Download 11_hws.pdf

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MTHE 225
HOMEWORK SET 11
1. Solve the differential equation: 2y 00 + 3y 0 − 2y = 14x2 − 4x − 11.
2. Solve the differential equation: y 00 − y 0 − 2y = x + e2x .
3. Solve the differential equation: y 00 + y = 3 sin x.
4. Solve the differential equation: 4y 00 + 4y 0 + y = 3xex .
1
SOLUTION
1.
(Non-homogeneous Linear DE with Constant Coefficients)
• For yc :
Auxiliary equation: 2m2 + 3m − 2 = 0 ⇒ (2m − 1)(m + 2) = 0 ⇒ m =
1
⇒ yc = C1 e 2 x + C2 e−2x .
1
, −2
2
• For yp :
Let yp = A2 x2 + A1 x + A0 .
⇒ yp0 = 2A2 x + A1
⇒ yp00 = 2A2 .
Now plug these in the given DE.
2(2A2 ) + 3(2A2 x + A1 ) − 2(A2 x2 + A1 x + A0 ) = 14x2 − 4x − 11
⇒ (−2A2 )x2 + (6A2 − 2A1 )x + (4A2 + 3A1 − 2A0 ) = 14x2 − 4x − 11
Now compare the coefficients.
−2A2 = 14 ⇒ A2 = −7.
6A2 − 2A1 = −4 ⇒ −42 − 2A1 = −4 ⇒ A1 = −19.
4A2 + 3A1 − 2A0 = −11 ⇒ −28 − 57 − 2A0 = −11 ⇒ A0 = −37.
Therefore, yp = −7x2 − 19x − 37.
1
Hence the general solution of the DE is y(x) = yc + yp = C1 e 2 x + C2 e−2x − 7x2 − 19x − 37.
2.
(Non-homogeneous Linear DE with Constant Coefficients)
• For yc :
Auxiliary equation: m2 − m − 2 = 0 ⇒ (m − 2)(m + 1) = 0 ⇒ m = −1, 2
⇒ yc = C1 e−x + C2 e2x .
• For yp :
not Be2x
z }| {
Let yp = (A1 x + A0 ) + Bxe2x
⇒ yp0 = A1 + B(e2x + 2xe2x ) = A1 + B(1 + 2x)e2x
⇒ yp00 = B(2e2x + (1 + 2x)2e2x ) = B(4 + 4x)e2x .
Now plug these in the given DE.
(B(4 + 4x)e2x ) − (A1 + B(1 + 2x)e2x ) − 2((A1 x + A0 ) + Bxe2x ) = x + e2x
⇒ (−2A1 )x + (−A1 − 2A0 ) + B(4 + 4x − 1 − 2x − 2x)e2x = x + e2x
2
⇒ (−2A1 )x + (−A1 − 2A0 ) + B(3)e2x = x + e2x
Now compare the coefficients.
1
−2A1 = 1 ⇒ A1 = − .
2
1
1
−A1 − 2A0 = 0 ⇒ − 2A0 = 0 ⇒ A0 = .
2
4
1
3B = 1 ⇒ B = .
3
1
1 1
Therefore, yp = − x + + xe2x .
2
4 3
1
1 1
Hence the general solution of the DE is y(x) = yc + yp = C1 e−x + C2 e2x − x + + xe2x .
2
4 3
3.
(Non-homogeneous Linear DE with Constant Coefficients)
• For yc :
√
Auxiliary equation: m2 +1 = 0 ⇒ m2 −( −1)2 = 0 ⇒ m2 −i2 = 0 ⇒ (m−i)(m+i) = 0
⇒ m = ±i. (Recall any complex/imaginary root(s) of a polynomial comes in a pair of
form α ± βi)
⇒ yc = C1 eαx cos (βx) + C2 eαx sin (βx) = C1 e0x cos (1x) + C2 e0x sin (1x) = C1 cos x +
C2 sin x.
• For yp :
not (A cos x+B sin x)
z
}|
{
Let yp = x(A cos x + B sin x)
⇒ yp0 = (A cos x + B sin x) + x(−A sin x + B cos x)
⇒ yp00 = (−A sin x + B cos x) + (−A sin x + B cos x) + x(−A cos x − B sin x)
⇒ yp00 = 2(−A sin x + B cos x) + x(−A cos x − B sin x)
Now plug these in the given DE.
2(−A sin x + B cos x) + x(−A cos x − B sin x) + x(A cos x + B sin x) = 3 sin x
⇒ −2A sin x − 2B cos x = 3 sin x
Now compare the coefficients.
3
−2A = 3 ⇒ A = −
2
−2B = 0 ⇒ B = 0
3
Therefore, yp = − x cos x
2
3
Hence the general solution of the DE is y(x) = yc + yp = C1 cos x + C2 sin x − x cos x.
2
4.
(Non-homogeneous Linear DE with Constant Coefficients)
3
• For yc :
1 1
Auxiliary equation: 4m2 + 4m + 1 = 0 ⇒ (2m + 1)2 = 0 ⇒ m = − , − .
2 2
1
1
⇒ yc = C1 e− 2 x + C2 xe− 2 x .
• For yp :
Let yp = (Ax + B)ex
⇒ yp0 = Aex + (Ax + B)ex = (Ax + A + B)ex
⇒ yp00 = Aex + (Ax + A + B)ex = (Ax + 2A + B)ex
Now plug these in the given DE.
4(Ax + 2A + B)ex + 4(Ax + A + B)ex + (Ax + B)ex = 3xex
⇒ (9Ax + 12A + 9B)ex = 3xex
⇒ 9Ax + 12A + 9B = 3x
Now compare the coefficients.
1
9A = 3 ⇒ A =
3
1
4
12A + 9B = 0 ⇒ 12 · + 9B = 0 ⇒ B = −
3
9
1
4 x
Therefore, yp =
x−
e
3
9
Hence the general solution of the DE is y(x) = yc +yp = C1 e
4
− 21 x
+ C2 xe
− 12 x
+
1
4
x−
3
9
ex .
Related documents