50C27A Preliminary Table of Graphs DC Characteristics Item Quiescent supply current Detection voltage Detection voltage temperature dependency Detection voltage hysteresis MR Input voltage Symbol IDD33 IDD18 VTH33 VTH18H VTH18L vs. VDD33 Fig. 1-1 — — — — vs. VDD18 — Fig. 2-1 — — — vs. Ta Fig. 3-1 Fig. 3-2 Fig. 3-3 Fig. 3-5 Fig. 3-5 Other — — — — — Test Circuit 1 1 2 3 3 — — — — 2 — Fig. 1-2, 3 Fig. 1-2, 3 — — — Fig. 3-4 Fig. 3-6 Fig. 3-6 — — — 2 4 4 RMR — — Fig. 3-7 — 5 IOLEAK Fig. 1-4 Fig. 1-5 Fig. 1-6 Fig. 1-7 — — — — Fig. 3-8 Fig. 3-9 Fig. 3-10 Fig. 3-11 — — — — 8 7 6 9 — — Fig. 2-2 Fig. 2-3 Fig. 3-12 Fig. 3-13 — — 13 11 Symbol tpLH vs. VDD33 Fig. 1-8 vs. VDD18 — vs. Ta Fig. 3-14 Other — Test Circuit 14 tpHL tr tf tpLH Fig. 1-9 Fig. 1-10 Fig. 1-11 Fig. 1-12 — — — — Fig. 3-15 Fig. 3-16 Fig. 3-17 Fig. 3-18 — — — — 17 20 23 15 tpHL tr Fig. 1-13 Fig. 1-14 — — Fig. 3-19 Fig. 3-20 — — 18 21 tf tpHL Fig. 1-15 Fig. 1-16 — — Fig. 3-21 Fig. 3-22 — — 24 16 tpLH tf Fig. 1-17 Fig. 1-18 — — Fig. 3-23 Fig. 3-24 — — 19 22 tr Fig. 1-19 Fig. 1-20 — Fig. 2-4 Fig. 3-25 Fig. 3-26 — Fig. 4-1 25 26 VHYS VIL VIH RESP RESN SWG Internal pulled-up resistor Output current Output current Output current IOH IOL IOLEAK IOL IOH AC Characteristics Item RESP Propagation delay time Response time RESN Propagation delay time Response time SWG Propagation delay time Response time Delay time R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 tDLY Page 6 of 29 RNA50C27A Preliminary Test Circuits 1. Quiescent supply curren, IDD33, IDD18 IDD33 VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ A IDD18 A VDD18 = 1.8 V V1 2. Detection voltage, VTH33 VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ VDD33 VDD33 V1 VDD18 = 1.8 V VHYS V1 V VDD33 VTH33 VDD33 = 3.3 V V1 3. Detection voltage, VTH18H, VTH18L VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ VDD18 VTH18H Release Voltage V VDD18 V1 V1 VDD18 VTH18L R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Detection Voltage Page 7 of 29 RNA50C27A Preliminary MR RESP CRext RESN VDD18 GND SWG V1 Rext = 10 kΩ VDD33 VMR VDD18 = 1.8 V V VIH Release Voltage V1 VDD33 = 3.3 V VDD33 V1 4. MR pin Input voltage Low-level / High-level, VIL/VIH VMR VDD33 VMR VIL Detection Voltage VDD33 = 3.3 V IMR 5. MR pin Internal pulled-up resistor, RMR VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ IMR I2 A V I1 V1 VDD18 = 1.8 V VMR RMR = V2 VMR (V2 – V1) [Ω] (I2 – I1) 6. CMOS(RESN) Output current Low-level, IOL IOL VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ A VO = 0.5 V R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 VDD18 = 1.8 V Page 8 of 29 RNA50C27A Preliminary 7. CMOS(RESP) Output current High-level, IOH IOH VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ A VO = 2.8 V VDD18 = 1.8 V 8. RESP pin Output leakage current, IOLEAK IOLEAK VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ A VDD18 = 1.8 V VO = 0.5 V 9. RESN pin Output leakage current, IOLEAK IOLEAK VDD33 = 3.3 V A VO = 2.8 V R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ VDD18 = 1.8 V Page 9 of 29 RNA50C27A Preliminary 10. SWG Output voltage High-level, VOH VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ V VDD18 = 1.8 V 11. SWG pin Output current High-level, IOH VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ IOH A VO = 1.3 V VDD18 = 1.8 V 12. SWG Output voltage Low-level, VOL VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ V VDD18 = 1.8 V 13. SWG pin Output current Low-level, IOL VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ IOL A VO = 0.5 V R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 VDD18 = 1.8 V Page 10 of 29 RNA50C27A Preliminary 14. Propagation delay time RESP, tpLH VDD33 VDD33 = 3.3 Vpp V VO VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ 3.3 V 0V RL V VHYS VDD18 = 1.8 V tpLH VO 1.65 V 3.3 V 0V RL = 100 kΩ t 15. Propagation delay time RESN, tpLH VDD33 RL VDD33 = 3.3 Vpp V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ 3.3 V 0V VO V VHYS VDD18 = 1.8 V tpLH VO 1.65 V 3.3 V 0V RL = 100 kΩ t 16. Propagation delay time SWG, tpHL VDD33 VDD33 = 3.3 Vpp V VDD33 MR RESP CRext RESN VDD18 GND SWG 3.3 V 0V tpHL 1.8 V VO 1.8 V VDD18 = 1.8 V CL = 2200 pF VHYS Rext = 10 kΩ 0.9 V VO V t R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 11 of 29 RNA50C27A Preliminary 17. Propagation delay time RESP, tpHL VDD33 = 3.3 V VO VDD33 MR RESP CRext RESN VDD18 GND SWG RL = 100 kΩ 3.3 V 1.65 V tpHL VO 3.3 V RL V VMR 3.3 V Rext = 10 kΩ 1.65 V VDD18 = 1.8 V VMR = 3.3 Vpp 3.3 V V t 18. Propagation delay time RESN, tpHL RL VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG RL = 100 kΩ 3.3 V 1.65 V tpHL VO 3.3 V VO V VMR 3.3 V Rext = 10 kΩ 1.65 V VDD18 = 1.8 V VMR = 3.3 Vpp 3.3 V V t 19. Propagation delay time SWG, tpLH VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ VMR = 3.3 Vpp VO VDD18 = 1.8 V CL = 2200 pF V V VMR 3.3 V 3.3 V 1.65 V tpLH VO 1.8 V 0.9 V 0V t R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 12 of 29 RNA50C27A Preliminary 20. Rising Response time RESP, tr VDD33 = 3.3 V VO VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ 0V RL = 100 kΩ VO 2.97 V 0.33 V tr RL V 3.3 V VDD18 = 1.8 V VMR = 3.3 Vpp t 21. Rising Response time RESN, tr RL VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ 3.3 V 0V VO 2.97 V 0.33 V tr VO V RL = 100 kΩ VDD18 = 1.8 V VMR = 3.3 Vpp t 22. Falling Response time SWG, tf VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ VMR = 3.3 Vpp VO VDD18 = 1.8 V CL = 2200 pF V VO 1.8 V 1.62 V 0.18 V 0V tf t R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 13 of 29 RNA50C27A Preliminary 23. Falling Response time RESP, tf VDD33 = 3.3 V VO VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ RL = 100 kΩ 2.97 V 0.33 V 0V tf RL V VO 3.3 V VDD18 = 1.8 V VMR = 3.3 Vpp t 24. Falling Response time RESN, tf RL VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ RL = 100 kΩ 2.97 V 0.33 V 0V tf VO V VO 3.3 V VDD18 = 1.8 V VMR = 3.3 Vpp t 25. Falling Response time SWG, tr VDD33 = 3.3 V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 10 kΩ VMR = 3.3 Vpp VO VDD18 = 1.8 V CL = 2200 pF V VO 1.62 V 1.8 V 0V 0.18 V tr t R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 14 of 29 RNA50C27A Preliminary 26. Delay time, tDLY VDD33 VDD33 = 3.3 Vpp V VO V VDD33 MR RESP CRext RESN VDD18 GND SWG Rext = 1 MΩ VHYS 3.3 V 0V VDD18 = 1.8 V Cext = 0.1 μF 0 V tDLY VO 1.65 V 3.3 V t R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 15 of 29 RNA50C27A Preliminary Main Characteristics Figure 1-1. Supply Current vs. Supply Voltage Supply Current, IDD33 (A) 1.0E–03 1.0E–04 1.0E–05 1.0E–06 1.0E–07 2 3 4 5 Supply Voltage, VDD33 (V) Figure 1-3. Manual Reset of Output Threshold Voltage SWG vs. Supply Voltage 5 Manual Reset Threshold Voltage, VRM (V) Manual Reset Threshold Voltage, VRM (V) Figure 1-2. Manual Reset Threshold Voltage of Reset Output vs. Supply Voltage 4 3 VIH VIL 2 1 0 2 3 4 3 VIH, VIL 2 1 0 2 5 4 3 4 5 Supply Voltage, VDD33 (V) Supply Voltage, VDD33 (V) Figure 1-4. RESP Output Leakage Current vs. Output Voltage Figure 1-5. RESP Output Current vs. Output Voltage 0.00 1.0E–07 VDD33 = 2.4 V Ta = 25°C, V_MR = 0 V Output Current, IOH (A) Output Leakage Current, IoLEAK (A) 5 5.0E–08 VDD33 = 2.4 V, VDD33 = 3.3 V, VDD33 = 4.6 V 0.0E+00 –5.0E–08 –1.0E–07 –0.02 VDD33 = 3.3 V –0.04 VDD33 = 4.6 V –0.06 –0.08 Ta = 25°C, V_MR = VDD33 V –0.10 0 1 2 3 Output Voltage, VOL (V) R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 4 5 0 1 2 3 4 5 Differential Output Voltage from VDD33, VOH (V) Page 16 of 29 RNA50C27A Preliminary Figure 1-6. RESN Output Current vs. Output Voltage Figure 1-7. RESN Output Leakage Current vs. Output Voltage 0.10 1.0E–07 Output Leakage Current, IoLEAK (A) Output Current, IOL (A) Ta = 25°C, V_MR = 0 V 0.08 VDD33 = 4.6 V 0.06 0.04 VDD33 = 3.3 V Ta = 25°C, V_MR = VDD33 V 5.0E–08 VDD33 = 2.4 V, VDD33 = 3.3 V, VDD33 = 4.6 V 0.0E+00 –5.0E–08 0.02 VDD33 = 2.4 V 0.00 –1.0E–07 0 1 2 3 4 5 0 1 2 3 5 4 Output Voltage, VOL (V) Figure 1-8. RESP Output Rising Propagation Delay Time vs. Supply Voltage Figure 1-9. RESP Output Falling Propagation Delay Time vs. Supply Voltage 200 Falling Propagation Delay Time, tpHL (ns) Rising Propagation Delay Time, tpLH (μs) Output Voltage, VOL (V) 150 100 RL, CRext = 1 MΩ 50 RL, CRext = 100 kΩ 0 2 3 4 8 6 4 RL, CRext = 100 kΩ 2 RL, CRext = 1 MΩ 0 2 5 3 4 5 Supply Voltage, VDD33 (V) Supply Voltage, VDD33 (V) Figure 1-10. RESP Output Rising Response Time vs. Supply Voltage Figure 1-11. RESP Output Falling Response Time vs. Supply Voltage 20 Falling Response Time, tf (ns) 20 Rising Response Time, tr (ns) 10 15 RL, CRext = 100 kΩ 10 5 RL, CRext = 1 MΩ 0 15 RL, CRext = 100 kΩ 10 RL, CRext = 1 MΩ 5 0 2 3 4 Supply Voltage, VDD33 (V) R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 5 2 3 4 5 Supply Voltage, VDD33 (V) Page 17 of 29 RNA50C27A Preliminary 200 150 100 RL, CRext = 1 MΩ 50 RL, CRext = 100 kΩ 0 2 3 4 Figure 1-13. RESN Output Falling Propagation Delay Time vs. Supply Voltage Falling Propagation Delay Time, tpHL (ns) Rising Propagation Delay Time, tpLH (μs) Figure 1-12. RESN Output Rising Propagation Delay Time vs. Supply Voltage 8 RL, CRext = 1 MΩ 6 4 2 RL, CRext = 100 kΩ 0 5 2 3 4 5 Supply Voltage, VDD33 (V) Supply Voltage, VDD33 (V) Figure 1-14. RESN Output Rising Response Time vs. Supply Voltage Figure 1-15. RESN Output Falling Response Time vs. Supply Voltage 50 Falling Response Time, tf (ns) 50 Rising Response Time, tr (ns) 10 40 RL, CRext = 1 MΩ 30 20 10 RL, CRext = 100 kΩ 40 RL, CRext = 1 MΩ 30 20 10 RL, CRext = 100 kΩ 0 0 2 3 4 2 5 3 4 5 Supply Voltage, VDD33 (V) Figure 1-16. SWG Output Rising Propagation Delay Time vs. Supply Voltage Figure 1-17. SWG Output Falling Propagation Delay Time vs. Supply Voltage 200 Falling Propagation Delay Time, tpLH (μs) Rising Propagation Delay Time, tpHL (μs) Supply Voltage, VDD33 (V) 150 100 CL = 2200 pF, CRext = 1 MΩ CL = 2200 pF, CRext = 100 kΩ 50 0 2 3 4 Supply Voltage, VDD33 (V) R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 5 10 8 6 4 CL = 2200 pF, CRext = 1 MΩ CL = 2200 pF, CRext = 100 kΩ 2 0 2 3 4 5 Supply Voltage, VDD33 (V) Page 18 of 29 RNA50C27A Preliminary Figure 1-18. SWG Output Rising Response Time vs. Supply Voltage Figure 1-19. SWG Output Falling Response Time vs. Supply Voltage 10 Falling Response Time, tr (μs) Rising Response Time, tf (μs) 50 40 30 20 CL = 2200 pF, CRext = 1 MΩ CL = 2200 pF, CRext = 100 kΩ 10 8 6 4 CL = 2200 pF, CRext = 1 MΩ CL = 2200 pF, CRext = 100 kΩ 2 0 0 2 3 4 5 Supply Voltage, VDD33 (V) 2 3 4 5 Supply Voltage, VDD33 (V) Figure 1-20. Reset Output Delay Time vs. Supply Voltage Delay Time, tDLY (ms) 200 150 CL = 2200 pF, CRext = 0.1 μF, 1 MΩ 100 50 CL = 2200 pF, CRext = 0.1 μF, 100 kΩ 0 2 3 4 5 Supply Voltage, VDD33 (V) R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 19 of 29 RNA50C27A Preliminary Figure 2-1. Supply Current vs. Supply Voltage Supply Current, IDD18 (μA) 1.0E–03 1.0E–04 1.0E–05 1.0E–06 1.0E–07 1.0E–08 1 2 3 4 5 Supply Voltage, VDD18 (V) Figure 2-3. SWG Output Current vs. Output Voltage Figure 2-2. SWG Output Current vs. Output Voltage 0.00 0.010 VDD18 = 1.6 V VDD18 = 1.8 V 0.008 Output Current, IOH (A) Output Current, IOL (A) Ta = 25°C, V_MR = VDD33 V 0.006 VDD18 = 4.6 V 0.004 0.002 –0.01 –0.02 –0.03 VDD18 = 4.6 V –0.04 VDD18 = 1.8 V Ta = 25°C, V_MR = 0 V –0.05 0.000 0 1 2 3 4 5 0 1 2 3 4 5 Differential Output Voltage from Supply Voltage, VOH (V) Output Voltage, VOL (V) Figure 2-4. Reset Output Delay Time vs. Supply Voltage Delay Time, tDLY (ms) 200 150 CL = 2200 pF, CRext = 0.1 μF, 1 MΩ 100 50 CL = 2200 pF, CRext = 0.1 μF, 100 kΩ 0 1 2 3 4 5 Supply Voltage, VDD18 (V) R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 20 of 29 RNA50C27A Preliminary Figure 3-1. Supply Current vs. Ambient Temperature Figure 3-2. Supply Current vs. Ambient Temperature Supply Current, IDD18 (μA) 10 8 6 4 2 0 –50 –25 0 25 50 75 2 –25 0 25 50 75 100 Figure 3-3. Detection Voltage vs. Ambient Temperature Figure 3-4. Detection Voltage Hysteresis vs. Ambient Temperature Detection Voltage Hysteresis Ratio (%) Detection Voltage, VTH33 (V) Detection Voltage, VTH18H, VTH18L (V) 4 Ambient Temperature, Ta (°C) VHYS 2.85 2.80 2.75 VTH33 2.70 2.65 –25 0 25 50 75 10 8 6 4 2 0 –50 100 –25 0 25 50 75 100 Ambient Temperature, Ta (°C) Ambient Temperature, Ta (°C) Figure 3-5. Detection Voltage vs. Ambient Temperature Figure 3-6. Manual Reset Threshold Voltage vs. Ambient Temperature 1.8 1.5 1.2 0.9 0.6 0.3 0 –50 6 Ambient Temperature, Ta (°C) 2.90 2.60 –50 8 0 –50 100 –25 0 25 50 Ambient Temperature, Ta (°C) R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 75 100 Manual Reset Threshold Voltage, VTHMR (V) Supply Current, IDD33 (μA) 10 4 3 2 VIH_RST 1 VIL_RST VIH_SWG VIL_SWG 0 –50 –25 0 25 50 75 100 Ambient Temperature, Ta (°C) Page 21 of 29 RNA50C27A Preliminary Figure 3-7. Internal Pulled-up Resistor vs. Ambient Temperature Resistance Value, RMR (MΩ) 5 4 3 2 1 0 –50 –25 0 25 50 75 100 Ambient Temperature, Ta (°C) Figure 3-8. RESP Output Leakage Current vs. Ambient Temperature Figure 3-9. RESP Output Current vs. Ambient Temperature 0.000 VDD33 = 3.3 V, VDD18 = 1.8 V, Vo = 0 V VDD33 = 3.3 V, VDD18 = 1.8 V, VOH = 2.8 V Output Current, IOH (A) Output Leakage Current, IoLEAK (A) 1.0E–08 5.0E–09 0.0E+00 –5.0E–09 –1.0E–08 –50 –25 0 25 50 75 –0.010 –0.015 –0.020 –50 100 –25 0 25 50 75 100 Ambient Temperature, Ta (°C) Ambient Temperature, Ta (°C) Figure 3-10. RESN Output Current vs. Ambient Temperature Figure 3-11. RESN Output Leakage Current vs. Ambient Temperature 1.0E–08 0.05 Output Leakage Current, IoLEAK (A) VDD33 = 3.3 V, VDD18 = 1.8 V, VOL = 0.5 V Output Current, IOL (A) –0.005 0.04 0.03 0.02 5.0E–09 0.0E+00 –5.0E–09 0.01 0.00 –50 VDD33 = 3.3 V, VDD18 = 1.8 V, VOL = 3.3 V –25 0 25 50 Ambient Temperature, Ta (°C) R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 75 100 –1.0E–08 –50 –25 0 25 50 75 100 Ambient Temperature, Ta (°C) Page 22 of 29 RNA50C27A Preliminary Figure 3-12. SWG Output Current vs. Ambient Temperature Figure 3-13. SWG Output Current vs. Ambient Temperature 1.0E–03 0.000 VDD33 = 3.3 V, VDD18 = 1.8 V, VOL = 1.3 V 8.0E–04 Output Current, IOH (A) Output Current, IOL (A) VDD33 = 3.3 V, VDD18 = 1.8 V, VOL = 0.5 V 6.0E–04 4.0E–04 2.0E–04 –25 0 25 50 75 –0.006 –0.008 –25 0 25 50 75 100 Ambient Temperature, Ta (°C) Ambient Temperature, Ta (°C) Figure 3-14. RESP Output Rising Propagation Delay Time vs. Ambient Temperature Figure 3-15. RESP Output Falling Propagation Delay Time vs. Ambient Temperature 200 150 100 50 0 –50 –25 0 25 50 75 100 8 6 4 2 0 –50 –25 0 25 50 75 Ambient Temperature, Ta (°C) Figure 3-16. RESP Output Rising Response Time vs. Ambient Temperature Figure 3-17. RESP Output Falling Response Time vs. Ambient Temperature 100 20 Falling Response Time, tf (ns) 15 10 5 0 –50 10 Ambient Temperature, Ta (°C) 20 Rising Response Time, tr (ns) –0.004 –0.010 –50 100 Falling Propagation Delay Time, tpHL (ns) Rising Propagation Delay Time, tpLH (μs) 0.0E+00 –50 –0.002 –25 0 25 50 Ambient Temperature, Ta (°C) R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 75 100 15 10 5 0 –50 –25 0 25 50 75 100 Ambient Temperature, Ta (°C) Page 23 of 29 RNA50C27A Preliminary 200 150 100 50 0 –50 Figure 3-19. RESN Output Falling Propagation Delay Time vs. Ambient Temperature Falling Propagation Delay Time, tpHL (ns) Rising Propagation Delay Time, tpLH (μs) Figure 3-18. RESN Output Rising Propagation Delay Time vs. Ambient Temperature –25 0 25 50 75 100 6 4 2 0 –50 –25 0 25 50 75 Ambient Temperature, Ta (°C) Figure 3-20. RESN Output Rising Response Time vs. Ambient Temperature Figure 3-21. RESN Output Falling Response Time vs. Ambient Temperature 100 Falling Response Time, tf (ns) 50 40 30 20 10 0 –50 –25 0 25 50 75 40 30 20 10 0 –50 100 –25 0 25 50 75 Ambient Temperature, Ta (°C) Ambient Temperature, Ta (°C) Figure 3-22. SWG Output Falling Propagation Delay Time vs. Ambient Temperature Figure 3-23. SWG Output Rising Propagation Delay Time vs. Ambient Temperature 200 Rising Propagation Delay Time, tpLH (μs) Rising Response Time, tr (ns) 8 Ambient Temperature, Ta (°C) 50 Falling Propagation Delay Time, tpHL (μs) 10 150 100 50 0 –50 –25 0 25 50 Ambient Temperature, Ta (°C) R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 75 100 100 10 8 6 4 2 0 –50 –25 0 25 50 75 100 Ambient Temperature, Ta (°C) Page 24 of 29 RNA50C27A Preliminary Figure 3-25. SWG Output Rising Response Time vs. Ambient Temperature Figure 3-24. SWG Output Falling Response Time vs. Ambient Temperature 10 Rising Response Time, tr (μs) Falling Response Time, tf (μs) 50 40 30 20 10 0 –50 –25 0 25 50 75 8 6 4 2 0 –50 100 Ambient Temperature, Ta (°C) –25 0 25 50 75 100 Ambient Temperature, Ta (°C) Figure 3-26. Reset Output Delay Time vs. Ambient Temperature Delay Time, tDLY (ms) 200 150 100 50 0 –50 –25 0 25 50 75 100 Ambient Temperature, Ta (°C) Figure 4-1. Reset Output Delay Time vs. External Resistor 1000 0.33 μF 0.1 μF 0.033 μF 100 10 1 0.1 1 1 MΩ 10 MΩ Delay Time, tDLY (ms) Delay Time, tDLY (ms) 1000 Figure 4-2. Reset Output Delay Time vs. External Capacitance 10 100 External Resistor, Rext (kΩ) R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 1000 100 kΩ 100 10 1 0.1 0.001 0.010 0.100 1.000 External Capacitance, Cext (μF) Page 25 of 29 RNA50C27A Preliminary Package Dimensions RNA50C27AUS JEITA Package Code P-VSSOP8-2.3x2-0.50 RENESAS Code PVSP0008KA-A Previous Code TTP-8DB/TTP-8DBV MASS[Typ.] 0.010g D F 1.5 ±0.2 8 5 bp c HE E c1 b1 Terminal cross section Min Nom Max D 1.8 2.0 2.2 E 2.2 2.3 2.4 A2 0.6 0.7 0.8 A1 0.1 0 A bp 0.15 0.22 0.3 b1 0.20 c 0.08 0.13 0.23 c1 0.11 θ HE 2.8 3.1 3.4 e (0.5) x y Z L L1 (0.4) bp A1 A2 ( 0.17 ) e Reference Dimension in Millimeters Symbol L1 4 1 Detail F 0.5 Unit: mm 0.3 0.2 0.4 0.1 3.1 0.5 2.3 0.5 SSOP-8 Footprint Example Note: These numbers on the diagram are reference values. Please adjust size, space, and other area of footprint as needed. R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 26 of 29 RNA50C27A Preliminary RNA50C27AMM Package Name MMPAK-8 JEITA Package Code P-LSOP8-2.8 x 2.95 - 0.65 RENESAS Code PLSP0008JC-A Previous Code ⎯ MASS[Typ.] 0.02 g Unit: mm 0.13 +0.12 -0.03 2.8 ± 0.1 4.0 ± 0.3 2.95 ± 0.2 0.6 0 to 0.1 0.65 0.1 M 0.2 +0.1 -0.05 0.3 1.1 ± 0.1 1.95 0.1 4.7 0.75 3.2 0.75 Unit: mm 0.35 0.65 MMPAK-8 Footprint Example R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 27 of 29 RNA50C27A Preliminary Taping and Reel Specifications 4 1.75 SSOP-8 φ1.5 2 Unit: mm 8 3.4 3.5 1.0 2.25 0.3 φ1.05 4 Reel type: C 4 ± 0.5 0° 2.0 ± 0.5 φ178 ± 2 12 φ13 ± 0.5 13.0 Maximum storage No.: 3000 pcs./Reel 9.0 4 1.75 MMPAK-8 φ1.55 2 Unit: mm 12.0 4.5 5.5 1.0 3.35 0.3 φ1.05 4 Reel type: C 4 ± 0.5 0° 13.0 R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 φ178 ± 2 12 2.0 ± 0.5 φ13 ± 0.5 17.0 Maximum storage No.: 3000 pcs./Reel Page 28 of 29 RNA50C27A Preliminary Mark Indication RNA50C27AUS (1) Year code (2) (3) Month code Week code RNA50C27AMM (1) (2) (3) R 0 2 N 0 1 (1) (3) (2) The last digit of year Starting in January "A","B","C","D","E","F","G","H","J","K","L","M" View Week of month, 1 week "1" R03DS0064EJ0100 Rev.1.00 Aug 03, 2012 Page 29 of 29 Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. the product's quality grade, as indicated below. "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products. 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. http://www.renesas.com SALES OFFICES Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898 Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2886-9318, Fax: +852 2886-9022/9044 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001 Renesas Electronics Malaysia Sdn.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141 © 2012 Renesas Electronics Corporation. All rights reserved. Colophon 2.0